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Abstract: Movement control can be an indicator of how challenging a task is for the athlete, and
can provide useful information to improve training efficiency and prevent injuries. This study was
carried out to determine whether inertial measurement units (IMU) can provide reliable information
on motion variability during strength exercises, focusing on the squat. Sixty-six healthy, strength-
trained young adults completed a two-day protocol, where the variability in the squat movement was
analyzed at two different loads (30% and 70% of one repetition maximum) using inertial measurement
units and a force platform. The time series from IMUs and force platforms were analyzed using
linear (standard deviation) and non-linear (detrended fluctuation analysis, sample entropy and fuzzy
entropy) measures. Reliability was analyzed for both IMU and force platform using the intraclass
correlation coefficient and the standard error of measurement. Standard deviation, detrended
fluctuation analysis, sample entropy, and fuzzy entropy from the IMUs time series showed moderate
to good reliability values (ICC: 0.50–0.85) and an acceptable error. The study concludes that IMUs are
reliable tools for analyzing movement variability in strength exercises, providing accessible options
for performance monitoring and training optimization. These findings have implications for the
design of more effective strength training programs, emphasizing the importance of movement
control in enhancing athletic performance and reducing injury risks.

Keywords: strength training; variability; inertial sensors; non-linear measures; motor control

1. Introduction

Muscular force in the field of physical activity is understood as the capacity of a
muscle to produce tension when activated [1]. As adequate force levels present benefits in
terms of both athletic performance [2,3] and health [4–6], strength exercises are commonly
introduced in sport, fitness, and rehabilitation training programs. In order to maximize
the benefits and decrease the risks of these strength interventions, most studies have
manipulated important parameters related to the exercise load, such as volume, frequency,
intensity, etc. [7–9]; however, there is a lack of knowledge about how movement control
during strength exercises influences the adaptations caused by these programs.

Movement control, understood as the ability of the nervous and musculoskeletal
system to regulate and direct motor actions, exhibits an inherent variability during human
movement [10] that seems to reflect how each individual copes with the different task
constraints [11]. During strength exercises, movement variations depend on how force is
produced and controlled. Force control is the ability to generate accurate and task-relevant
force levels and is an important performance factor [12]. During strength exercises, this
control is characterized by complex motor fluctuations, which reflect how the different body
systems (nervous, musculoskeletal, etc.) adapt motor performance quickly and accurately
in response to exercise constraints [13]. These fluctuations are produced at different levels,
from the central level, such as recruitment, firing frequency, or coordination of muscle
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groups, to the effects of peripheral aspects, such as metabolite accumulation [14–17]. The
resultant force output produced during any strength exercise constantly fluctuates, reflect-
ing the continuous interaction between individuals and the task demands [18]. Therefore,
movement variability during strength exercise not only depends on each individual’s
features (e.g., skill level, current physical condition, experience, etc.), but is also influenced
by different constraints such as fatigue [19–21] or load [22–24], among others.

Non-linear measures have been proposed as relevant tools to analyze movement
variability in order to understand how individuals cope with task demands [12]. Specifically,
non-linear tools, such as entropy measurements or detrend fluctuation analysis (DFA),
have been implemented to describe motor variability during force production tasks [25–27].
Entropy parameters and DFA analyze specific aspects of the variability structure, such
as signal regularity and fractality, respectively. These tools have been revealed as useful
in detecting changes in force control caused by the manipulation of relevant constraints
such as fatigue or load magnitude [18,25]. In addition to force control, postural control
was another variable where non-linear measures were applied to determine the effect
of conditioning factors such as fatigue in lower limb training [28,29]. However, such
studies have been conducted on non-functional tasks, which were either single-joint or
unrepresentative sporting or everyday actions (e.g., finger press or knee extension). They
have also been studied in laboratory settings, which makes it difficult to extrapolate these
results to a training context. Studies analyzing common strength exercises such as the
squat have focused on kinematic and kinetic variables related to velocity and power [30]
through portable biomechanics IMU; however, no work has studied whether the analysis of
movement fluctuations during regular exercises such as the squat can be measured reliably
to provide useful information for the planning of strength training.

To the best of the authors’ knowledge, no previous research has systematically in-
vestigated the reliability of non-linear measures to assess global strength actions using
affordable materials. This study aims to fill this gap by examining the reliability of analyz-
ing acceleration signals obtained from accelerometers, specifically in the context of a global
movement, involving different joints and the coordination of large muscle groups (e.g., a
squat). Our investigation also encompasses assessment of the impact of IMU placement
and recording frequency on the reliability of non-linear tools. Furthermore, we explore
whether the outcomes of these measurements align with those obtained from a widely
used laboratory instrument in sports science, such as a force platform. The significance of
this research lies in its potential to establish reliable analysis protocols, which, if validated,
can be utilized to investigate the impact of various conditioning factors, including fatigue,
loading effects, movement speed, and more.

