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Abstract

:

Algorithms for QRS detection are fundamental in the ECG interpretive processing chain. They must meet several challenges, such as high reliability, high temporal accuracy, high immunity to noise, and low computational complexity. Unfortunately, the accuracy expressed by missed or redundant events statistics is often the only parameter used to evaluate the detector’s performance. In this paper, we first notice that statistics of true positive detections rely on researchers’ arbitrary selection of time tolerance between QRS detector output and the database reference. Next, we propose a multidimensional algorithm evaluation method and present its use on four example QRS detectors. The dimensions are (a) influence of detection temporal tolerance, tested for values between 8.33 and 164 ms; (b) noise immunity, tested with an ECG signal with an added muscular noise pattern and signal-to-noise ratio to the effect of “no added noise”, 15, 7, 3 dB; and (c) influence of QRS morphology, tested on the six most frequently represented morphology types in the MIT-BIH Arrhythmia Database. The multidimensional evaluation, as proposed in this paper, allows an in-depth comparison of QRS detection algorithms removing the limitations of existing one-dimensional methods. The method enables the assessment of the QRS detection algorithms according to the medical device application area and corresponding requirements of temporal accuracy, immunity to noise, and QRS morphology types. The analysis shows also that, for some algorithms, adding muscular noise to the ECG signal improves algorithm accuracy results.
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1. Introduction


QRS detectors are widely used as a front end of various ECG processing chains; consequently, their usage is concerned virtually in any ECG-dedicated software. Moreover, from the signal processing viewpoint, they serve as an interface between a continuous series of samples captured by recording devices and a feature-based algorithm used for classification and detection purposes. Consequently, in several ECG software packages, the QRS detector and preceding filters are the unique procedures involving every sample of the record. Therefore, high accuracy of detection and low computational complexity are of key importance and are usually regarded as primary quality factors. Detection accuracy, however, becomes a less distinctive factor as many modern detectors approach 99.9%.



Mobile and wearable ECG data acquisition systems face an inherent conflict between autonomy time and usability. The time between battery recharge, power consumption, detection accuracy, size, and weight of the device have to be balanced by a compromise. To this end, two important quality aspects appear to produce a reliable estimate of the suitability of a particular QRS detection algorithm to an area of application. The first aspect is the temporal stability of the detection point sequence (that is, its independence from the QRS morphology type). With the QRS detector producing highly accurate detection points, one could avoid recalculations of more precise QRS peak positions and directly input the detection points to procedures such as HRV analysis or shape classifying. The second point is the noise immunity of the detection point sequence, which specifies how much noise (e.g., of muscular origin), present for example in wearable-based in-field ECG measurements, affect the precision of QRS detection and alter the medical findings produced by subsequent diagnostic procedures.



In this paper, we address the problem of the comprehensive evaluation of QRS detection performance using multidimensional criteria, including the temporal tolerance of QRS complex detection, robustness amid noise, and sensitivity to QRS morphology. The proposed methodology enables the selection of the QRS detectors for specific applications, such as clinical data analysis, long-term monitoring with mobile devices and wearables, fast results, or arrhythmia diagnosis. The analysis is demonstrated in the example of four selected QRS detection algorithms implemented in Python according to their specification in the relevant references [1,2,3,4]. The algorithms are tested on the MIT-BIH Arrhythmia Database (MIT-BIH AD) [5] with added muscular noise from the MIT-BIH Noise Stress Test Database (MIT-BIH NSTD) [6]. The tests were conducted on Dell Latitude E6400, Intel Core2Duo P8400, 2.26 GHz, and 4 GB RAM running with Debian 10.13. Implementation of the algorithms, test tools, and data processing were performed in Python 3.7.3. Plots were created in Jupyter Notebook (server v5.7.8 with Python 3.7.3 [GCC 8.3.0]).



The performance analysis shows that the QRS detectors demonstrate different sensitivities to the detection of temporal tolerance. Some algorithms maintain high detection accuracy, even for low values of temporal tolerance of QRS detection. The others exhibit good results only for high values of temporal tolerance (i.e., comparable to the QRS standard duration of 100 ms).



The QRS detection performance under extra noise is in general deteriorated. However, as shown in this paper, for some QRS morphologies, extra noise in the ECG signal can paradoxically improve QRS detection accuracy. This effect resembles the improvement of audio and video data by randomizing the quantization error known as dither [7,8].



The performance of the algorithms depends on QRS morphology, as each algorithm uses different ECG signal filtering methods and signal analysis in subsequent processing blocks. Some QRS morphologies are more problematic than others for each algorithm under analysis. In our tests, V-type QRS morphologies were the most problematic for algorithms under analysis.



The paper is organized as follows: Section 2 addresses related work; Section 3 describes the four algorithms under analysis, the database, and the preparation of test datasets; Section 4 presents results; Section 5 is the discussion; and Section 6 contains conclusions.




2. Related Work


Medical testing procedures are conventionally evaluated based on binary classification by calculating parameters such as TP, FN, FP, and TB. These parameters are also commonly used in the literature for performance evaluation and comparison of QRS detection algorithms [9]. True positive (TP) is the number of correctly detected R peaks, false negative (FN) is the number of omitted R-peaks, false positive (FP) is the number of places wrongly classified as R-peaks, and total beats (TB) is the number of annotated R-peaks in a database record. However, much less attention is paid to temporal detection accuracy. The numerical values of TP, FN, and FP depend on detector temporal tolerance (DTT), defined as the maximum allowed time difference between the algorithm detection points (R-peaks) and the corresponding annotations from the reference database [10]. A variety of temporal tolerance values are used in the literature, ranging from 60 ms to 160 ms, which sometimes results in the comparison of algorithms with different temporal resolutions. The problem of the sensitivity of the accuracy of QRS detection algorithms in the temporal resolution of the detection defined by DTT is examined in [10]. When the algorithm is tested with a certain high value of DTT, relatively distant locations of R-peak detection points and database annotation are successfully paired and counted as TP. Further testing with certain lower DTT values will result in the distance between detection points and database annotation exceeding the DTT value and, consequently, their pairing will be unsuccessful. Database annotation without paired detection points will be counted as FN, and algorithm detection without paired database annotation will be counted as FP. This way, the algorithm’s TP detection for higher values of DTT will be replaced by a pair of FN and FP detections for lower DTT values. As expected, the higher the DTT, the better the numerical results of the TP, FN, and FP. However, the deterioration rate of an algorithm’s accuracy depends on the given QRS detection algorithm. Some algorithms demonstrate slow degradation, while others suffer a quick performance drop with decreasing DTT values [10].



A substantial research effort has been dedicated to examining the robustness of QRS detectors’ performance against noise in ECG signal recordings; [11] reviews 38 major state-of-the-art techniques of QRS detection with comprehensive comparative analysis of techniques for ECG signal denoising and QRS detection. In their conclusion, the authors emphasize a need to invent computational techniques “to analyze the ECG signal with higher accuracy in all conditions”, which justifies the development of multidimensional methods to test algorithms’ performance, among other criteria, in various noise conditions and temporal accuracy requirements.



The performance results of the Pan–Tompkins QRS detection algorithm in noisy ambulatory ECG data with varying signal-to-noise ratios are presented in [12]. Two ECG databases are used for testing: the MIT-BIH NSTD [6] and the MIT-BIH AD [5]. The algorithm results for sensitivity (Se = TP/(TP + FN)) and positive predictivity (PPV or +P) (+P = TP/(TP + FP)) deteriorate from close to 100% for noise level with SNR = 24 dB to around 60% and 70% respectively for SNR = −6 dB. The analysis shows that the Pan–Tompkins algorithm needs improvements to achieve good detection performance for noisy signals.



