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Abstract: Fringe projection profilometry (FPP) is widely used for high-accuracy 3D imaging. However,
employing multiple sets of fringe patterns ensures 3D reconstruction accuracy while inevitably
constraining the measurement speed. Conventional dual-frequency FPP reduces the number of fringe
patterns for one reconstruction to six or fewer, but the highest period-number of fringe patterns
generally is limited because of phase errors. Deep learning makes depth estimation from fringe
images possible. Inspired by unsupervised monocular depth estimation, this paper proposes a novel,
weakly supervised method of depth estimation for single-camera FPP. The trained network can
estimate the depth from three frames of 64-period fringe images. The proposed method is more
efficient in terms of fringe pattern efficiency by at least 50% compared to conventional FPP. The
experimental results show that the method achieves competitive accuracy compared to the supervised
method and is significantly superior to the conventional dual-frequency methods.
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1. Introduction

Fringe projection profilometry (FPP) [1] is widely used for 3D imaging because of its
high accuracy and speed. FPP usually employs phase-shifting profilometry (PSP) [2,3] or
Fourier transform profilometry (FTP) [4] to retrieve the continuous phase and determine
the corresponding point-pairs between the camera image and projector pattern. It then
uses triangulation to achieve 3D reconstruction.

FTP only needs to take one frame of fringe images to recover the continuous phase.
However, with high speed, the continuous phase cannot be extracted correctly with FTP
when the object surface changes abruptly or has discontinuous areas. PSP is usually used
more widely to ensure the 3D reconstruction accuracy. PSP projects a group of phase-
shifting sinusoidal fringe patterns onto the object’s surface, and the camera captures the
deformed fringe image. Height information of the object’s surface is naturally encoded
into the deformed fringe image. The employment of phase-shifting improves measurement
accuracy. However, the use of multiple images also dramatically limits the speed [5].
In addition, the phase-shifting method assumes that the object to be measured remains
stationary during each 3D imaging so that motion artifacts will affect the 3D imaging
accuracy [6,7].

Balancing 3D imaging speed and accuracy, a common practice is projecting two sets
of three-step phase-shifting fringe patterns (referred to as dual-frequency PSP). Thus, one
frame of depth maps can be achieved using six frames of fringe images. In some special
cases, for instance, the reflectivity of the object surface is uniformly distributed, and the
background light outside the object in the scene is fixed. The number of fringe images
required for one 3D imaging can be reduced from six to four or five [8]. Without loss of
generality, the number of fringe images required for one 3D imaging is usually six with
conventional FPP technology. In FPP, the higher the period-number of the high-frequency
fringe patterns, the higher the 3D imaging accuracy. When dual-frequency PSP is employed,
the highest period-number of fringe patterns is generally fewer than 32 [9].
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With the development of artificial intelligence, there has been much work conducted
to combine deep learning with FPP in recent years [10–16]. Van der Jeught and Dirckx [17]
proposed a deep-learning-based method for extracting the depth map from a single fringe
image. Their experiment was conducted on simulated datasets. Nguyen et al. [18] utilized
end-to-end networks to predict depth maps from one frame of fringe images [19]. In their
study, three networks, FCN, AEN, and UNet, were compared, and the results showed
that UNet performed best. Later, Nguyen et al. [20] investigated the impact of different
structured light patterns on the accuracy of monocular depth estimation. The examined
input patterns included two high-frequency fringe patterns (vertical and slanted at 45◦),
two distinct grid patterns with various levels of brightness, a speckle pattern, and a low-
frequency fringe pattern. Five coarse-to-fine output depth maps were generated in the
decoder stage for supervision. The results demonstrated that the speckle pattern and
low-frequency fringe pattern exhibited poorer performance, while there was no significant
performance difference among the other patterns. Nguyen et al. [21] employed sinusoidal
patterns with period-numbers of 61, 70, and 80 as the RGB channels of a color image,
and a network was trained to predict the wrapped phases. Huang et al. [22] obtained the
fringe orders using the three-wavelength heterodyne method. They selected a 64-period
wrapped phase and two fringe images (period-numbers of 53 and 58) as the input to train a
network that could predict the fringe orders corresponding to the wrapped phase. Zheng
et al. [23] built one digital twin of a real FPP system using the 3D rendering software
Blender. In their study, simulated FPP fringe images were used to train the network for
depth estimation from single fringe images. Simulated fringe images are free of motion
blur, and many fringe images can be synthesized quickly. Compared with the real FPP
system, this method saves many workforce and time costs. However, the model trained
on the simulated data has limited generality on real FPP systems. Wang et al. [24] utilized
Blender to construct a simulated single-camera FPP system, employing virtual objects
from the dataset [25]. Their FPP dataset is collected through the adjustment of various
parameters, including the projector’s power, fringe periods, the angle between the camera
and projector, and the rotation of fringes, among others. Their study performed experiments
on the UNet and pix2pix networks, introducing a novel loss function that combined the
structural similarity (SSIM) index and Laplace operator. The outcomes indicated that the
UNet network outperformed the others in terms of depth estimation. Wang et al. [26]
proposed a depthwise separable Dilation Inceptionv2-UNet to improve the accuracy of
3D measurement from a single-shot fringe pattern. Their experiments were conducted on
simulated datasets.