2. Materials and Methods
2.1. Participants

Eighty-eight healthy young people were initially recruited to participate in the study.
Seventeen participants did not complete all measures sessions and were therefore elim-
inated from further analysis. In addition, for five participants, the records were not ob-
tained correctly and, therefore, could not be analyzed. The final sample consisted of
66 participants, and the descriptive data for the participant set are as follows: 34 males
(age = 25.7 ± 4.4 years; height = 174.5 ± 7.4 cm; body mass = 71.7 ± 13.6 kg; one repetition
maximum (1RM) in the squat = 116.5 ± 23.2 kg; ratio 1RM/body mass = 1.5 ± 0.2) and
32 females (age = 25.1 ± 5.4 years; height = 160.9 ± 5.3 cm; body mass = 60.4 ± 7.6 kg; 1RM
in squat = 76.5 ± 17.4 kg; ratio 1RM/body mass = 1.2 ± 0.2). To ensure that all participants
had a stable technique, and to avoid affecting reliability results (e.g., through the learning
effect), participants were preferred to have at least one year of strength training experience,
including the squat exercise in their training programs. To be included in the study, par-
ticipants completed a health history questionnaire, guaranteeing that they were free from
any disease, illness, or injury that may affect the results of the study. Participants were
instructed to maintain their normal lifestyle, including nutritional and hydration states.
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Caffeine intake was not allowed in the 3 h previous to measurements. In addition, strength
training sessions were not allowed in the 72 h previous to the experimental sessions. To
avoid experimental variability, participants were scheduled at the same time for each
session. All participants attended three testing sessions separated by at least 72 h. Prior
to participation, each subject provided written informed consent, which was approved by
the ethics committee of the University (PID2019-109632RB-100) and which adhered to the
Declaration of Helsinki.

2.2. Procedures
2.2.1. Day 1—RM Estimation

During their first session, participants were familiarized with the warm-up protocol
and performed the 1RM squat test. For this 1RM squat test, participants started from a
shoulder-width stance apart with the barbell resting on the upper back, approximately
at the level of the acromion, with the knees and hips fully extended. Each participant
descended until his thighs were parallel to the ground and, subsequently, ascended to the
upright position (Figure 1). Participants were encouraged to return to the upright position
at maximum speed. The 1RM estimation was automatically calculated by the specialized
software of the linear position transducer (T-Force System, V. 3.70, Ergotech, Murcia, Spain).
Several studies have supported the use of movement velocity for 1RM estimation [31–33].
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Figure 1. Example of a set of four squats showing the kinetic and kinematic dynamics during the 
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eration profiles. The upper graph (A) shows the force magnitude (FM, in Newton), represented by 
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Figure 1. Example of a set of four squats showing the kinetic and kinematic dynamics during
the intensity of 70% of the repetition maximum. Illustrated here are the synchronized force and
acceleration profiles. The upper graph (A) shows the force magnitude (FM, in Newton), represented
by the solid black line. The lower graph (B) displays the acceleration magnitude (m/s2), with the
blue line representing acceleration at the barbell (ACCBR) and the red line indicating acceleration at
the lumbar region (ACCL5). Dashed vertical lines represent the initial and final cut-off points for data
analysis. The phases of the squat movement—ascending (A.P.), descending (D.P.), and stabilization
(S.P.)—dotted arrows indicate phase changes approximately. These arrows also relate the graph of
FM to that of acceleration in ACCBR and ACCL5. Additionally, icons at the top illustrate key positions
within the squat cycle: standing and the lowest squat point.
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2.2.2. Days 2 and 3—Experimental Procedure

During the second and third sessions, participants performed the experimental pro-
tocol, which consisted of a total of two sets of four consecutive repetitions in the squat
exercise. Participants performed two sets with 30% and 70% of 1RM, respectively, at a
preferred velocity, with a rest period of 4 min between the two situations. All repetitions
were completed in all sets.

2.3. Data Acquisition

A linear encoder T-ForceTM (T-Force Dynamic Measurement System, Ergotech, Mur-
cia, Spain) was used to calculate RM and monitor mean propulsive velocity during repeti-
tions. During the experimental protocol, the force data were obtained using a Kistler force
platform (Winterthur, Switzerland, Mode 9287BA), which was calibrated with InstaCal
software V. 7.62 (Measurement Computing Corporation, Norton, MA, USA) before the start
of the protocol. The acceleration signal was obtained through two IMUs, which formed
part of an inertial motion capture system (iSen, STT Systems Inc., San Sebastián, Spain).
One of them was placed in the middle of the barbell with which squats were performed,
and the other was placed in the lumbar region at the level of the lumbar vertebra 5 (L5)
(Figure 2). The IMUs were synchronized with the iSen software, V. 2023.0. Synchronization
between the force platform and the accelerometers was achieved by means of a trigger.
The trigger was made by hitting the force platform with an IMU used exclusively for this
purpose. Both the IMUs and the force platform recorded at a frequency of 200 Hz.
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at L5.

2.4. Data Analysis

The acceleration magnitude of each of the devices was calculated from the three
acceleration axes using the following Equation (1):√(

AP2 + ML2+V2
)

(1)

where AP is the anterior–posterior axis; ML is the medial–lateral axis; and V is the vertical
axis. Thus, the acceleration magnitude of the IMUs located at the barbell (ACCBR) and
at L5 (ACCL5) was obtained. From the force platform, three axes were also obtained: AP,
ML, and V. With these axes, FM was calculated using Equation (1). On the other hand, the
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center of pressure magnitude (COPM), which is the resultant of the moments of force in the
medial–lateral and anterior–posterior axis, was calculated using the following Equation (2):√(

Ax2 + Ay2
)

(2)

where Ax refers to the medial–lateral component of the center of pressures, and Ay to the
anterior–posterior component from the force platform.