In [13], the performance analysis of selected three well-known QRS detection algorithms is addressed: by Pan–Tompkins [4], WQRS [14], and by Hamilton [15] against the MIT-BIH AD and the noise-contaminated ECG signal with different levels of baseline wander (BW), muscle artifact (MA), and electrode motion (EM) artifact from the MIT-BIH NSTD. As shown in [13], noise and artifacts decreased the quality indices of algorithms from close to 100% for SNR = 12 dB to:




	
BW noise: Se = 95% for WQRS and +P = 62% for WQRS for SNR = −12 dB,



	
MA noise: Se = 83% for Hamilton and +P = 38% for WQRS for SNR = −12 dB,



	
and EM noise: Se = 65% for Hamilton and +P = 30% for WQRS for SNR = −12 dB.








The poorest performance was noted for ECG signals affected by EM artifacts.



In [16], a new QRS detection method is proposed and validated, with different levels of baseline wander, muscle artifact, and electrode motion artifact as noise sources against MIT-BIH NSTD with the following processing blocks: first derivative, Hilbert transform envelope, wavelet transform, wavelet component reduction, signal reconstruction, and thresholding. The proposed QRS detection method achieves Se = 78.89% and +P = 75.25% for MIT-BIH NSTD and SNR = 0 dB.



The performance of three selected state-of-the-art QRS detection algorithms and the evaluation of the accuracy of their R-peak localization are included in [17]. The algorithms under analysis were the following: integrate and fire pulse train automaton [18], zero-crossing counts [19], and the knowledge-based method [20]. The authors propose a method to estimate the temporal accuracy of R-peak detection for normal and abnormal beats as well as a simple scheme to compensate for slackness introduced by the filtering part of the algorithms.



In opposition to the ubiquitous, conventional, TP, FN, and FP parameters mentioned at the beginning of this section, a novel QRS detection performance indicator, jitter with accuracy (JA), aimed at evaluating QRS detection algorithms under realistic noise scenarios, is proposed in [21]. The authors state that Se and +P metrics used to assess the quality of R-peak detection lose information value, where a high temporal tolerance of 100 ms or more [21] is used. Also, frequent use of the MIT-BIH AD, which is, according to the authors, artifact-free, leads to an overestimation of algorithm performance and unjustified reported Se and +P performance indicators significantly above 99%.



The relationship between QRS detection performance and database sampling frequency is examined in [22]. The analysis, carried out for the Hamilton algorithm [23] against the MIT-BIH database, shows that adapting the algorithm threshold parameters to sampling frequency optimizes the algorithm’s accuracy results.



In [24], the five selected multisignal heartbeat detectors are tested against 100 records from the training dataset of the PhysioNet/CinC Challenge 2014, with various noise levels added. The performance results and best-worse ranking of the detectors are reported.



The performance of 10 QRS detection algorithms against six internationally recognized ECG databases with various normal and abnormal beat types and various levels of noise and artifacts is reported in [25]. The tested algorithms were by Pan–Tompkins, Hamilton mean, Hamilton median, RS slope, sixth power, finite state machine (FSM), U3 transform, difference operation (DOM), ‘jqrs’, and optimized knowledge based (OKB). The overall results are reported for each algorithm and each database. The analysis shows that QRS detection results decrease significantly for poor signal-quality ECG signals for all tested algorithms.



A new R-peak detector based on neural networks is proposed in [26]. The algorithm performance does not deteriorate with low-quality or noisy ECG signals acquired from mobile electrocardiogram sensors, such as Holter monitors. The proposed QRS detector uses a 1-D self-organized operational neural network with generative neurons and offers lower computational complexity than conventional 1-D convolutional neural networks. The QRS detection results reported are a 99.10% F1 score (F1 = 2 · PPV · Se/(Se + PPV)), 99.79% Se, and 98.42% +P achieved on the China Physiological Signal Challenge-2020 dataset (CPSC-DB). The CPSC-DB database contains 1 026 095 beats, collected from arrhythmia patients, and includes real-world noise as well as artifacts from a wearable real-world Holter ECG device.



In [27], 10 QRS detection techniques published between 2020 and 2022 are compared based on the performance parameters: Se, PPV, F1 score, and DER (DER = (FN + FP)/TB).



A new R-peak detection technique based on visibility graph transformation, which maps a discrete time series to a graph by expressing each sample as a node and assigning edges between intervisible samples, is proposed in [28]. The proposed method is compared against two existing QRS detection methods on a noisy and sample-accurate University of Glasgow ECG Database [29] with two performance metrics: F1 score and root mean square of successive differences (RMSSD). The result of the first comparison is presented as a boxplot of the proposed F1 score method versus the SWT-based method [30] and matched filter detector [21]. There is an annotation that “the tolerance for deviation from the true R-peaks was 0%”, which corresponds to DTT = 0. In order to evaluate the RMSSD, a Wilcoxon signed-rank test between the estimated RMSSD values and the ground truth was performed and presented.



In [31], the authors present two (FastNVG and FastWHVG) computationally accelerated versions of the visibility graph transformation QRS detection method proposed in [28], together with an extended comparison with additional 7 QRS detectors from the literature.



ECG noise removal techniques are reviewed in [32]. The types and sources of noise are identified, and six major domains of denoising are subsequently explored. The techniques for denoising are presented and their performance is evaluated according to the following parameters: root-mean-square error, percentage-root-mean-square difference, and signal-to-noise ratio improvement.




3. Materials and Methods


To demonstrate the concept of evaluation of QRS detector performance aware of temporal accuracy, the presence of noise, and various QRS morphologies, we implemented four QRS detection algorithms and tested their accuracy, expressed by a true-positive-to-total-beats ratio (TP/TB). The tests are carried out for a range of DTT values and controlled mixing of muscular noise, which is often present in wearables applications. Obviously, it is desirable for QRS detectors to show good TP/TB scores, even for low DTT. Such detectors are particularly welcome, as R-peak location corrections are not necessary, and resynchronization of the heartbeat time series is not needed before further ECG processing steps.



The four algorithms selected from the QRS detection literature consist of three algorithms developed for mobile and wearables applications [1,2,3] and the algorithm broadly used as the reference in QRS detection literature [4]. Algorithms 1 and 2 belong to a group of algorithms based on digital filtering [9]. In addition, they can be classified into a group of “low” computational complexity using the subjective comparison with respect to computational load [9]. In contrast, Algorithm 3 does not use any digital filters and works on a different principle of operation based on a level-crossing sampling of the ECG signal. Algorithm 3 can be assigned to the group of “medium” computational load. Algorithm 4 is based on digital filters [9] and can be assigned to the group of “medium” computational load. Compared with Algorithms 1 and 2, Algorithm 4 uses more mathematical operations performed in multiple stages of signal processing.



Section 3.1, Section 3.2, Section 3.3 and Section 3.4 present the specification of QRS detection algorithms included in the study, while Section 3.5 contains the definition of test signals used to examine their immunity to noise in ECG signals.