The aforementioned methods of deep-learning-based estimation depth from a single
fringe image are desired for single-shot 3D imaging, but they require accurate depth maps
as the learning targets. These methods are referred to as fully supervised methods. For fully
supervised methods, building a training dataset with ground-truth depth maps is time-
consuming and still difficult in many scenarios, such as dynamic scenes. There is an urgent
need for unsupervised or weakly supervised methods that do not require ground-truth
depth maps as labels.

Fan et al. [27] used unsupervised learning for depth estimation from simulated dual-
frequency fringe images. A fringe projection model was established to synthesize new
fringe images from the estimated depth and projection pattern. The difference between
the synthesized and input fringe images formed the supervision signal to guide the con-
vergence of neural networks. The projection model of [27] was a simplification of real FPP
systems. Moreover, the period-numbers of the dual-frequency in their study were 10 and
29, which limited the 3D imaging accuracy.

This study presents a weakly-supervised framework for depth map prediction from
fringe images of single-camera FPP. The neural network is trained using the supervisory
signals from a one-period phase map and high-frequency fringe images. Depth maps are
no longer needed as the labels. After training, the network can predict the depth map from
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three frames of high-frequency fringe images. In summary, the main contributions of this
study are:

(1) A new depth estimation scheme from fringe images is proposed. Compared to the
fully supervised method, this scheme no longer requires depth maps as the labels.
This change makes this deep-learning-based scheme easier to employ in various FPP
application scenarios.

(2) A combination of the self-supervised and weakly-supervised signals is designed to
guide the training of the depth estimation network.

(3) Depth maps can be extracted from three frames of 64-period fringe images during
inferencing.

(4) Experimental results indicate that the weakly supervised method has competitive
depth accuracy compared to the supervised method and is significantly superior to
the conventional dual-frequency PSP method, especially in noisy scenes.

Section 2 introduces details of the proposed methodology for weakly supervised
depth estimation. The experimental results and discussion are presented in Section 3.
Sections 4 and 5 summarize the conclusions and future work.

2. Method

This study employs weakly supervised deep learning to train a network for predicting
the depth map from three frames of fringe images for FPP. The framework of this method
is depicted in Figure 1.
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Figure 1. Overview of the proposed weakly-supervised depth estimation framework. A neural
network is trained to estimate the depth from three high-frequency fringe images. The self-supervised
signal Lgray and the weakly-supervised signal Lphase replace the labels of depth maps used by existing
fully-supervised methods. During testing, the network can recover the depth map from three frames
of fringe images.

First, grayscale consistency constraint on high-frequency fringe images is employed
to guide the network’s training. The background intensity A and the modulation B are
calculated from three-step phase-shifting high-frequency fringe images (I0, I1, and I2). The
three fringe images are fed into a neural network to estimate a depth map D. With the
predicted depth D, the relative pose of the camera and projector, and the continuous phase
Φproj of high-frequency patterns on the projector plane, one continuous phase map Φ′

cam of
high frequency in the camera view is generated. The continuous phase Φ′

cam is modulated
into three synthesized fringe images (I′0, I′1, and I′2) by coupling it with background light
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intensity A and modulation B. The differences between the fringe images (I0, I1, and I2) and
the synthesized fringe images (I′0, I′1, and I′2) are used to build the loss function for training
the network. This is performed in a self-supervised manner using only high-frequency
fringe images.

Depth prediction networks trained with only grayscale consistency error cannot
work correctly. Phase consistency is introduced as an additional supervised signal, which
measures the error between one-period phase Φ1 and one-period phase Φ′

1 (Φ′
1 = Φ′

cam/64).
The total loss function is formulated as follows:

Loss = αLgray + βLphase, (1)

where Lgray represents the grayscale loss of high-frequency fringe images, while Lphase
denotes the phase consistency loss of the one-period continuous phase.

The upcoming sections discuss the details of grayscale consistency loss, phase consis-
tency loss, and the network architecture.

2.1. Grayscale Consistency Loss of High-Frequency Fringe Images

Inspired by photometric consistency in unsupervised deep learning for autonomous
driving [28,29], grayscale consistency loss is used in predicting depth maps from fringe
images of FPP. This loss measures the error between real high-frequency fringe images and
synthesized ones. When the predicted depth map is correct, the synthesized fringe images
will be very similar to the real ones.

The phase-shifting fringe images captured by the camera are:

Ik(i, j) = A(i, j) + B(i, j)cos[Φ(i, j) + 2πk/N ] (2)

where A(i, j) represents the background intensity, B(i, j) is the modulation, and Φ(i, j)
denotes the absolute phase. The variable N indicates the phase-shifting steps; in this study,
N = 3 and k = 0, 1, 2.

Background intensity A and modulation B are calculated as:

A(i, j) =
1
3
[ I0(i, j) + I1(i, j) + I2(i, j)], (3)

and
B(i, j) =

1
3

√
[2I0(i, j)− I1(i, j)− I2(i, j)]2 + 3[I1(i, j)− I2(i, j)]2. (4)

Depth map D, predicted by the network, is defined in the camera view. This depth
map is converted into the point cloud defined in the camera’s 3D space, then transformed
into the projector’s 3D space and projected on the projector plane. During this process, the
projection flow is generated, which lies on the pixel grid of the camera. It associates the
pixel grids of the camera with the corresponding floating point pixel coordinates in the
projector pattern. The resolution of the projection flow is the same as that of depth map D,
and it includes two channels along the row and col directions to locate a corresponding
pixel coordinate in the projection pattern. Thus, for each point pc in the fringe images (I0,
I1, and I2), there is a corresponding point pp in the projector pattern. With this projection
flow, the continuous phase map Φ′

cam of the camera view is generated from the projector’s
high-frequency continuous phase Φproj. The size of Φ′

cam is the same as that of I0, I1, and I2;
the phase value of the point pc in Φ′

cam is equal to the continuous phase value of pp in the
projector pattern.