All of the aforementioned processing steps were performed using an application
created ad hoc with LabView 2012 (National Instruments, Austin, TX, USA). In addition,
the same application was used to perform the cuts in the time series. The FM module was
used to detect the beginning of the first squat and the end of the last squat. The initial
cut-off point was the point of lowest force in the first squat, and the final cut-off point
was the point of lowest force in the last squat (Figure 1). The original length, i.e., with
the recording frequency at 200 Hz, was between 874 and 4703 data. Signals were then
sub-sampled at 100 and 50 Hz. Sub-sampling was executed by proportionally adjusting
the sampling frequency through the selection of points at regular intervals. To reduce
from 200 Hz to 100 Hz, one out of every two points was selected, whereas to decrease to
50 Hz, one out of every four was taken, thus ensuring an adequate temporal representation
in the subsampled series. This way, analyses were repeated at three different sampling
frequencies (200, 100, and 50 Hz). These frequencies were selected on the basis of practical
applicability, as most smartphones integrate accelerometers that work at these frequencies.
Thus, the results obtained from this work will be applicable to most devices. The amount
of variability was calculated using the standard deviation. The structure of the variability
of the time series was analyzed. For this purpose, the time series data were analyzed using
fuzzy entropy (FuEn) and sampled entropy (SaEn) to analyze regularity or predictability.
These two measures were chosen as they have been shown to be more solid to changes in
data length, and FuEn has been shown to be more robust to changes in r and noise [34].
Long-term correlations were also analyzed to provide an indicator of the roughness of the
movement, for which DFA was used, as it has been shown to be less affected by the signal’s
non-stationarity [35]. FuEn was calculated using a protocol set out by Chen et al. [36], and
SaEn was computed based on Yentes et al. [37]. The parameters m = 2, r = 0.2 × SD, and
n = 2 [38] were used to calculate FuEn, and m = 2 and r = 0.2 × SD to calculate SaEn [37].
DFA was calculated according to Peng et al. [35] and using windows of one-second duration.
For this purpose, the duration of the windows was adjusted according to the sampling
frequency. Thus, at 200 Hz, the initial window was 8 data and the final window was
200 data. For 100 Hz, 4 and 100 data were used, respectively, while for 50 Hz, 4 and 50 data
were used. The variability analyses performed in this work were carried out using a code
that we developed using the Python programming language.

2.5. Statistical Analysis

The obtained data were analyzed using SPSS (V. 25, IBM Statistics, New York, NY,
USA). The normality of the data was confirmed using the Kolmogorov–Smirnov test.
Relative reliability was assessed through the intraclass correlation coefficient (ICC) [39]. In
this analysis, day 2 was compared with day 3 for each of the variables (SD, DFA, FuEn,
and SaEn), and for ACCBR, ACCL5, FM and COPM. For the interpretation of these values,
we followed Koo and Li [40], who considered an ICC of >0.90 as excellent, 0.75–0.90 as
good, 0.50–0.75 as moderate, and <0.50 as poor. Additionally, the absolute reliability was
computed for each of the variables in each device using the standard error of measurement
(SEM) as the SD of the difference between participants’ trials divided by

√
2 [41]. This SEM

was used to account for the impact of sample heterogeneity and the influence of systematic
errors. In this study, the SEM is expressed in absolute values in order to establish what
amount of error we can assume in each of the variables. In addition, two complementary
analyses were performed. Pearson’s correlation coefficient was calculated to determine
the level of correlation between the variables obtained from the force platform and the
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accelerometers. A two-way ANOVA (intensity and days) was also performed to determine
whether the variables studied were sensitive to variations produced by an external factor,
in this case, the load. The Bonferroni adjustment was used in the post hoc analysis.

3. Results

Figures 3 and 4 present a summary of the results obtained in the ICC for each device
and the SEM for the non-linear variables, respectively. The SEM values of the SD are
measured in different units. In summary, in terms of ICC, most of the outcomes calculated
from IMUs and FM showed moderate to good ICC values, but COPM did not show accept-
able ICC values for any variable. The impact of frequency on ICC was minimal, as the
differences were generally less than 0.1 for most measures and variables. SEM is shown
with absolute values, in m/s2 for SD and unitless for non-linear variables. A more detailed
description of the results shown in each table follows.

Sensors 2024, 24, x FOR PEER REVIEW 6 of 16 
 

 

determine the level of correlation between the variables obtained from the force platform 
and the accelerometers. A two-way ANOVA (intensity and days) was also performed to 
determine whether the variables studied were sensitive to variations produced by an ex-
ternal factor, in this case, the load. The Bonferroni adjustment was used in the post hoc 
analysis. 

3. Results 
Figures 3 and 4 present a summary of the results obtained in the ICC for each device 

and the SEM for the non-linear variables, respectively. The SEM values of the SD are meas-
ured in different units. In summary, in terms of ICC, most of the outcomes calculated from 
IMUs and FM showed moderate to good ICC values, but COPM did not show acceptable 
ICC values for any variable. The impact of frequency on ICC was minimal, as the differ-
ences were generally less than 0.1 for most measures and variables. SEM is shown with 
absolute values, in m/s2 for SD and unitless for non-linear variables. A more detailed de-
scription of the results shown in each table follows.  

 

Figure 3. Results of the intraclass correlation coefficient by devices: (A) acceleration from the IMU
placed on the bar; (B) acceleration from the IMU placed on the L5 zone; (C) magnitude of the force
obtained from the force platform; (D) magnitude of the center of pressures obtained from the platform.
The graph shows the mean and the upper and lower limits of the 95% confidence interval. The
dashed lines indicate the limits for each of the interpretations of the ICC values.



Sensors 2024, 24, 1951 7 of 16

Sensors 2024, 24, x FOR PEER REVIEW 7 of 16 
 

 

Figure 3. Results of the intraclass correlation coefficient by devices: (A) acceleration from the IMU 
placed on the bar; (B) acceleration from the IMU placed on the L5 zone; (C) magnitude of the force 
obtained from the force platform; (D) magnitude of the center of pressures obtained from the plat-
form. The graph shows the mean and the upper and lower limits of the 95% confidence interval. 
The dashed lines indicate the limits for each of the interpretations of the ICC values. 

 
Figure 4. Results of standard errors of measurement by variables: (A) detrended fluctuation analy-
sis; (B) fuzzy entropy; (C) sample entropy. The dashed lines indicate the groupings of the different 
devices. Note that the SEM standard deviation is not shown in the graphs because given the differ-
ences in the measurement magnitudes of each device they are not comparable. 