3.1. Algorithm 1


Algorithm 1 has been designed to address the requirements of low-power and real-time operations for use in mobile and wearable applications. The algorithm’s two main processing blocks, preprocessing and dynamic thresholding, have been designed to minimize necessary computational resources and power consumption (Figure 1). The preprocessing block consists of three consecutive operations performed on the input digital ECG signal: differentiation, the moving window average, and squaring. The resultant feature signal is fed to the thresholding block, which works in sequence in three states. In State 1, the algorithm searches for the maximum value of the feature signal within a window of fixed length (260 ms). The time instant when the feature signal reaches its maximum is marked as an R-peak temporal location. State 2, following State 1, is a 200 ms wait from the R-peak detection. During State 3, the dynamic threshold is decreased exponentially with time until it reaches the value of the feature signal. State 3 is then terminated and the algorithm moves to State 1, the search for the maximum value of the feature signal. The threshold initial value in State 3 is adaptive and dependent on the average amplitude of all previously found R-peaks.




3.2. Algorithm 2


Algorithm 2 has been designed to achieve the low computational complexity and high energy efficiency needed for mobile and portable applications. The preprocessing stage consists of two parallel signal processing paths (Figure 2). Both paths include the high-pass moving average filters but with different cutoff frequencies followed by a rectification operation. The moving average window lengths Nlong and Nshort define the cutoff frequencies of the filters. The outputs of the parallel processing paths are the inputs to the decision block. The preprocessed signal u[n], after high-pass filtering with a higher cutoff frequency (moving average window length Nshort), is used to decide when to start the QRS search window. During the search window of a fixed 200 ms length, the preprocessed signal of the other path y[n] after high-pass filtering with a lower cutoff frequency (moving average window length NLong) is analyzed in order to find its maximum value. The time instant of the maximum value of the y[n] signal is classified as an R-peak occurrence. The decision block of the algorithm works in three states: (1) identification of the search window, (2) detection of the R-peak by maximum y[n] value search, and (3) waiting state after R-peak occurrence. The threshold necessary to identify the search window is adaptive and its value is calculated based on the amplitude of the last R-peak and the previous threshold value.




3.3. Algorithm 3


Algorithm 3 [3] is based on modified level-crossing sampling, which belongs to event-triggered sampling schemes [33]. The input to the algorithm is the analog ECG signal (instead of the digital ECG used for the other algorithms analyzed in this paper). In the level-crossing sampling, the analog input range is divided into 2M − 1 levels (where M is the sampling resolution) and the sample is taken only when the input signal crosses one of the levels. The level-crossing analog-to-digital converter (LC-ADC) used in this algorithm is modified by asymmetrical hysteresis. The sample is taken only when (a) the input signal crosses the sampling level in the same direction as the last sample taken or (b) the input signal crosses kl levels in the opposite direction (where kl is the hysteresis parameter). The LC-ADC outputs the samples that are non-uniformly spaced in time. By selecting the appropriate value of kl, analysis of sample clusters (Figure 3 signal change direction DVi, Token), and their timing (Figure 3 Time Data Dti), it is possible identify the input ECG signal peaks first and, in the next processing step, identify R-peaks. There are three main processing blocks: level-crossing analog-to-digital converter (LC-ADC), peak detector, and beat detector (Figure 3). The algorithm does not use any filters (unlike other algorithms analyzed in this paper) due to the properties of the level-crossing sampling scheme adopted in the LC-ADC with hysteresis. For the purposes of algorithm analysis in this paper, the input to the algorithm is a uniformly sampled ECG signal.




3.4. Algorithm 4


Algorithm 4, developed by Pan and Tompkins and published in 1985, is the most widely referenced QRS detector. The adaptation of the original algorithm used in this study comes from [34]. In this adaptation, the decision block is simplified, whereas the preprocessing stage uses the Butterworth filter instead of the simple moving average filter. The original ECG signal preprocessing is retained and consists of a band pass filtering, differentiation, squaring, and moving window average [4] (Figure 4). The resulting preprocessed signal is fed to the decision block where, during State 1, its first local maximum that is higher than the detection threshold is marked as the R-peak (the condition for a local maximum is where the next and the previous sample values are smaller than the sample under analysis). Each local maximum smaller than the detection threshold modifies the value of the detection threshold in line with [4]. As soon as the R-peak is found, the algorithm enters the waiting state, State 2, which is 200 ms long, and thereafter resumes the local maximum search. The parallel analysis of filtered signals with a second threshold is not applied in this implementation of the original algorithm. The modification of the feature signal threshold based on a regular and irregular heart rate, as well as the searchback mechanism, is implemented.




3.5. ECG Database and Test Dataset


In the MIT-BIH AD, the QRS morphology types [35] appear with the following number of cases: N (Normal)—75052, L (Left Bundle Branch Block)—8075, R (Right Bundle Branch Block)—7259, V (Ventricular Premature Beat)—7130, P (Paced)—7028, and A (Atrial Premature Beat)—2546. These six QRS morphology patterns were selected as the most frequent in the database (107090/109494 beats, i.e., 97.8%) as well as in real recordings expected in mobile patients. Records in the MIT-BIH AD are sampled at 360 Hz, which corresponds to the sampling interval of 2.7778 ms. Throughout this paper, we use the number of samples to describe the timeline.



Noise Pattern and Noisy Test Signals


In order to evaluate the immunity to noise of the QRS detectors under analysis, we have used the first channel signal from the MIT-BIH AD and three derivate datasets. Each of the three datasets was created by adding a noise signal from the MIT-BIH NSTD multiplied by three different scaling factors to the original MIT-BIH AD. Considering the wearable application as the most expected and the omnipresence of muscle artifacts, we decided to use a “muscle artifact” (MA) record from the MIT-BIH NSTD. From a practical viewpoint, the records were made with the same sampling parameters and the same length as the ECG signal. Moreover, the noise added is point-by-point trackable, allowing for a detailed comparison of the detector’s performance at each particular heartbeat. As we used original records from the MIT-BIH AD, the intrinsic noise already present in the data is out of our control. Consequently, the investigation of QRS detectors’ behavior in the presence of noise refers to “original” and not “noise-free” ECGs, and the relative signal-to-noise ratio (SNR) has been calculated based on the average power factor of the original record Ps (MIT-BIH AD) and added noise pattern Pn (MIT-BIH NSD record MA):


  S N R = 20 l o g    P s     P n     



(1)







The power is calculated according to:


  P =  1  N − 1    ∑  i = 0   N − 1      (   x  i + 1   −  x i   )   2   



(2)







The following procedure has been applied to achieve the target relative SNR of 15, 7, and 3 dB. The mixing procedure for one record of the MIT-BIH AD starts with the calculation of SNR based on Equation (1), where Ps is the power factor for this MIT-BIH AD record and Pn is the power factor for the MIT-BIH NSTD record MA. The result is existing SNR (eSNR). Next, to calculate k (scaling factor), the target noise level (tSNR; for example, 3 dB) is input to Equation (3). The square root in Equation (3) is due to the fact that the amplitude ECGtest and ECGorig ratio is the square root of the power ratio. Once the scaling factor k is calculated, the test dataset ECGtest is calculated according to Equation (4), where MA is the MIT-BIH NSTD record MA. This procedure is repeated for all MIT-BIH AD records for all three (15, 7, 3 dB) noise-test datasets.




   k =     t S N R   e S N R       



(3)






   E C  G  t e s t   = E C  G  o r i g   + k · M A     



(4)





The process of adding noise to example record 121 of the MIT-BIH AD is illustrated in Figure 5 and Figure 6 below.