With Φ′
cam and background light intensity A and modulation B, three fringe images

I′k(k = 0, 1, 2) are synthesized as follows:

I′k(i, j) = A(i, j) + B(i, j)cos
[
Φ′

cam(i, j) + 2πk/3
]
. (5)
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The grayscale consistency loss is formulated as follows:

Lgrayk =
1
|V| ∑p∈V

(
λ1

∥∥ Ik(p)− I′k(p)
∥∥

1 + λ2
1 − SSIMkk′(p)

2

)
, (6)

and
Lgray =

1
3∑2

k=0 Lgrayk. (7)

where V represents the set of valid points with modulation greater than a threshold. These
excluded invalid points are usually located in the background, shadow, and low-reflectivity
areas. The number of points in V is denoted by |V|, where

∥∥Ik(p)− I′k(p)
∥∥

1 directly
measures the differences between these two images. The item of SSIMkk′ is the structural
similarity between real fringe images Ik and synthesized ones I′k, which is formulated as
follows [30]:

SSIM
(

Ik, I′k
)
=

(
2µIk µI′k

+ C1

)(
2σIk I′k

+ C2

)
(

µ2
Ik
+ µ2

I′k
+ C1

)(
σ2

Ik
+ σ2

I′k
+ C2

) , (8)

where Ik and I′k represent the two images; µIk and µI′k
are the mean values of Ik and I′k; σIk

and σI′k
are the standard deviations of Ik and I′k; σIk I′k

is the covariance of Ik and I′k; and
c1 and c2 are constants used for stability in computation. Here, c1 is set to 0.49 and c2 is
set to 4.41, according to [30]. The fringe image exhibits periodic structures. The second
term on the right side of Equation (6) could help the network learn features of this periodic
structure. We follow the works in [28,31–33] and set λ1 to 0.15 and λ2 to 0.85.

The fringe image in Figure 2f is synthesized according to Equation (5), where the
phase map Φ′

cam is generated using the depth map with a four-frequency temporal phase
unwrapping (TPU) algorithm [28]. The SSIM between the two fringe images of Figure 2f
and Figure 2c is 96.22%, and their L1 error is 2.272. Therefore, the SSIM and L1 error
demonstrate the reliability of the proposed grayscale consistency. The difference between
the real fringe image and the synthesized one can directly reflect the quality of the predicted
depth map.
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Figure 2. Comparison of the real fringe image and the synthesized one. (a–c) are the three-step
phase-shifting fringe images. (d,e) show the background intensity A and the modulation B. (f) is the
synthesized fringe image corresponding to the fringe image in (c). The SSIM and L1 error between (c)
and (f) are 96.22% and 2.272, respectively.
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2.2. Phase Consistency Loss of One-Period Continuous Phase

In this study, we observe that relying solely on grayscale consistency loss of high-
frequency fringe images does not produce effective training results [34]. For a point pc
in camera view, its corresponding point pp should lie on the epipolar line in a projector
pattern. The position and the phase value of point pp vary along the epipolar line with
the change in the depth value of pc. According to Equation (5), for two different points
on the epipolar line, their phase values should be different, but the value of I′k(k = 0, 1, 2)
at point pc may be the same for the two points because of the periodicity of the cosine
function. Therefore, a point pc may correspond to different points on the epipolar line in
projector patterns in grayscale consistency loss, meaning that the depth of point pc fails
to converge to a unique value. As shown in Figure 3, the predicted depth map exhibits
periodic fringe-like artifacts, which we attribute to depth ambiguity. We will elaborate
on the comparison study of these losses in Section 3.4. Dual-frequency heterodyne fringe
images are proposed to address this problem in the unsupervised depth estimation on
simulated fringe images [27].
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Figure 3. Wrong depth map predicted by the self-supervised network trained with only grayscale
consistency loss of high-frequency fringe images. (a) One frame of the three-step phase-shifting
fringe images. (b) The depth map with four-frequency TPU algorithm and triangulation. (c) The
predicted depth map using the self-supervised network trained with only grayscale consistency loss
of high-frequency fringe images.

The one-period phase is used to eliminate the ambiguity to guide the network’s
convergence. The phase of one-period phase maps is the absolute phase, which implicitly
determines the 3D profile despite its poor accuracy. The wrapped phase of one-period
fringe images is calculated as:

φ1 = −arctan
∑2

k=0 Iksin(2kπ/3)

∑2
k=0 Ik cos(2k π/3

) . (9)

The wrapped phase φ1 can be easily converted into an absolute phase Φ1 as:

Φ1 =

{
φ1, φ1 ≥ 0

φ1 + 2π, φ1 < 0.
(10)

The process discussed in Section 2.1 is utilized to synthesize a one-period continuous
phase Φ′

1. The error between Φ1 and Φ′
1 is taken as the phase consistency supervisory

signal. This loss item is as follows:

Lphase = γ Labs + δ Lgradient. (11)



Sensors 2024, 24, 1701 7 of 26

where Labs, presented in Equation (12), stands for the L1 loss between the real one-period
absolute phase Φ1 and the synthesized one-period absolute phase Φ′

1, while Lgradient,
presented in Equation (13), denotes the L1 loss between their gradients. We set γ = 1 and
δ = 1 based on experiments.