Tables 1 and 2 present the mean values and standard deviation together with the 
reliability results of the time series obtained from the IMUs placed at the barbell and at L5 

Figure 4. Results of standard errors of measurement by variables: (A) detrended fluctuation analysis;
(B) fuzzy entropy; (C) sample entropy. The dashed lines indicate the groupings of the different devices.
Note that the SEM standard deviation is not shown in the graphs because given the differences in the
measurement magnitudes of each device they are not comparable.

Tables 1 and 2 present the mean values and standard deviation together with the
reliability results of the time series obtained from the IMUs placed at the barbell and at L5
area, respectively. The ACCBR showed a moderate to good ICC, with values ranging from
0.52 to 0.82. The ICC values at 70% load were slightly higher than at 30% load. Regarding
SEM, the following values were observed for each variable: SD ranged from 0.33 to 0.49,
DFA ranged from 0.10 to 0.13, FuEn ranged from 0.05 to 0.07, and SaEn ranged from 0.05 to
0.10. The results are similar to those obtained for ACCL5. For the ICC value, the range for
ACCL5 was from 0.47 to 0.80. It appears that the trend towards higher ICC values in the
70% load compared to the 30% load was maintained in ACCL5 for all variables except DFA.



Sensors 2024, 24, 1951 8 of 16

Regarding SEM, ACCL5 reported the following values: SD from 0.30 to 0.44, DFA from 0.11
to 0.15, FuEn from 0.07 to 0.12, and SaEn from 0.05 to 0.14.

Table 1. Descriptive and reliability results of linear and non-linear parameters obtained from the
acceleration magnitude time series recorded from IMU placed at the barbell.

Variable %RM Frequency
Day 2 Day 3 Reliability Measures

M ± SD M ± SD ICC (LCL-UCL) SEM

SD

30
50 2.60 ± 0.90 2.72 ± 0.84 0.68 (0.53, 0.79) 0.49
100 2.60 ± 0.89 2.72 ± 0.83 0.69 (0.54, 0.8) 0.48
200 2.60 ± 0.89 2.72 ± 0.83 0.69 (0.54, 0.79) 0.48

70
50 2.11 ± 0.62 2.15 ± 0.61 0.73 (0.59, 0.82) 0.33
100 2.13 ± 0.63 2.15 ± 0.61 0.72 (0.59, 0.82) 0.33
200 2.14 ± 0.63 2.16 ± 0.61 0.72 (0.59, 0.82) 0.33

DFA

30
50 1.29 ± 0.18 1.32 ± 0.15 0.53 (0.33, 0.68) 0.11
100 1.33 ± 0.17 1.34 ± 0.14 0.55 (0.37, 0.70) 0.10
200 1.32 ± 0.17 1.34 ± 0.14 0.56 (0.37, 0.70) 0.10

70
50 1.14 ± 0.22 1.18 ± 0.2 0.58 (0.4, 0.72) 0.13
100 1.19 ± 0.20 1.21 ± 0.18 0.63 (0.46, 0.75) 0.12
200 1.18 ± 0.20 1.21 ± 0.18 0.63 (0.47, 0.76) 0.12

FuEn

30
50 0.54 ± 0.12 0.54 ± 0.10 0.70 (0.55, 0.80) 0.06
100 0.32 ± 0.11 0.32 ± 0.09 0.59 (0.41, 0.73) 0.06
200 0.19 ± 0.10 0.19 ± 0.08 0.52 (0.32, 0.67) 0.07

70
50 0.68 ± 0.15 0.67 ± 0.15 0.82 (0.73, 0.89) 0.06
100 0.44 ± 0.12 0.43 ± 0.12 0.78 (0.66, 0.86) 0.06
200 0.26 ± 0.11 0.26 ± 0.10 0.71 (0.57, 0.81) 0.05

SaEn

30
50 0.52 ± 0.14 0.52 ± 0.11 0.64 (0.48, 0.76) 0.08
100 0.34 ± 0.11 0.34 ± 0.09 0.62 (0.45, 0.75) 0.06
200 0.22 ± 0.10 0.22 ± 0.08 0.54 (0.34, 0.69) 0.06

70
50 0.59 ± 0.15 0.57 ± 0.19 0.66 (0.5, 0.78) 0.10
100 0.39 ± 0.12 0.39 ± 0.14 0.70 (0.56, 0.81) 0.07
200 0.26 ± 0.09 0.25 ± 0.10 0.72 (0.58, 0.81) 0.05

Note. %RM: RM percentage; M: mean; SD: standard deviation; ICC: intraclass correlation coefficient; LCL: lower
confidence interval; UCL: upper confidence interval; SEM: standard error of measurement; DFA: detrended
analysis fluctuation; FuEn: fuzzy entropy; SaEn: sample entropy.

Table 2. Descriptive and reliability results of linear and non-linear parameters obtained from the
acceleration magnitude time series recorded from IMU placed at the L5.

Variable %RM Frequency
Day 2 Day 3 Reliability Measures

M ± SD M ± SD ICC (LCL-UCL) SEM

SD

30
50 2.31 ± 0.84 2.42 ± 0.77 0.69 (0.54, 0.8) 0.44
100 2.32 ± 0.85 2.42 ± 0.77 0.69 (0.54, 0.8) 0.44
200 2.32 ± 0.85 2.42 ± 0.77 0.69 (0.54, 0.8) 0.44

70
50 1.95 ± 0.6 2 ± 0.54 0.75 (0.62, 0.84) 0.30
100 1.96 ± 0.6 2 ± 0.54 0.75 (0.62, 0.84) 0.30
200 1.96 ± 0.6 2 ± 0.54 0.75 (0.62, 0.84) 0.30

DFA

30
50 1.19 ± 0.21 1.18 ± 0.18 0.61 (0.43, 0.74) 0.12
100 1.22 ± 0.2 1.21 ± 0.17 0.63 (0.46, 0.76) 0.11
200 1.22 ± 0.2 1.2 ± 0.17 0.63 (0.47, 0.76) 0.11

70
50 0.96 ± 0.2 0.99 ± 0.21 0.48 (0.27, 0.64) 0.15
100 1 ± 0.19 1.01 ± 0.19 0.55 (0.35, 0.7) 0.13
200 1 ± 0.19 1.01 ± 0.19 0.53 (0.33, 0.68) 0.13
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Table 2. Cont.