4. Results


The investigation of the QRS detection accuracy of four QRS detectors was performed separately for the six most frequent beat morphologies, five arbitrarily selected values of detection temporal tolerance, and four true-to-life levels of noise mixed with the database records. The amount of data to analyze and present is sizeable. Therefore, we present the following:




	
statistics of the results in Table 1, Table 2 and Table 3, and the mean and standard deviation of TP/TB,



	
the plot for each algorithm in Figure 7, Figure 8, Figure 9 and Figure 10, presenting 120 data points for each algorithm, with data points calculated from totals of detailed results,



	
and 8 tables from 120 tables, with detailed results for individual records and totals for a given set of DTT, four noise levels, and QRS morphology (Table 4, Table 5, Table 6, Table 7, Table 8, Table 9, Table 10 and Table 11).








4.1. Statistics of the QRS Detectors’ Performance


With four independent variables (detector number, DTT, QRS morphology type, and added noise level), one can build a total of 16 statistical analyses. We selected the three most representative statistical analyses for independent studies of the detectors’ performance and vulnerability to DTT, QRS morphology type, and added noise level. Table 1 summarizes statistics on TP/TB for each algorithm (columns) and each tolerance window length (rows) for various DTT values, while the mean value and standard deviation are calculated for all QRS morphology types and added noise levels.



Table 2 presents statistics on TP/TB for each QRS morphology type (rows), while the mean value and standard deviation are calculated for all DTT values and noise levels. This table represents the detection quality and its independence from the QRS morphology, which is unknown at the time of detection.



Table 3 presents statistics on TP/TB for each algorithm (columns) and each noise level tested (rows), while the mean value and standard deviation are calculated for all QRS morphology types and DTT values. This table helps to explore which algorithm is the best and which gives the most stable detection results in the presence of noise.




4.2. Plots of the Detectors’ Performance


To provide deeper insight into detectors’ performance, we also use plots (displayed in Figure 7, Figure 8, Figure 9 and Figure 10) that examine the properties of each studied algorithm independently.





5. Discussion


5.1. Influence of Noise


While planning the experimental work, the expectation was that, with increasing levels of noise the TP/TB results would deteriorate. When we analyze the average TP/TB results in Table 3, we can conclude that the expectations are fulfilled for Algorithm 1, Algorithm 2, and Algorithm 3 but not for Algorithm 4.



The average TP/TB (Table 3) results for increased levels of noise are in the following range for no added noise to maximum added noise SNR = 3 dB, respectively:




	
Algorithm 1—83.72% and 82.12%,



	
Algorithm 2—90.68% and 89.18%,



	
Algorithm 3—77.12% and 71.74%,



	
and Algorithm 4—62.03% and 70.43%; there is no deterioration, but an improvement of 8.4% with added noise.








For Algorithm 1, the improvement in average TP/TB with increased level of added noise has not been observed (Table 3). Turning the analysis of Algorithm 1 to not-averaged TP/TB data (Figure 7), we can observe that, for DTT 8.33 ms (three samples) QRS morphology types N, L, R, and V, there is an improvement in TP/TB with increased added noise level for several records. Looking into details (Table 4) for QRS morphology of N type, DTT 8.33 ms (three samples), the TP/TB results for added noise 15 dB, 7 dB, and 3 dB are improved compared with records with no added noise for the following records: 103, 106, 112, 113, 115, 117, 119, 122, 123, 200, 201, 202, 203, 208, 210, 213, 219, 220, 221, 233, and 234 (Table 4). It constitutes results for over 50% of the records (21 from 40 records with N-type QRS morphology). The biggest improvement is registered for record 122. For greater values of DTT and N-type beats with this algorithm, there are no improvements in TP/TB (Figure 7); detailed results for DTT 47.22 ms (17 samples) are shown in Table 5.



For Algorithm 2, an improvement in average TP/TB with an increased level of added noise has not been observed (Table 3). As can be seen in the detailed data for N-type QRS morphology and DTT 8.33 ms (three samples) in Table 6, there is only one case of TP/TB improvement, for record 230. The improvement in TP results for no added noise versus added noise of 15, 7, and 3 dB are 86, 156, and 196, respectively.



For Algorithm 3, the improvement in average TP/TB with an increased level of added noise has not been observed (Table 3). When analyzing Algorithm 3 results for not-averaged TP/TB data (Figure 9), the improvement of TP/TB with an increased level of added noise is revealed for QRS morphology type V for all values of DTT. Analysis of the results for N-type QRS morphology (Table 8 and Table 9) reveals that, for DTT 8.33 ms (three samples), there is improvement in totals, whereas for DTT 47.22 ms (17 samples), there is no improvement in totals (only in a few selected records).



For Algorithm 4, the improvement in average TP/TB with an increased level of added noise has been observed (Table 3). Looking into details (Table 10) for QRS morphology of N-type, DTT 8.33 ms (three samples), the TP/TB results for added noise 15 dB, 7 dB, and 3 dB are improved for 35 out of 40 records. The improvement is not revealed for records 105, 119, 121, 122, and 212. For DTT 47.22 ms (17 samples), the improvement is revealed for 30 out of 40 records. The improvement is not revealed for the following records: 100, 105, 106, 119, 121, 122, 212, 222, 228, and 231.



Why do TP/TB results for Algorithm 4 not deteriorate with increased levels of noise? When we look into detailed data in Table 10, TP/TB results for N-type QRS morphology, and DTT 8.33 ms (three samples), the improvement in TP/TB with increasing levels of noise can be observed for 30 out of 40 records. Similar improvements of results are revealed for DTT 47.22 ms (17 samples) and can be observed in Table 11. Why do TP/TB results improve with added noise? Our hypothesis is that it is related to Algorithm 4 higher computational complexity being reflected in more calculations and processing blocks in computation. Thus, the hypothesis is that adding noise to the input ECG signal reduces friction between the blocks of computation. The phenomena of reduction of error from sticky moving parts in mechanical computers used to perform navigation and bomb trajectory calculations are cited as the first observation and purposeful use of dither [36]. In analog-to-digital conversion, dither—purposeful distortion to the input signal—causes digitization error to behave well statistically (dithered quantization) [7,8].



In summary, by adding muscular noise, we expected a deterioration of the detectors’ performance. Surprisingly, our results show that this is not always the case. For Algorithm 4, there is general improvement visible in averaged TP/TB data and confirmed in detailed data. For other algorithms, general improvement in averaged TP/TB has not been observed. Still, the phenomena of TP/TB improvement with added noise are present, although on a smaller scale for other algorithms (namely for specific QRS morphologies, DTT values, or individual records).




5.2. Influence of Detector Time Tolerance DTT


While planning the experimental work, the expectation was that increasing DTT would improve the TP/TB results. This assumption was additionally supported by results of one-dimensional analysis of DTT influence on TP in [10].



When we analyze the results in Table 1, we can see that results confirm the expectation for all algorithms and all DTT values under analysis. The average TP/TB results calculated over all added noise and QRS morphologies achieved for the lowest DTT 8.33 ms (three samples) and highest DTT 163.89 ms (59 samples), respectively, are:




	
Algorithm 1—27.54% and 99.25%,



	
Algorithm 2—65.75% and 99.71%,



	
Algorithm 3—8.26% and 94.80%,



	
and Algorithm 4—14.30% and 99.46%.








The following are additional observations from the analysis of plots (Figure 7, Figure 8, Figure 9 and Figure 10) for all algorithms:




	
Algorithm 1 for QRS morphologies N, L, R, P, and A, with the exception of DTT 8.33 ms (three samples), reveals TP/TB of more than 90%. For QRS morphology type V, the TP/TB results are below 90% for all DTT ≤ 125 ms (45 samples). For DTT 8.33 ms (three samples), for all QRS morphologies, the TP/TB results are below 30%.