Labs =
1
|V|∑p∈V

∥∥Φ′
1(p)− Φ1(p)

∥∥
1, (12)

Lgradient =
1
|V|∑p∈V

(∥∥∥∇Φ′
1(x)

(p)−∇Φ1(x)
(p)

∥∥∥
1
+

∥∥∥∇Φ′
1(y)

(p)−∇Φ1(y)(p)
∥∥∥

1

)
. (13)

Here, V represents the valid points as defined in Equation (6), while ∇ denotes the
first derivative along spatial directions, and we calculate the gradients along both the x and
y directions.

2.3. Network Architecture

Previous fully supervised depth estimation for fringe projection profilometry [18]
employed AEN, FCN, and UNet [35]. Results indicate that the UNet performs better.
In simulated experiments, UNet also exhibits effective performance [23]. In our study,
ERFNet [36], EESANet [37], and Unet are tried, and the results indicate that UNet performs
the best. Therefore, UNet is chosen as the depth network. As shown in Figure 4, in our
implementation, each encoder and decoder block adopt 5 × 5 kernels. The image size is
reduced by half with every encoder block passed, while it is doubled with every decoder
block passed. Finally, a 5 × 5 convolution layer is attached to the final layer of the last
decoder block to transform the feature maps to the desired size of the depth map. According
to comparative experiments, we find that limiting the depth range based on the camera’s
workspace is more effective than the arbitrary depth range. The output of the UNet is
passed through a sigmoid function so that the output values of the network lie within the
interval (0, 1). Three-step phase-shifting high-frequency fringe images serve as input for
the depth network, and the output is a single-channel depth map with the exact resolution
as the input. Next, the predicted depth values are applied to build the projection flow for
the purpose of synthesizing the continuous phase and fringe images. Compared to a single
fringe image input into the network, three frames of fringe images complement each other
to provide more detailed information on the object’s surface.

Sensors 2024, 24, x FOR PEER REVIEW 7 of 27 
 

 

𝐿௚௥௔ௗ௜௘௡௧, presented in Equation (13), denotes the 𝐿ଵ loss between their gradients. We set 𝛾 = 1 and 𝛿 = 1 based on experiments. 𝐿௔௕௦ =  ଵ|௏| ∑ ‖𝛷ଵᇱ (𝑝) − 𝛷ଵ(𝑝)‖ଵ௣∈௏ , (12)

𝐿௚௥௔ௗ௜௘௡௧ =  ଵ|௏| ∑ (ቛ∇𝛷ଵ(ೣ)ᇱ (𝑝) − ∇𝛷ଵ(ೣ)(𝑝)ቛଵ + ቛ∇𝛷ଵ(೤)ᇱ (𝑝) −  ∇𝛷ଵ(೤)(𝑝)ቛଵ) ௣∈௏ . (13)

Here, 𝑉 represents the valid points as defined in Equation (6), while ∇ denotes the 
first derivative along spatial directions, and we calculate the gradients along both the x 
and y directions. 

2.3. Network Architecture 
Previous fully supervised depth estimation for fringe projection profilometry [18] 

employed AEN, FCN, and UNet [35]. Results indicate that the UNet performs better. In 
simulated experiments, UNet also exhibits effective performance [23]. In our study, 
ERFNet [36], EESANet [37], and Unet are tried, and the results indicate that UNet per-
forms the best. Therefore, UNet is chosen as the depth network. As shown in Figure 4, in 
our implementation, each encoder and decoder block adopt 5 × 5 kernels. The image size 
is reduced by half with every encoder block passed, while it is doubled with every decoder 
block passed. Finally, a 5 × 5 convolution layer is attached to the final layer of the last 
decoder block to transform the feature maps to the desired size of the depth map. Accord-
ing to comparative experiments, we find that limiting the depth range based on the cam-
era’s workspace is more effective than the arbitrary depth range. The output of the UNet 
is passed through a sigmoid function so that the output values of the network lie within 
the interval (0,1). Three-step phase-shifting high-frequency fringe images serve as input 
for the depth network, and the output is a single-channel depth map with the exact reso-
lution as the input. Next, the predicted depth values are applied to build the projection 
flow for the purpose of synthesizing the continuous phase and fringe images. Compared 
to a single fringe image input into the network, three frames of fringe images complement 
each other to provide more detailed information on the object’s surface. 

 
Figure 4. The proposed network architecture. 

3. Experiments and Results 
Experiments were conducted on real FPP datasets to verify the effectiveness of the 

proposed method. These experiments included comparative experiments as well as 

Figure 4. The proposed network architecture.