Variable %RM Frequency
Day 2 Day 3 Reliability Measures

M ± SD M ± SD ICC (LCL-UCL) SEM

FuEn

30
50 0.87 ± 0.22 0.84 ± 0.15 0.55 (0.36, 0.7) 0.12
100 0.55 ± 0.17 0.52 ± 0.12 0.49 (0.29, 0.65) 0.10
200 0.29 ± 0.11 0.27 ± 0.08 0.47 (0.26, 0.64) 0.07

70
50 1.09 ± 0.21 1.05 ± 0.21 0.78 (0.66, 0.86) 0.10
100 0.72 ± 0.16 0.69 ± 0.15 0.80 (0.7, 0.87) 0.07
200 0.4 ± 0.11 0.38 ± 0.1 0.80 (0.69, 0.87) 0.05

SaEn

30
50 0.89 ± 0.23 0.83 ± 0.17 0.56 (0.37, 0.7) 0.14
100 0.58 ± 0.17 0.55 ± 0.13 0.50 (0.3, 0.66) 0.11
200 0.35 ± 0.11 0.33 ± 0.08 0.50 (0.3, 0.66) 0.07

70
50 1.05 ± 0.24 1.01 ± 0.24 0.71 (0.57, 0.81) 0.13
100 0.72 ± 0.19 0.69 ± 0.19 0.76 (0.64, 0.85) 0.09
200 0.43 ± 0.11 0.42 ± 0.11 0.76 (0.64, 0.85) 0.05

Note. %RM: RM percentage; M: mean; SD: standard deviation; ICC: intraclass correlation coefficient; LCL: lower
confidence interval; UCL: upper confidence interval; SEM: standard error of measurement; DFA: detrended
analysis fluctuation; FuEn: fuzzy entropy; SaEn: sample entropy.

Tables 3 and 4 show the mean values and standard deviations together with the
reliability results of the time series FM and COPM, respectively. The two types of time series
were obtained from the force platform. In the same way as IMUs, the FM ICC values were
also moderate to good (from 0.52 to 0.85). And the SEM values had SDs between 37.22 and
47.16, DFA between 0.10 and 0.14, FuEn between 0.02 and 0.05, and SaEn between 0.03 and
0.07. Contrary to the other measures, the ICC scores for COPM outcomes were low for all
variables (ICC < 0.35). With respect to SEM, the values reported for COPM were 5.48–9.67
for SD, 0.15–0.16 for DFA, 0.06–0.12 for FuEn, and 0.07–0.12 for SaEn.

Table 3. Descriptive and reliability results of linear and non-linear parameters obtained from the
force magnitude time series.

Variable %RM Frequency
Day 2 Day 3 Reliability Measures

M ± SD M ± SD ICC (LCL-UCL) SEM

SD

30
50 197.89 ± 85.64 207.28 ± 73.48 0.68 (0.53, 0.79) 46.55
100 198.3 ± 85.9 208.09 ± 73.69 0.68 (0.53, 0.79) 46.86
200 199.35 ± 85.68 207.87 ± 73.76 0.68 (0.52, 0.79) 47.16

70
50 240 ± 88 242.29 ± 84.19 0.84 (0.76, 0.9) 37.23
100 240.75 ± 88.31 242.92 ± 84.44 0.85 (0.76, 0.9) 37.24
200 241.08 ± 88.47 243.01 ± 84.53 0.85 (0.76, 0.9) 37.22

DFA

30
50 1.27 ± 0.18 1.3 ± 0.17 0.63 (0.46, 0.75) 0.11
100 1.31 ± 0.18 1.32 ± 0.16 0.66 (0.5, 0.78) 0.10
200 1.31 ± 0.18 1.32 ± 0.16 0.65 (0.49, 0.77) 0.10

70
50 1.1 ± 0.23 1.13 ± 0.24 0.60 (0.42, 0.74) 0.14
100 1.14 ± 0.22 1.17 ± 0.22 0.68 (0.53, 0.79) 0.12
200 1.14 ± 0.22 1.16 ± 0.22 0.68 (0.53, 0.79) 0.12

FuEn

30
50 0.49 ± 0.09 0.49 ± 0.09 0.76 (0.63, 0.84) 0.04
100 0.29 ± 0.07 0.28 ± 0.07 0.61 (0.43, 0.74) 0.05
200 0.15 ± 0.06 0.15 ± 0.06 0.52 (0.32, 0.67) 0.04

70
50 0.44 ± 0.08 0.43 ± 0.08 0.76 (0.64, 0.85) 0.04
100 0.27 ± 0.06 0.27 ± 0.06 0.76 (0.64, 0.85) 0.03
200 0.14 ± 0.05 0.14 ± 0.04 0.75 (0.62, 0.84) 0.02
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Table 3. Cont.