	
Algorithm 2 results of TP/TB for all DTT and for QRS morphology N and A are above 80%. For L-, R-, V- and P-type QRS morphologies, the TP/TB results are above 90% for DTT > 86.11 ms (31 samples).



	
Algorithm 3 TP/TB results for DTT 8.33 ms and for all QRS morphologies are below 30%, and for other higher DTT values, there is a clear deterioration of TP/TB results with decreasing DTT. For all QRS morphologies TP/TB is above 90% only for DTT 125 ms and 163.89 ms (45 and 59 samples).



	
Algorithm 4 TP/TB results for all QRS morphologies are above 90% only for DTT 125 ms and 163.89 ms (45 and 59 samples). Results for other values of DTT clearly deteriorate well below 80% with decreasing DTT value.








In summary, decreasing DTT causes deterioration of TP/TB with varying ratios dependent on algorithm, QRS morphology, and added noise level.




5.3. Influence of QRS Morphology


While planning the experimental work, the expected result was that, depending on the algorithm, certain QRS morphologies are more difficult for precise R-peak detection than other QRS morphologies. During the analysis of average TP/TB results in Table 2, we observed that the aforementioned expectation is fulfilled for all algorithms.



On closer analysis of the range of TP/TB results from worst to best in Table 2, we can observe the following range of TP/TB results for algorithm and QRS morphology, respectively:




	
Algorithm 1 from 76.92% for V to 92.52% for P,



	
Algorithm 2 from 80.51% for V to 97.24% for A,



	
Algorithm 3 from 67.29% for V to 76.47% for L,



	
and Algorithm 4 from 65.38% for L to 72.28% for N.








We can conclude that, for the four algorithms under analysis, the most difficult in precise R-peak location was V-type QRS morphology for three algorithms and L-type for one algorithm. In terms of the easiest QRS morphology type for precise R-peak location, it is different for each algorithm under analysis and yields P-, A-, L-, and N-types of QRS morphology.



Visual analysis of the TP/TB results displayed in plots (Figure 7, Figure 8, Figure 9 and Figure 10) in a direction to reveal any visual similarities in locations of the data points for various QRS morphologies is presented below for algorithm and QRS morphology, respectively:




	
Algorithm 1 for N, R, and A—similar locations; for L, V, and P, each type—different locations,



	
Algorithm 2 for N, R, and A—similar locations; for L, V, and P—similar locations,



	
Algorithm 3 for N, L, and R—similar locations; for V, P, and A, each type—different locations,



	
and Algorithm 4 for N, R, and A—similar locations; for L, V, and P—similar locations.








In summary, the most difficult and easiest QRS morphology type for accurate R-peak detection by a given detection algorithm is specific for that algorithm. The worst and best TP/TB results for all levels of noise in ECG signal and all DTT values under analysis are also specific for each algorithm.




5.4. Comparison of the Algorithms Studied


It is evident that a high-performance QRS detector should demonstrate a high TP/TB ratio even with low DTT. Therefore, a series of QRS detection instants may reliably be used by following procedures such as heart rate variability. In this aspect, all atrial premature, blocked, paced, and ventricular beats are not considered as representative to cardiac cycle control from the autonomous nervous system. Consequently, the precision of N-type QRS detection is more important than other types of beat morphology. At the same time, the high stability of the detection point sequence (that is, its independence from QRS morphology) is a desired algorithm feature. Lastly, an algorithm’s detection robustness to noise is very important, especially for mobile and wearable applications, as the level of noise is high and fluctuates depending on the environment and human activity.



Algorithm 1 and Algorithm 2 demonstrate good robustness to noise in ECG signal (Table 3, Figure 7 and Figure 8), whereas the QRS detection accuracy for Algorithm 3 and Algorithm 4 for noisy ECG signal is significantly worse. Additionally, the detection accuracy strongly drops with noise level, which makes the Algorithm 3 and Algorithm 4 not suitable for implementation in wearable ECG devices.



Algorithm 2 has a good detection accuracy even for low temporal tolerances (DTT = 3), except for V-type beats it has a TP/TB score over 50%, and for DTT = 17, it grows over 93% except for types L and V. This is a clinically acceptable detection ratio for remote cardiac rhythm detection and, as our results show, can be achieved with a temporal accuracy of 47.22 ms (17 samples).



Algorithm 1 and Algorithm 3 work well for DTT ≥ 47.22 ms (17 samples); TP/TB exceeds 90%, except for QRS types V for Algorithm 1 and Algorithm 3, and P for Algorithm 3, but its performance drops for low temporal tolerance (DTT 8.33 ms, three samples). Compared with Algorithm 1, Algorithm 2, and Algorithm 3, which were developed in the last decade, Algorithm 4, developed in 1985 and broadly referenced in the literature on QRS detection, is more sensitive to noise (Figure 10) and QRS morphology. It achieves satisfactory detection accuracy only for large DTT values.



Algorithm 1 (Figure 7) shows perfect noise immunity for V-type QRS morphology and high noise immunity for other beat types. For low noise levels, it has similar scores to Algorithm 3 (Figure 9), except for P morphology, where it is, again, significantly better.



Adding noise improves the results of Algorithm 3 in V-type morphology, and for high DTT also in N-type QRS morphology. This is also observed in Algorithm 4 (Figure 10), where, in most cases, red dots (SNR = 3 dB) are not the lowest data points in the plot.




5.5. Limitations of the Study and Future Research


A lack of computational complexity analysis may be considered as the main limitation of our study. Although the number of elementary operations for each algorithm and the growth of resource demand related to input size can be easily determined, preferences in this aspect depend on the target platform. The hardware architecture (e.g., multicore processors, vector data processing) and machine representation of data determine principal usability factors, such as maximum time of autonomy or the necessary size of battery, particularly in wearable recorders.



Another limitation of our study is the use of the MIT-DIH Arrhythmia Database, which is relatively sparsely sampled (sampling frequency 360 Hz) and known for annotation errors. In fact, the position of the maximum of the signal depends on the ECG lead used (each lead “sees” the spatial electrical phenomenon of heartbeat from a different viewpoint) and the true QRS maximum (i.e., precise R-peak) position can only be estimated from vectorcardiography. Moreover, in all cases, the sampling process is in no way synchronized with heart action. Consequently, the maximum falls between samples, and calculation of its true position requires interpolation. Nevertheless, we assume that possible annotation errors are rare and equally distributed before and after the true positions of R-peaks. This may result in an overestimation of the standard deviation results, but with no effect on the mean results of the algorithms.



The above two limitations will be addressed in future research, as will be the analysis of the sources of improvement in TP/TB results under conditions of added noise, as discussed in Section 5.1.





6. Conclusions


This study focused on the performance evaluation of QRS detectors aware of temporal accuracy and the presence of noise. Contrarily to most authors, satisfied with detection correctness as the sole quality indicator, we propose multidimensional criteria, including



	
accuracy (i.e., TP/TB),



	
precision of detection point location, i.e., TP/TB dependence on the DTT,



	
sensitivity to noise,



	
and sensitivity to QRS morphology.






To show the multidimensional method for QRS detectors’ evaluation of temporal accuracy, we compared three modern QRS detection algorithms and a well-known, commonly referenced Pan–Tompkins algorithm originating from the pioneer age of computerized electrocardiography.