3. Experiments and Results

Experiments were conducted on real FPP datasets to verify the effectiveness of the pro-
posed method. These experiments included comparative experiments as well as ablation
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studies. In the comparative experiment, the proposed method was compared with the su-
pervised method [18] and dual-frequency (DF-TPU) [9], with the depth of multi-frequency
temporal phase unwrapping (MF-TPU) [8,38,39] as the ground truth. These comparisons
were made under typical scenes, including smooth surfaces, abrupt shape change, image
defocusing [40], low reflectivity, motion blur, and isolated objects.

3.1. Dataset

A handheld FPP system was used to collect data. The design working distance of
this FPP system is 110 mm, the angle between the optical axis of the camera and the
projector is 13 degrees, and the measurement volume is 12 mm × 12 mm × 10 mm. One
CMOS camera of 1024 × 1024 pixels and a DLP projector of 684 × 608 pixels were used.
During the process of handheld scanning, heavy noise caused by motion blur, projection
defocusing, and imaging defocusing was inevitably introduced into most samples of the
training dataset. Heavy noise poses a challenge in terms of depth estimation.

Four-frequency (period-number of 1, 4, 16, and 64) three-step phase-shifting fringe
patterns were projected to reconstruct the ground-truth depth maps. Only a one-period
phase map and three frames of 64-period fringe images were used to train the network, and
three frames of 64-period fringe images were used to test the performance of the network.

The training dataset contained 1480 groups of fringe images from seven dental models,
the validation dataset contained 284 groups of fringe images from a single dental model,
and the test dataset contained 506 groups of fringe images from two dental models. The
data collection was accomplished within 10 min. Figure 5 demonstrates some examples of
the collected data.
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(a) shows one-period fringe images. (b) illustrates one-period modulation maps. (c) shows original
64-period fringe images, and (d) displays 64-period fringe images for training after preprocessing.
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Figure 5 shows some typical examples of the collected dataset. Please note that non-
ideal data account for more than 50% of the collected data. Non-ideal data include motion
blur, low surface reflectivity, image defocusing, fringe discontinuity, and overexposure.
These complex factors lower the quality of fringe images and pose a challenge to the
training of the depth prediction network and the robustness of deep-learning-based depth
prediction networks.

Please note that the camera of the handheld FPP system was custom-designed instead
of a commercial off-the-shelf product. Fringe images were converted from the RAW data
of the CMOS sensor. Except for a fixed gain parameter and automatic black level during
this conversion, no other image signal processing tasks were performed, such as exposure
correction, denoising, sharpening, or gamma correction. Therefore, the intensity value of
the fringe images from our FPP system was relatively low.

During data preprocessing, the invalid points and background points were removed
according to the modulation threshold. The modulation threshold was set to 14 for one-
period fringe images. Next, morphology operations (erosion followed by dilation) were
carried out to eliminate noise points at the edges of objects. At last, areas with less than one
percent of the total number of pixels were removed.

3.2. Network Implementation

The network and the weakly-supervised framework were implemented using PyTorch.
The training and inference were performed on an NVIDIA Titan RTX. An ADAM optimizer
with a momentum of 0.9 and a weight decay of 1 × 10−4 was adopted. During training, the
batch size was 2 and the initial learning rate was 5 × 10−5. The network was trained using
100 epochs for 30 h. The dimensions of the input images and the output depth map were
1024 × 1024 pixels.

The network of the comparative supervised method [18] was implemented by us. The
hyperparameters and the training epochs were also set according to [18].

3.3. Comparison Results

During evaluation, we measured the frames per second (FPS) of the supervised
network and ours on the same training device. The elapsed time per frame started from
data being uploaded to the GPU and ended with the download of predicted data to the CPU.
Finally, we calculated the mean elapsed time to derive the FPS. The FPS of the supervised
network was 15.69, whereas the FPS of the proposed network was 4.92. Additionally,
the parameter size of the supervised model was 147.98 MB, while that of our model was
399.80 MB.

The L1 norm and RMSE of the depth error were used to evaluate the quantitative
performance of various methods. Table 1 lists the average evaluation metrics of these
methods on the 506 samples of the test dataset. Figure 6 shows the distribution of L1 and
RMSE of the depth error corresponding to Table 1.

Table 1. Average evaluation metrics of the three methods on the test dataset.

Method Depth Error L1 (mm)↓ Depth RMSE (mm)↓
DF-TPU 0.746 1.454

Supervised 0.249 0.377
Ours 0.252 0.396

Note: The measurement depth interval of the FPP system was 110–125 mm.

It can be observed that DF-TPU produced a larger mean L1 and RMSE and a wider
distribution of RMSE than the supervised method and ours. Our method and the super-
vised method showed similar performances in terms of the mean and distribution of L1
and RMSE.
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Figures 7–12 illustrate the predicted results of the six representative scenes in the
test dataset. In each figure, group (a) shows the predicted depth map and the error map,
and group (b) depicts the similarity between the ground truth and the predicted depth
map. This similarity is evaluated by comparing the depth values distribution of two
random horizontal and vertical pixel coordinate lines. As shown in Figures 7–12, the solid
and dotted lines represent the horizontal and vertical indicator lines, respectively. All
the ground-truth depth maps were produced using the hierarchical MF-TPU algorithm
and triangulation.