Variable %RM Frequency
Day 2 Day 3 Reliability Measures

M ± SD M ± SD ICC (LCL-UCL) SEM

SaEn

30
50 0.47 ± 0.12 0.47 ± 0.12 0.69 (0.54, 0.8) 0.07
100 0.31 ± 0.1 0.31 ± 0.1 0.67 (0.51, 0.78) 0.06
200 0.2 ± 0.08 0.2 ± 0.08 0.52 (0.32, 0.68) 0.06

70
50 0.35 ± 0.1 0.34 ± 0.1 0.63 (0.46, 0.76) 0.06
100 0.24 ± 0.08 0.23 ± 0.07 0.69 (0.55, 0.8) 0.04
200 0.16 ± 0.06 0.15 ± 0.06 0.75 (0.62, 0.84) 0.03

Note. %RM: RM percentage; M: mean; SD: standard deviation; ICC: intraclass correlation coefficient; LCL: lower
confidence interval; UCL: upper confidence interval; SEM: standard error of measurement; DFA: detrended
analysis fluctuation; FuEn: fuzzy entropy; SaEn: sample entropy.

Table 4. Descriptive and reliability results of linear and non-linear parameters obtained from the
center of pressure magnitude time series.

Variable %RM Frequency
Day 2 Day 3 Reliability Measures

M ± SD M ± SD ICC (LCL-UCL) SEM

SD

30
50 18.71 ± 6 16.72 ± 5.42 0.22 (−0.04, 0.45) 5.49
100 18.73 ± 5.99 16.72 ± 5.42 0.22 (−0.04, 0.45) 5.48
200 20.57 ± 11.07 16.73 ± 5.43 0.07 (−0.2, 0.32) 9.67

70
50 22.64 ± 9.89 19.9 ± 6.79 0.12 (−0.15, 0.37) 7.74
100 22.66 ± 9.89 19.93 ± 6.8 0.12 (−0.15, 0.37) 7.72
200 22.67 ± 9.9 19.99 ± 6.83 0.12 (−0.14, 0.37) 7.74

DFA

30
50 1.35 ± 0.18 1.38 ± 0.19 0.18 (−0.08, 0.42) 0.16
100 1.37 ± 0.17 1.4 ± 0.17 0.17 (−0.1, 0.41) 0.16
200 1.37 ± 0.17 1.4 ± 0.17 0.17 (−0.09, 0.41) 0.15

70
50 1.28 ± 0.2 1.32 ± 0.17 0.32 (0.07, 0.54) 0.16
100 1.31 ± 0.19 1.34 ± 0.16 0.34 (0.09, 0.55) 0.15
200 1.31 ± 0.19 1.34 ± 0.16 0.35 (0.1, 0.56) 0.15

FuEn

30
50 0.48 ± 0.14 0.5 ± 0.14 0.25 (−0.01, 0.48) 0.12
100 0.28 ± 0.13 0.3 ± 0.12 0.3 (0.05, 0.52) 0.10
200 0.16 ± 0.12 0.18 ± 0.09 0.35 (0.1, 0.56) 0.08

70
50 0.45 ± 0.13 0.45 ± 0.13 0.22 (−0.05, 0.45) 0.11
100 0.24 ± 0.1 0.25 ± 0.09 0.23 (−0.03, 0.46) 0.08
200 0.12 ± 0.08 0.13 ± 0.06 0.23 (−0.04, 0.46) 0.06

SaEn

30
50 0.52 ± 0.15 0.52 ± 0.15 0.33 (0.08, 0.54) 0.12
100 0.41 ± 0.14 0.43 ± 0.13 0.29 (0.03, 0.51) 0.12
200 0.21 ± 0.13 0.22 ± 0.1 0.31 (0.06, 0.53) 0.09

70
50 0.46 ± 0.12 0.47 ± 0.12 0.11 (−0.15, 0.36) 0.11
100 0.37 ± 0.12 0.37 ± 0.11 0.17 (−0.09, 0.42) 0.10
200 0.16 ± 0.08 0.17 ± 0.06 0.15 (−0.11, 0.4) 0.07

Note. %RM: RM percentage; M: mean; SD: standard deviation; ICC: intraclass correlation coefficient; LCL: lower
confidence interval; UCL: upper confidence interval; SEM: standard error of measurement; DFA: detrended
analysis fluctuation; FuEn: fuzzy entropy; SaEn: sample entropy.

The results of Pearson correlation are shown in Table 5. The acceleration values from
the IMUs showed strong correlations between SD (0.94 < r < 0.98) and DFA (0.74 < r < 0.83)
in both load intensity conditions. Entropy measures exhibited correlations ranging from
weak (0.23 < r < 0.39) for 30% RM to strong (0.63 < r < 0.79) for 70% RM. The correlation
values between FM and the IMUs ranged from −0.17 to 0.96 (FM-ACCBR: −0.17–0.096; FM-
ACCL5 sacrum: 0.18–0.82). In FM, a strong correlation was reported with both ACCBR and
ACCL5 for SD and DFA (0.71 < r < 0.96) for both intensities. In the entropy measurements,
the correlation was weak to moderate (−0.17 < r < 0.48) for both ACCBR and ACCL5 with
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FM. Regarding COPM correlations, no significant results were obtained in the analysis of
the remaining variables.

Table 5. Correlations between devices.