The main scientific contribution of this work lies in testing QRS detectors in multiple dimensions, including various time tolerance values (DTT), which determines the detection statistics expressed by true positive, false positive, and false negative detection cases. Algorithms that demonstrate good accuracy with low values of DTT are the most precise algorithms. Output from such algorithms is immediately usable for subsequent ECG processing procedures such as HRV analysis or QRS morphology classification. Moreover, we observed that the accuracy of QRS detection depends on QRS morphology. Tests performed for various levels of added muscular noise revealed that there are significant differences between algorithms with respect to their noise robustness. High robustness amid noise (stable detection accuracy in noisy ECG recordings) is important in mobile and wearable applications in unstable conditions (e.g., in motion).
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Figure 1. Algorithm 1 block diagram based on [1]. 
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Figure 2. Algorithm 2 block diagram based on [2]. 
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Figure 3. Algorithm 3 block diagram based on [3]. Peak detector output signal DVi is a two-bit signal where values 00 or 11 indicate the local peak in the ECG signal; that is, the sample that is taken when the input signal crosses kl sampling levels in the opposite direction to the sample taken previously. Token is a one-bit signal indicating with “1” the moment of sampling, and Dti is an 11-bit word readout of the counter to register information about sample time (required in non-uniform sampling). 
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Figure 4. Algorithm 4 block diagram based on [4]. 
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Figure 5. The ECG (excerpt of record 121 from the MIT-BIH AD) and noise (excerpt of record MA (muscle artifact) from the MIT-BIH NSTD) before the mixing procedure. 
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Figure 6. The ECG (excerpt of record 121 from the MIT-BIH AD) with (a) no added noise, (b) added noise for SNR = 15 dB, (c) added noise for SNR = 7 dB, and (d) added noise for SNR = 3 dB. 
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Figure 7. Performance of Algorithm 1 in relation to QRS beat morphology (upper long horizontal axis), DTT values (in samples, bottom short horizontal axes), and added noise level (dot shape and color). 
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Figure 8. Performance of Algorithm 2 in relation to QRS beat morphology (upper long horizontal axis), DTT values (in samples, bottom short horizontal axes), and added noise level (dot shape and color). 
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Figure 9. Performance of Algorithm 3 in relation to QRS beat morphology (upper long horizontal axis), DTT values (in samples, bottom short horizontal axes), and added noise level (dot shape and color). 






Figure 9. Performance of Algorithm 3 in relation to QRS beat morphology (upper long horizontal axis), DTT values (in samples, bottom short horizontal axes), and added noise level (dot shape and color).



[image: Sensors 24 01698 g009]







[image: Sensors 24 01698 g010] 





Figure 10. Performance of Algorithm 4 in relation to QRS beat morphology (upper long horizontal axis), DTT values (in samples, bottom short horizontal axes), and added noise level (dot shape and color). 
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Table 1. QRS detectors’ accuracy is expressed as the true-positive-to-total-beats ratio for various DTT values. The mean value and the standard deviation of the true-positive-to-total-beats ratio are computed for all six considered QRS morphology types and all four levels of added noise. The best results are highlighted in bold.
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Algorithm

Detector

Temporal

Tolerance

[ms]

(Samples)

	
Algorithm 1

	
Algorithm 2

	
Algorithm 3

	
Algorithm 4




	
Mean

	
Std

	
Mean

	
Std

	
Mean

	
Std

	
Mean

	
Std






	
8.33 (3)

	
27.54

	
21.93

	
65.75

	
19.74

	
8.26

	
9.52

	
14.30

	
6.36




	
47.22 (17)

	
92.53

	
9.27

	
87.77

	
11.16

	
80.66

	
11.68

	
52.85

	
14.17




	
86.11 (31)

	
96.79

	
4.44

	
98.66

	
1.62

	
88.43

	
6.25

	
74.93

	
8.83




	
125.00 (45)

	
98.89

	
1.02

	
99.55

	
0.44

	
92.22

	
4.72

	
98.52

	
1.33




	
163.89 (59)

	
99.25

	
0.89

	
99.71

	
0.36

	
94.80

	
4.45

	
99.46

	
0.55











 





Table 2. QRS detectors’ accuracy is expressed as the true-positive-to-total-beats ratio for various heartbeat morphology types. The mean value and the standard deviation of the true-positive-to-total-beats ratio are computed for all five considered DTT values and all four levels of added noise. The best results are highlighted in bold.
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Algorithm

Beat Type

	
Algorithm 1

	
Algorithm 2

	
Algorithm 3

	
Algorithm 4




	
Mean

	
Std

	
Mean

	
Std

	
Mean

	
Std

	
Mean

	
Std






	
N

	
82.71

	
32.34

	
96.30

	
5.66

	
74.12

	
36.91

	
72.28

	
30.12




	
L

	
82.47

	
31.34

	
86.86

	
19.30

	
76.47

	
35.31

	
65.38

	
36.50




	
R

	
80.96

	
36.85

	
93.22

	
11.94

	
75.52

	
37.60

	
71.27

	
30.76




	
V

	
76.92

	
26.34

	
80.51

	
24.54

	
67.29

	
34.08

	
66.36

	
34.20




	
P

	
92.52

	
10.41

	
85.94

	
18.55

	
72.68

	
25.64

	
66.49

	
33.43




	
A

	
82.42

	
35.74

	
97.24

	
5.22

	
71.17

	
34.75

	
66.30

	
35.91











 





Table 3. QRS detectors’ accuracy is expressed as the true-positive-to-total-beats ratio for various added noise levels. The mean value and the standard deviation of the true-positive-to-total-beats ratio are computed for all six considered QRS morphology types and all five considered DTT values. The best results are highlighted in bold.
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Algorithm

Added Noise Level

	
Algorithm 1

	
Algorithm 2

	
Algorithm 3

	
Algorithm 4




	
Mean

	
Std

	
Mean

	
Std

	
Mean

	
Std

	
Mean

	
Std






	
No noise added

	
83.72

	
30.88

	
90.68

	
16.80

	
77.12

	
35.90

	
62.03

	
36.60




	
SNR 15 dB

	
83.38

	
30.48

	
90.34

	
16.78

	
72.16

	
33.62

	
69.27

	
32.71




	
SNR 7 dB

	
82.78

	
30.08

	
89.86

	
16.93

	
70.47

	
33.00

	
70.43

	
31.67




	
SNR 3 dB

	
82.12

	
29.71

	
89.18

	
17.20

	
71.74

	
33.50

	
70.32

	
31.60











 





Table 4. Results for Algorithm 1, N-type morphology beats and DTT = 3 (8.33 ms), from the MIT-BIH AD. Improvements in results are marked in bold. Records 107, 109, 111, 118, 124, 207, 214, and 232 are not shown, as there are no N-type morphology beats in those records.
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MIT-BIH Arrhythmia

Database, Normal—N-Type Beats

	
No Noise Added

	
SNR = 15 dB

	
SNR = 7 dB

	
SNR = 3 dB

	
SNR = 15 dB vs. No Noise Added

	
SNR = 7 dB vs. No Noise Added

	
SNR = 3 dB vs. No Noise Added






	
Record

	
TB

	
TP

	
TP

	
TP

	
TP

	

	

	