Figure 7 shows the results of the three methods in the scene of a smooth surface.
Compared to the supervised method, our method generated a more uniform distribution
of depth value errors in the error map. The lines of depth value in Figure 7b also verify this
observation. Compared to the other two lines, the red line produced with our methods is
more consistent with the ground truth line.
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Figure 7. Comparison results of the smooth surface object. (a) shows the predicted depth map and
the error map. (b) depicts the depth values distribution of two random horizontal and vertical pixel
coordinate lines in the four depth maps of (a).

Figure 8 shows the results of the three methods in a scene with abrupt shape change.
Our method and the supervised method had large errors in the local area near the shape
edge. Compared to the supervised method, our method generated a relatively more
uniform distribution of depth value errors in the error map. In Figure 8b, the depth value
line of our method is very close to that of the supervised method.
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Figure 8. Comparison results of an object with abrupt shape change. (a) shows the predicted depth
map and the error map. (b) depicts the depth values distribution of two random horizontal and
vertical pixel coordinate lines in the four depth maps of (a).

Figure 9 shows the results of the three methods in a scene with image defocusing. The
rectangular boxes indicate the defocusing areas. Please note that the ground-truth depth
values of defocusing areas showed significant fluctuations. These fluctuations mean that the
ground truth had errors. Our method and the supervised method predicted depth values
with errors in defocusing areas. Our method generated a slightly worse distribution of
depth value errors than the supervised method. As can be seen in the left part of Figure 9b,
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in defocusing areas, the red line (results of our method) deviates from the ground truth
more significantly than the green line (results of the supervised method).
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Figure 9. Comparison results for the scene of image-defocusing. The dotted boxes highlight the
defocusing areas, and their colors are selected to improve visualization. (a) shows the predicted
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Figure 10 shows the results of the three methods in a scene with low reflectivity.
Compared to the supervised method, our method generated a more uniform distribution
of depth value errors in the error map. The rectangular box indicates the area with low
reflectivity. Our method and the supervised method predicted the depth values of small
errors in this area. In the left part of Figure 10b, within the rectangular box representing the
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low reflectivity area, both the red line (results of our method) and the green line (results of
the supervised method) show slight deviations from the ground truth. The ground truth
depth values in this area exhibited minor fluctuations attributed to poor fringe quality in
low-reflectivity areas. In the right part of Figure 10b, within the rectangular box, the red
line closely aligns with the ground truth, displaying closer proximity to the ground truth
than the green line (results of the supervised method).
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Figure 10. Comparison results for the scene of low surface reflectivity. The dotted boxes highlight
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Figure 11. Comparison results for the scene of motion blur. (a) shows the predicted depth map and
the error map. (b) depicts the depth values distribution of two random horizontal and vertical pixel
coordinate lines in the four depth maps of (a).

Figure 11 shows the results of the three methods in a scene with motion blur. From
the modulation map, it can be observed that there are evident zig-zag artifacts, indicating
the presence of motion blur in the scene. Compared to the supervised method, our method
exhibited more minor depth value errors in the internal edge area of the object. In addition,
our method did not exhibit significant depth value errors throughout the entire image. In
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Figure 11b, the depth line of our method closely matches the ground truth, performing
better than the supervised method.
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Figure 12. Comparison results for the scene of isolated objects. (a) shows the predicted depth map
and the error map. (b) depicts the depth values distribution of two random horizontal and vertical
pixel coordinate lines in the four depth maps of (a).

Figure 12 shows the results of the three methods in a scene with isolated objects. From
the image, it is evident that the objects were separated. Based on the error map, our method
exhibited a more uniform distribution of depth value errors than the supervised method. In
the left part of Figure 12b, for the object on the left side, the red line (results of our method)
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closely aligns with the ground truth, while the green line significantly deviates from the
ground truth; for the object on the right side, our method is close to the ground truth, but
the supervised method is more accurate. In the right part of Figure 12b, both our method
and the supervised method are very close to the ground truth, and at the upper edge of the
object, our method performed better.

In summary, DF-TPU produced erroneous periodic structures in the depth maps, as
shown in the error maps of Figures 7–12. The dramatic ups and downs of the depth curves
also demonstrate this. Among the six representative scenes, DF-TPU generated depth maps
with drastic changes in depth values. The errors in these depth maps are too large to be
used for 3D reconstruction. Our method performed equally or better than the supervised
method in the representative scenes, except for image defocusing. Due to the presence of
many defocused areas in the training, validation, and test datasets, our method is slightly
worse than the supervised method in the average quantitative indicator of Table 1.

3.4. Ablation Study of Proposed Phase Consistency Loss

An ablation study on the same dataset was conducted to verify the effectiveness
of the proposed phase consistency loss. We trained the network with only grayscale
consistency loss, only phase consistency loss, and a combination of these two losses. The
results demonstrate the contribution of the proposed items to the overall performance of
the network. The specific items included (#1) only grayscale consistency loss; (#2) only
phase consistency loss; and (#3) a combination of grayscale consistency loss and phase
consistency loss.

The three items were utilized on the same training dataset and examined on the same
test dataset. We trained the three networks for 100 epochs with the same super parameters,
where the batch size was set to 2 and the starting learning rate was set to 5 × 10−5. The
evaluation metrics are recorded in Table 2. The ablation experiment verified the necessity of
the proposed phase consistency loss and the effectiveness of a combination of the two losses.

Table 2. Comparison results of the proposed three items on the test dataset.