ACCBR-ACCL5 FM-ACCBR FM-ACCL5 COPM-ACCBR COPM-ACCL5 COPM-FM

%RM Frequency Variable

SD

30
50 Hz 0.98 ** 0.78 ** 0.74 ** 0.29 * 0.27 * 0.32 *
100 Hz 0.97 ** 0.78 ** 0.73 ** 0.28 * 0.27 * 0.32 *
200 Hz 0.97 ** 0.78 ** 0.73 ** 0.28 * 0.27 * 0.32 *

70
50 Hz 0.94 ** 0.73 ** 0.77 ** 0.2 0.19 0.07
100 Hz 0.94 ** 0.73 ** 0.77 ** 0.18 0.15 0.04
200 Hz 0.94 ** 0.73 ** 0.77 ** 0.21 0.18 0.07

DFA

30
50 Hz 0.83 ** 0.96 ** 0.82 ** 0.09 0.03 0.14
100 Hz 0.82 ** 0.95 ** 0.82 ** 0.13 0.08 0.2
200 Hz 0.83 ** 0.95 ** 0.82 ** 0.13 0.08 0.2

70
50 Hz 0.78 ** 0.94 ** 0.75 ** 0.28 * 0.23 0.22
100 Hz 0.75 ** 0.96 ** 0.71 ** 0.32 * 0.29 * 0.26 *
200 Hz 0.74 ** 0.96 ** 0.72 ** 0.29 * 0.24 0.25

FuEn

30
50 Hz 0.39 ** 0.45 ** 0.45 ** 0.03 0.07 0.22
100 Hz 0.28 * 0.06 0.34 ** 0.04 0.11 0.22
200 Hz 0.23 −0.17 0.18 0.03 0.14 0.18

70
50 Hz 0.79 ** 0.43 ** 0.35 ** 0.20 0.23 0.15
100 Hz 0.65 ** 0.31 ** 0.29 * 0.19 0.14 0.16
200 Hz 0.55 ** 0.12 0.24 * 0.14 0.14 0.08

SaEn

30
50 Hz 0.39 ** 0.43 ** 0.42 ** −0.02 0.14 0.28 *
100 Hz 0.34 ** 0.2 0.36 ** 0.02 0.11 0.16
200 Hz 0.32 ** −0.01 0.25 * 0.07 0.25 0.28 *

70
50 Hz 0.74 ** 0.48 ** 0.46 ** 0.11 0.12 0.11
100 Hz 0.63 ** 0.36 ** 0.36 ** 0.13 0.09 −0.07
200 Hz 0.66 ** 0.26 * 0.35 ** 0.13 0.13 0.1

Note. %RM: RM percentage; SD: standard deviation; DFA: detrended analysis fluctuation; FuEn: fuzzy entropy;
SaEn: sample entropy. COPM: center of pressure magnitude; FM: force magnitude; ACCBR: acceleration
magnitude from IMU barbell; ACCL5: acceleration magnitude from IMU L5; *: p < 0.05; **: p < 0.01.

The ANOVA revealed significant differences (p < 0.05) between the 30% and 70% RM
conditions for different devices and variables. Notably, there were no significant differences
between days, except for the FuEn of ACCL5 and SD in COPM, although the trends in both
measures were similar. It is worth noting that the trends resulting from increasing intensity
only aligned with DFA, where an escalation in intensity corresponded to a decrease in
DFA values. In the remaining variables, trends diverged between measurements obtained
from the FM and COPM compared to those from the IMUs, encompassing both ACCBR
and ACCL5. For example, while SD increased with a higher load in the FM and COPM
measurements, it decreased in the IMUs. Conversely, in the 70% RM condition, FuEn and
SaEn values decreased in the FM and COPM but increased in the IMU, compared to the 30%
RM condition.

4. Discussion

This study was conducted to investigate whether movement variability measured
through inertial sensors can provide reliable information on movement control during
a strength exercise such as the squat. Specifically, on the one hand, we assessed relative
reliability through the ICC to determine whether participants could be classified properly
according to their movement variability. On the other hand, we analyzed absolute reliability
to define the range threshold that can help to determine whether changes in movement
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variability during the squat are caused by individuals´ inherent variability or an external
factor (i.e., learning, adaptation, fatigue, etc.).

Firstly, the ICC was used to determine the relative reliability and consistency of the
measurements. A high ICC suggests consistency and agreement between different mea-
surements, indicating that it allows for ranking [41]. While the ACCBR and ACCL5, together
with the FM, showed acceptable to good values for practically all variables, the COPM
showed the lowest reliability values, as the ICC did not reach an acceptable threshold in
any case. We have not found studies that have analyzed the relative reliability of movement
control variability in strength tasks, whether with linear or non-linear measurements. To
provide some references, we can examine related works. When assessing relative reliability
using the ICC in strength tasks with accelerometers measuring variables such as velocity,
power, or force, reported results have ranged from good to excellent in most of the studies,
and only one of the studies reviewed showed poor ICC values in velocity variables [30]. It
is noteworthy that in ACCBR, ACCL5, and FM, ICC values are slightly higher at higher loads
for most variables. The only exception to this trend is observed in DFA of ACCL5. This
might suggest that higher loads pose a greater challenge, consequently allowing for better
classification. Regarding the COPM, although some studies have shown the reliability of
non-linear tools in balance tasks, with ICC values between acceptable and good [42–46],
our results suggest that, in strength tasks, they are not reliable (ICC < 0.50). We propose
several explanations. The first is the difference in postural adjustments that occur when
performing a dynamic task with weight, such as a squat, and those that occur when per-
forming a static balance task with body weight only. Another reason for this may be the
greater non-stationarity of the squat signal compared to the balance signals. Finally, in
terms of frequency, the differences are minimal, typically less than 0.1 units, indicating that
recording between frequencies of 50 and 200 Hz does not appear to affect relative reliability.
With this in mind, it can be suggested that ACCBR, ACCL5, and FM show acceptable relative
reliability, indicating that motion analysis involving linear and non-linear variables can be
measured consistently, allowing for the classification of subjects.