	
100

	
2239

	
1337

	
1176

	
1143

	
1123

	
−161

	
−194

	
−214




	
101

	
1860

	
1860

	
1853

	
1806

	
1766

	
−7

	
−54

	
−94




	
102

	
99

	
99

	
92

	
86

	
80

	
−7

	
−13

	
−19




	
103

	
2082

	
114

	
261

	
334

	
374

	
147

	
220

	
260




	
104

	
163

	
1

	
1

	
4

	
6

	
0

	
3

	
5




	
105

	
2526

	
2383

	
2305

	
2203

	
2128

	
−78

	
−180

	
−255




	
106

	
1507

	
47

	
122

	
158

	
182

	
75

	
111

	
135




	
108

	
1739

	
660

	
552

	
518

	
512

	
−108

	
−142

	
−148




	
112

	
2537

	
0

	
93

	
126

	
137

	
93

	
126

	
137




	
113

	
1789

	
0

	
29

	
117

	
148

	
29

	
117

	
148




	
114

	
1820

	
521

	
456

	
440

	
421

	
−65

	
−81

	
−100




	
115

	
1953

	
0

	
9

	
32

	
55

	
9

	
32

	
55




	
116

	
2302

	
1

	
51

	
139

	
178

	
50

	
138

	
177




	
117

	
1534

	
619

	
565

	
520

	
489

	
−54

	
−99

	
−130




	
119

	
1543

	
12

	
278

	
330

	
360

	
266

	
318

	
348




	
121

	
1861

	
1165

	
894

	
760

	
679

	
−271

	
−405

	
−486




	
122

	
2476

	
254

	
664

	
751

	
777

	
410

	
497

	
523




	
123

	
1515

	
3

	
77

	
59

	
79

	
74

	
56

	
76




	
200

	
1743

	
1

	
10

	
34

	
61

	
9

	
33

	
60




	
201

	
1625

	
16

	
66

	
100

	
137

	
50

	
84

	
121




	
202

	
2061

	
3

	
91

	
136

	
156

	
88

	
133

	
153




	
203

	
2529

	
280

	
320

	
360

	
371

	
40

	
80

	
91




	
205

	
2571

	
1394

	
1346

	
1290

	
1263

	
−48

	
−104

	
−131




	
208

	
1586

	
164

	
288

	
360

	
386

	
124

	
196

	
222




	
209

	
2621

	
1

	
1

	
4

	
10

	
0

	
3

	
9




	
210

	
2423

	
16

	
101

	
186

	
234

	
85

	
170

	
218




	
212

	
923

	
6

	
28

	
55

	
78

	
22

	
49

	
72




	
213

	
2641

	
8

	
33

	
101

	
149

	
25

	
93

	
141




	
215

	
3195

	
2

	
3

	
3

	
4

	
1

	
1

	
2




	
217

	
244

	
0

	
2

	
8

	
11

	
2

	
8

	
11




	
219

	
2082

	
8

	
111

	
210

	
250

	
103

	
202

	
242




	
220

	
1954

	
2

	
7

	
36

	
44

	
5

	
34

	
42




	
221

	
2031

	
0

	
12

	
39

	
80

	
12

	
39

	
80




	
222

	
2062

	
814

	
841

	
832

	
822

	
27

	
18

	
8




	
223

	
2029

	
0

	
9

	
40

	
77

	
9

	
40

	
77




	
228

	
1688

	
1204

	
1094

	
1015

	
972

	
−110

	
−189

	
−232




	
230

	
2255

	
0

	
0

	
2

	
3

	
0

	
2

	
3




	
231

	
314

	
265

	
219

	
226

	
229

	
−46

	
−39

	
−36




	
233

	
2230

	
191

	
346

	
431

	
470

	
155

	
240

	
279




	
234

	
2700

	
11

	
215

	
344

	
413

	
204

	
333

	
402




	
TOTAL

	
75,052

	
13,462

	
14,621

	
15,338

	
15,714

	
1159

	
1876

	
2252











 





Table 5. Results for Algorithm 1, N-type morphology beats and DTT = 17 (47.22 ms), from the MIT-BIH AD. Improvements in results are marked in bold. Records 107, 109, 111, 118, 124, 207, 214, and 232 are not shown, as there are no N-type morphology beats in those records.






Table 5. Results for Algorithm 1, N-type morphology beats and DTT = 17 (47.22 ms), from the MIT-BIH AD. Improvements in results are marked in bold. Records 107, 109, 111, 118, 124, 207, 214, and 232 are not shown, as there are no N-type morphology beats in those records.





	
MIT-BIH Arrhythmia

Database, Normal—N-Type Beats

	
No Noise Added

	
SNR = 15 dB

	
SNR = 7 dB

	
SNR = 3 dB

	
SNR = 15 dB vs. No Noise Added

	
SNR = 7 dB vs. No Noise Added

	
SNR = 3 dB vs. No Noise Added






	
Record

	
TB

	
TP

	
TP

	
TP

	
TP

	

	

	