ID Loss Function Depth Error L1 (mm)↓ Depth RMSE (mm)↓
#1 Lgray 1.908 2.288
#2 Lphase 0.467 0.645
#3 Lphase + Lgray 0.252 0.396

Figure 13 illustrates the depth maps with the three items. In these scenes, the depth
maps of #1 deviate from ground truth, and the indicators in Table 2 also support it. In
Table 2, the L1 error and RMSE illustrate that network trained with only grayscale consis-
tency loss could not output a correct depth map. The depth maps of #2 provide absolute
depth scale information despite a large number of depth errors, and the indicators of depth
errors in Table 2 demonstrate the effectiveness of phase consistency loss. At the end, the
depth maps of #3 are the results of the network trained with a combination of the proposed
two losses, which is very close to the ground truth. In Table 2, the L1 error and RMSE of #3
are further reduced compared to #2.

3.5. Ablation Study of The Loss Function

The effectiveness of each loss item of the proposed loss function was verified by an
ablation experiment on the same training dataset. Seven combinations of different loss items
were tested in this ablation experiment. The seven combinations included (#1) only Labs as
the loss function, (#2) only Lgradient as the loss function, (#3) only Lgray as the loss function,
(#4) Labs + Lgradient as the loss function, (#5) Labs + Lgray as the loss function, (#6) Lgradient +
Lgray as the loss function, and (#7) Lphase + Lgray as the loss function. The #7 combination
was the loss function of the proposed weakly-supervised depth estimation network.
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Figure 13. Results of the ablation experiment on proposed items.

The seven networks corresponding to the seven loss functions were trained on the
same training dataset with the same super parameters, including a batch size of 2, a starting
learning rate of 5 × 10−5 s, and 100 training epochs. Table 3 illustrates the evaluation
metrics of the seven networks on the same test dataset. This ablation experiment verified
the effectiveness of the loss function of our method.

Table 3. Comparison results of the seven loss combinations on the test dataset.

ID Loss Function Depth Error L1 (mm)↓ Depth RMSE (mm)↓
#1 Labs 0.463 0.634
#2 Lgradient 0.850 1.056
#3 Lgray 1.908 2.288
#4 Labs + Lgradient 0.467 0.645
#5 Labs + Lgray 0.253 0.407
#6 Lgradient + Lgray 1.754 2.077
#7 Labs + Lgradient + Lgray 0.252 0.396

Figure 14 illustrates the depth maps and error maps with the seven implementations.
In all the scenes, depth maps of #1 to #4 as well as #6 exhibit significant deviations from
the ground truth. Among the remaining two implementations of #5 and #7, #5 exhibits
noticeable prediction errors in some local regions, while no fringe-like structures are present
within these regions. The proposed method (#7) attains the highest performance.
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The average depth RMSE was approximately 0.096–0.109% of the depth interval. 

Figure 14. Results of the ablation experiment. The contrast of fringe images is enhanced for better
visualization. (a) shows the results of seven networks in the scene with abrupt depth changes and
low reflectivity, (b) shows the results of seven networks in the scene containing smooth surfaces,
and (c) shows the results of seven networks in the scene containing smooth surfaces and abrupt
depth changes.

3.6. 3D Reconstruction

Point clouds reconstructed from the depth maps produced by the weakly supervised
method are shown in Figure 15. The deviation map after point cloud alignment shows that
the point cloud reconstructed by our method had local errors. The depth RMSE of the six
unseen scenes was 0.12 mm. The depth interval of the FPP system was 110–125 mm. The
average depth RMSE was approximately 0.096–0.109% of the depth interval.
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Figure 15. Point clouds reconstructed with the proposed method. The depth interval for the FPP
system was 110–125 mm.

3.7. Comparison on 16-Period Fringe Images

We experimented to compare the performance of the supervised network and ours
on 16-period fringe images. The depth obtained from MF-TPU of three-frequency (period-
numbers of 1, 4, and 16) three-step phase-shifting fringe images was used as the ground
truth. The split of training, validation, and test datasets was the same as that in Section 3.1,
and the hyperparameters for training the supervised network and ours were identical to
those in Section 3.2. The evaluation metrics are listed in Table 4.

Table 4. Average evaluation metrics of models trained and tested on 16-period fringe images.

Method Depth Error L1 (mm)↓ Depth RMSE (mm)↓
Supervised 0.148 0.298

Ours 0.073 0.277
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Table 4 and Figure 16 demonstrate that our method outperformed the supervised
method on 16-period fringe images.
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3.8. Comparison on Datasets of Various Noise Levels

We simulated a noise-free dataset, and various levels of noise were introduced to
this noise-free dataset. The supervised network and ours were trained and tested on
these datasets.

With the depth of MF-TPU, the relative pose between the camera and projector, and
the continuous phase Φproj of 64-period patterns on the projector plane, one continuous
phase map Φ′

cam of 64-period in the camera view was generated. By setting the background
intensity A to a constant value of 120 and the modulation B to a constant value of 100,
the continuous phase Φ′

cam was modulated into three frames of 64-period fringe images
according to Equation (5). Three frames of one-period fringe images were synthesized
using the same approaches. These two-frequency (period-numbers of 1 and 64) three-step
phase-shifting fringes were noise-free. Then, Gaussian white noise with signal-to-noise
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ratios (SNRs) of 20, 25, 30, and 35 was added to the noise-free fringe images separately.
Finally, we obtained multiple datasets of fringe images with various levels of noise.