Secondly, to determine the precision of the measurement, the SEM was used to quantify
the absolute reliability. The SEM makes it possible to define the range within which the true
value of the measurement should lie [47], and, thus, to determine whether the changes (or
lack thereof) are an effect of the intervention or caused by random errors in measurement. It
is important to note that the SEM depends on the magnitude of the measurement. In other
words, if a measurement yields large values, a larger SEM can be accepted, and vice versa.
For instance, the acceptability of an SEM for DFA is different from that for SD when the
measurement values differ significantly. The ranges of SEM are different between variables
in SD; in IMUs, the SEM is between 0.30 and 0.49; in FM, the range is between 37.22 and
47.16; and in COPM, it ranges between 5.48 and 9.67. In non-linear measurements, the
values are more similar between ranges of 0.30 and 0.49. Thus, the SEM complements the
reliability information provided by the ICC, offering an index of the variations required in
measurements to determine whether a change resulting from an intervention is genuinely
due to that intervention and not merely a random error. Considering that the SEM is
contingent on the type of measurement, and given the limited literature on variability in
acceleration signals during strength actions, we are unable to directly compare the precision
of these measures. However, based on the descriptive data presented in Tables 1–4, it can be
suggested that these measures are capable of detecting changes. However, when comparing
SEM values in FuEn and SaEn, given their similar nature, minimal differences are observed
(never exceeding 0.05), suggesting a comparable margin of error in both measurements. On
the other hand, DFA also exhibits SEM values relatively close to those of entropy measures.
Considering that DFA values tend to be higher, DFA is likely a more robust measure
against measurement error. Across all variables, the SEM is consistently smaller than
the between-subject standard deviation, implying that the measurement is responsive to
changes. Previous studies have reported variations in SEM values for non-linear variables.
Lin et al. [44] reported lower SEM values (0.04 < SEM < 0.06) in DFA during balancing
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tasks, while Mazaheri et al. [48] observed greater SEM ranges (0.20 < SEM < 0.37) in entropy
measurements, also in the context of balancing tasks. This divergence in SEM values across
studies employing similar tasks could be attributed to differences in the measurements
(DFA versus entropy). When we compare these findings with our research, it appears
that SEM values may fluctuate based on the nature of the task, even when the analysis is
performed through analogous variables. These discrepancies could be due to factors similar
to those mentioned above for the ICC, including task-specific adjustments, non-stationarity,
and variances in the variable’s value range. Importantly, the SEM provides critical insight
into the expected measurement error, offering valuable information for interpreting the
reliability and precision of the data.

Additionally, frequency is an important factor that can modify entropy and DFA
values [49,50]. For this reason, we compared the results of the non-linear measures at
different frequencies. The reported findings indicate that, while there are variations in
the absolute values when changing frequencies, the same trends persist. Similar results
are presented in the study by Caballero et al. [51], whereas in our study, an increase in
SaEn values and a decrease in DFA values were reported with increasing frequency, but
without significantly influencing the results. Furthermore, the reliability values (ICC, SEM)
remained consistent. This suggests that different frequencies can be used interchangeably.
For the analyses to be valid, the frequency must be adjusted to the movement and/or
process to be analyzed [50,51]. However, it should be noted that if we wish to compare
absolute values, it is essential to compare values within the same frequency.

The correlation analysis revealed strong correlations between the two IMUs and
between the FM and each of the two IMUs in the variables of SD and DFA. By contrast,
for the FuEn and SaEn variables, a strong correlation (r > 0.50) was reported between the
two IMUs at the 70% RM load condition, while a weak correlation was observed at the
30% RM load condition. Meanwhile, correlations between the IMUs and the FM varied
from moderate to non-existent. The COPM showed weak or non-existent correlations with
all measures. Other studies have analyzed the validity of accelerometers by comparing
them with gold standards such as the center of pressure (COP) [52,53] motion capture
systems [54] or gait analysis systems [55], reporting moderate to high correlation values.
Our results differ in terms of COP, as in no case do the correlations reach moderate. It is
possible that this is due to differences in the task (squat vs. balance) mentioned above.
Nevertheless, we observed moderate to high correlations between force modulus and IMUs,
particularly in dynamic actions with substantial force requirements. This suggests that both
FM and IMUs can effectively capture the variability structure in tasks such as the squat.
Furthermore, it relates body oscillations, reflected in acceleration, to fluctuations in force
production, reflected in FM.

Finally, the conducted ANOVA demonstrated differences between load conditions in
all variables and measures. This suggests that these protocols are sensitive to changes in
load. Additionally, the absence of differences between days in the majority of variables,
and when differences exist, observing consistent trends, further reflects the day-to-day
validity of these measures.

5. Conclusions

The main objective of this study was to assess the reliability of different measures
of variability in a strength movement such as the squat. While we successfully achieved
this goal, contributing valuable insights, it is important to acknowledge certain limitations.
Firstly, given that the study focused on a single task (squat) and modified a single factor
(load), the results should be approached with caution when extrapolating them to other
tasks or conditions. Therefore, further research is needed to investigate these measures
in tasks with additional independent variables such as a broader range of loads, fatigue,
level of expertise, etc. Additionally, consideration should be given to the characteristics of
the time series, which are of variable length and non-stationary. Lastly, when interpreting
results and drawing conclusions, the lack of literature addressing similar tasks poses a
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challenge. Therefore, continued research is essential to establish a robust knowledge base
in this field.

Both force and acceleration magnitude, whether measured on the barbell or close to
the L5 area, are reliable variables for assessing variability in tasks involving substantial
force, such as squats. However, the use of the COPM is not recommended for this purpose.
The most robust measure across all three devices is DFA, as it consistently yields results
ranging from acceptable to good across the two reliability metrics employed in this study
(ICC and SEM). The choice of a sampling frequency between 50 and 200 Hz seems to have
had no significant impact on the relative results, although it did affect absolute values.
Furthermore, these measures can be used interchangeably with both the magnitude force
and IMUs, making them accessible to a wider range of users.
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