The split of the training, validation, and test datasets was the same as that in Section 3.1,
and the hyperparameters for training the supervised network and ours were identical to
those in Section 3.2.

Figure 17 illustrates the variations in depth L1 error and depth RMSE as the noise level
changed. Combining Table 1 and Figure 17, it can be observed that our method showed
better robustness to various levels of noise than the supervised method. Note that both
the supervised method and ours demonstrated better performance on simulated datasets
with SNRs of 25 and 30. This may be because adding noise amounts to an operation
of dataset augmentation. In deep learning, proper data augmentation can improve the
generalization of the model. Figure 18 presents the fringe images at various noise levels,
along with the corresponding depth maps predicted by the networks. Note that the noise
of the dataset in Section 3.3 was heavier than that of the simulated datasets in this Section.
Figures 17 and 18 show that our method overperformed the supervised method on the less
noisy simulated datasets.
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4. Discussion
4.1. Efficiency

Measurement speed is one of the core goals of various FPP approaches, assuming that
N-step (N ≥ 3) phase-shifting fringe patterns are employed. According to Equations (2),
(9), and (10), when the period-number is set to one, the absolute phase can be directly
obtained from N frames of fringe images, but its accuracy is relatively low. To improve
phase accuracy, we need to increase the period-numbers of fringe images. However, when
the period-number is greater than one, due to the periodic nature of the cosine function in
Equation (2), the absolute phase cannot be directly obtained from the arctangent function
in Equation (9). Instead, only a wrapped phase can be obtained. Therefore, in traditional
methods, we typically require 2 × N (N ≥ 3) frames of fringe images for 3D reconstruction.
Traditional dual-frequency TPU methods generally need 2 × N frames of fringe images for
one 3D reconstruction. This number is increased to 3 × N or 4 × N when high accuracy
is required. For example, when 64-period fringe patterns are employed, traditional FPP
approaches usually capture 4× N frames of fringe images for one 3D reconstruction. For the
proposed method, the required number of fringe images during the training stage is 2 × N
when the 64-period fringe patterns are employed. During the inference stage, the required
number of fringe images for one 3D reconstruction is N. Compared with traditional multi-
frequency FPP approaches, the efficiency improvement rate of the proposed methods is:

η =
n × N − N

n × N
(n = 2, 3, 4, . . .). (14)

When N = 3 and n = 2, η = 50%; N = 3 and n = 4, η = 75%. The proposed method is
at least 50% more efficient than conventional non-DL-based multi-frequency FPP methods.
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The efficiency improvement rate of the fully supervised method is at least
(2 × 3 − 1)/(2 × 3) ≈ 83.33%. However, the difficulty of obtaining labeled depth data
has hindered the application of this approach. The efficiency improvement rate of the
unsupervised approach [27] is at least (2 × 3 − 2)/(2 × 3) ≈ 66.67%, but its feasibility has
only been verified with simulation data on a simplified FPP model; real FPP systems and
application scenarios are more complex.

4.2. Accuracy

On the real dataset of 64-period fringe images, the proposed method showed com-
petitive depth accuracy (depth error L1 increased by 1.2% and depth RMSE increased by
5.0%) to the fully supervised method, and significantly higher accuracy (depth error L1
decreased by 66.2% and depth RMSE decreased by 72.8%) than conventional DF-TPU. On
unseen test objects, the average depth deviation was 0.12 mm.

This study used a handheld FPP system to collect data for training and testing. There
was inevitable motion blur, projection defocus, and imaging defocus in most of the data.
These factors brought significant noise to the 3D reconstruction. On the test dataset includ-
ing 506 samples, the mean depth RMSE of the proposed method was 0.32–0.36% of the
depth interval and 2.64% of the system depth range. For unseen scenes without imaging
defocus, the mean depth RMSE of the proposed method was 0.096–0.109% of the depth
interval of 0.80% of the depth range. If high-quality fringe images were captured, the
deviation between the results of the proposed method and those of the four-frequency TPU
could be reduced further.

4.3. Future Work

It was observed from our experiments that image defocusing impairs the depth
estimation; excluding these defocusing areas from the fringe images may help to better the
results. We will address this topic in our future work.

Additionally, for the handheld FPP system we used to collect the data, the measure-
ment volume was 12 mm × 12 mm × 10 mm, the working distance was 110 mm, and
the angle between the optical axis of the camera and the projector was 13 degrees. These
specifications theoretically limited the depth accuracy of this FPP system. Future work will
be conducted to verify the performance of the proposed method with data from different
FPP systems.

5. Conclusions

A weakly supervised depth estimation technique for 3D reconstruction using high-
frequency fringe images is presented in this study. The suggested methodology differs
from the fully supervised deep learning method in that it does not need a depth map as a
label. The potential application situations for deep-learning-based FPP depth estimation
algorithms have been greatly expanded by the proposed method. Efficiency in terms of the
number of fringe patterns was increased by 50% compared to conventional dual-frequency
FPP approaches. The experimental results verify that the suggested method achieves
competitive accuracy to fully supervised methods and doubles the maximum period-
number of the conventional dual-frequency PSP, in addition to significantly improving
the accuracy.
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