	
100

	
2239

	
2238

	
2238

	
2232

	
2224

	
0

	
−6

	
−14




	
101

	
1860

	
1860

	
1856

	
1820

	
1797

	
−4

	
−40

	
−63




	
102

	
99

	
99

	
98

	
95

	
92

	
−1

	
−4

	
−7




	
103

	
2082

	
2082

	
2082

	
2081

	
2077

	
0

	
−1

	
−5




	
104

	
163

	
163

	
163

	
163

	
161

	
0

	
0

	
−2




	
105

	
2526

	
2508

	
2510

	
2502

	
2477

	
2

	
−6

	
−31




	
106

	
1507

	
1504

	
1467

	
1425

	
1398

	
−37

	
−79

	
−106




	
108

	
1739

	
1666

	
1527

	
1459

	
1459

	
−139

	
−207

	
−207




	
112

	
2537

	
2536

	
2487

	
2343

	
2220

	
−49

	
−193

	
−316




	
113

	
1789

	
1788

	
1779

	
1770

	
1752

	
−9

	
−18

	
−36




	
114

	
1820

	
1778

	
1721

	
1659

	
1606

	
−57

	
−119

	
−172




	
115

	
1953

	
1952

	
1952

	
1930

	
1920

	
0

	
−22

	
−32




	
116

	
2302

	
2284

	
2280

	
2262

	
2232

	
−4

	
−22

	
−52




	
117

	
1534

	
1534

	
1437

	
1360

	
1319

	
−97

	
−174

	
−215




	
119

	
1543

	
1543

	
1490

	
1454

	
1428

	
−53

	
−89

	
−115




	
121

	
1861

	
1860

	
1694

	
1532

	
1403

	
−166

	
−328

	
−457




	
122

	
2476

	
2476

	
2471

	
2434

	
2376

	
−5

	
−42

	
−100




	
123

	
1515

	
1515

	
1462

	
1447

	
1437

	
−53

	
−68

	
−78




	
200

	
1743

	
1740

	
1738

	
1730

	
1725

	
−2

	
−10

	
−15




	
201

	
1625

	
1610

	
1595

	
1588

	
1586

	
−15

	
−22

	
−24




	
202

	
2061

	
2061

	
2037

	
2028

	
2021

	
−24

	
−33

	
−40




	
203

	
2529

	
2471

	
2455

	
2409

	
2382

	
−16

	
−62

	
−89




	
205

	
2571

	
2570

	
2570

	
2568

	
2563

	
0

	
−2

	
−7




	
208

	
1586

	
1579

	
1576

	
1572

	
1565

	
−3

	
−7

	
−14




	
209

	
2621

	
2621

	
2621

	
2621

	
2621

	
0

	
0

	
0




	
210

	
2423

	
2421

	
2417

	
2415

	
2405

	
−4

	
−6

	
−16




	
212

	
923

	
922

	
922

	
922

	
922

	
0

	
0

	
0




	
213

	
2641

	
2640

	
2640

	
2637

	
2637

	
0

	
−3

	
−3




	
215

	
3195

	
3194

	
3194

	
3194

	
3194

	
0

	
0

	
0




	
217

	
244

	
244

	
244

	
243

	
239

	
0

	
−1

	
−5




	
219

	
2082

	
2082

	
2069

	
2039

	
2032

	
−13

	
−43

	
−50




	
220

	
1954

	
1954

	
1954

	
1951

	
1929

	
0

	
−3

	
−25




	
221

	
2031

	
2031

	
2028

	
2020

	
2011

	
−3

	
−11

	
−20




	
222

	
2062

	
2048

	
2022

	
1983

	
1962

	
−26

	
−65

	
−86




	
223

	
2029

	
2029

	
2027

	
2019

	
2005

	
−2

	
−10

	
−24




	
228

	
1688

	
1643

	
1557

	
1508

	
1481

	
−86

	
−135

	
−162




	
230

	
2255

	
2255

	
2255

	
2254

	
2253

	
0

	
−1

	
−2




	
231

	
314

	
289

	
255

	
260

	
264

	
−34

	
−29

	
−25




	
233

	
2230

	
2228

	
2229

	
2226

	
2217

	
1

	
−2

	
−11




	
234

	
2700

	
2697

	
2699

	
2699

	
2699

	
2

	
2

	
2




	
TOTAL

	
75,052

	
74,715

	
73,818

	
72,854

	
72,091

	
−897

	
−1861

	
−2624











 





Table 6. Results for Algorithm 2, N-type morphology beats and DTT = 3 (8.33 ms), from the MIT-BIH AD. Improvements in results are marked in bold. Records 107, 109, 111, 118, 124, 207, 214, and 232 are not shown, as there are no N-type beats in those records.






Table 6. Results for Algorithm 2, N-type morphology beats and DTT = 3 (8.33 ms), from the MIT-BIH AD. Improvements in results are marked in bold. Records 107, 109, 111, 118, 124, 207, 214, and 232 are not shown, as there are no N-type beats in those records.





	
MIT-BIH Arrhythmia

Database, Normal—N-Type Beats

	
No Noise Added

	
SNR = 15 dB

	
SNR = 7 d

	
SNR = 3 dB

	
SNR = 15 dB vs. No Noise Added

	
SNR = 7 dB vs. No Noise Added

	
SNR = 3 dB vs. No Noise Added






	
Record

	
TB

	
TP

	
TP

	
TP

	
TP

	

	

	




	
100

	
2239

	
2236

	
2235

	
2229

	
2198

	
−1

	
−7

	
−38




	
101

	
1860

	
1856

	
1855

	
1856

	
1849

	
−1

	
0

	
−7




	
102

	
99

	
92

	
84

	
75

	
67

	
−8

	
−17

	
−25




	
103

	
2082

	
2080

	
2080

	
2079

	
2077

	
0

	
−1

	
−3




	
104

	
163

	
163

	
163

	
161

	
158

	
0

	
−2

	
−5




	
105

	
2526

	
2465

	
2444

	
2362

	
2267

	
−21

	
−103

	
−198




	
106

	
1507

	
1489

	
1489

	
1478

	
1471

	
0

	
−11

	
−18




	
108

	
1739

	
705

	
652

	
641

	
644

	
−53

	
−64

	
−61




	
112

	
2537

	
1637

	
1458

	
1266

	
1150

	
−179

	
−371

	
−487




	
113

	
1789

	
1787

	
1788

	
1788

	
1788

	
1

	
1

	
1




	
114

	
1820

	
521

	
505

	
475

	
455

	
−16

	
−46

	
−66




	
115

	
1953

	
1948

	
1947

	
1934

	
1916

	
−1

	
−14

	
−32




	
116

	
2302

	
2268

	
2222

	
2128

	
2048

	
−46

	
−140

	
−220




	
117

	
1534

	
1002

	
852

	
753

	
710

	
−150

	
−249

	
−292




	
119

	
1543

	
1542

	
1530

	
1455

	
1398

	
−12

	
−87

	
−144




	
121

	
1861

	
1609

	
1151

	
1002

	
903

	
−458

	
−607

	
−706




	
122

	
2476

	
2475

	
2316

	
2130

	
2014

	
−159

	
−345

	
−461




	
123

	
1515

	
1513

	
1494

	
1431

	
1362

	
−19

	
−82

	
−151




	
200

	
1743

	
1623

	
1575

	
1509

	
1446

	
−48

	
−114

	
−177




	
201

	
1625

	
1622

	
1622

	
1603

	
1575

	
0

	
−19

	
−47




	
202

	
2061

	
2061

	
2058

	
2038

	
1991

	
−3

	
−23

	
−70




	
203

	
2529

	
1810

	
1618

	
1497

	
1390

	
−192

	
−313

	
−420




	
205

	
2571

	
2567

	
2567

	
2549

	
2518

	
0

	
−18

	
−49




	
208

	
1586

	
1569

	
1568

	
1557

	
1529

	
−1

	
−12

	
−40




	
209

	
2621

	
2616

	
2616

	
2604

	
2586

	
0

	
−12

	
−30




	
210

	
2423

	
2417

	
2408

	
2355

	
2292

	
−9

	
−62

	
−125




	
212

	
923

	
922

	
922

	
921

	
920

	
0

	
−1

	
−2




	
213

	
2641

	
2637

	
2637

	
2616

	
2575

	
0

	
−21

	
−62




	
215

	
3195

	
1997

	
1960

	
1915

	
1901

	
−37

	
−82

	
−96




	
217

	
244

	
238

	
231

	
223

	
216

	
−7

	
−15

	
−22




	
219

	
2082

	
2077

	
2069

	
1992

	
1936

	
−8

	
−85

	
−141




	
220

	
1954

	
1939

	
1884

	
1852

	
1799

	
−55

	
−87

	
−140




	
221

	
2031

	
2030

	
2031

	
2020

	
2000

	
1

	
−10

	
−30




	
222

	
2062

	
2049

	
2037

	
2012

	
1964

	
−12

	
−37

	
−85




	
223

	
2029

	
1910

	
1873

	
1785

	
1709

	
−37

	
−125

	
−201




	
228

	
1688

	
1675

	
1672

	
1616

	
1560

	
−3

	
−59

	
−115




	
230

	
2255

	
215

	
301

	
371

	
411

	
86

	
156

	
196




	
231

	
314

	
314

	
314

	
314

	
314

	
0

	
0

	
0




	
233

	
2230

	
2223

	
2210

	
2135

	
2083

	
−13

	
−88

	
−140




	
234

	
2700

	
2696

	
2697

	
2696

	
2684

	
1

	
0

	
−12




	
TOTAL

	
75,052

	
66,595

	
65,135

	
63,423

	
61,874

	
−1460

	
−3172

	
−4721











 





Table 7. Results for Algorithm 2, N-type morphology beats and DTT = 17 (47.22 ms), from the MIT-BIH AD. Records 107, 109, 111, 118, 124, 207, 214, and 232 are not shown, as there are no N-type beats in those records.






Table 7. Results for Algorithm 2, N-type morphology beats and DTT = 17 (47.22 ms), from the MIT-BIH AD. Records 107, 109, 111, 118, 124, 207, 214, and 232 are not shown, as there are no N-type beats in those records.





	
MIT-BIH Arrhythmia

Database, Normal—N-Type Beats

	
No Noise Added

	
SNR = 15 dB

	
SNR = 7 dB

	
SNR = 3 dB

	
SNR = 15 dB vs. No Noise Added

	
SNR = 7 dB vs. No Noise Added

	
SNR = 3 dB vs. No Noise Added






	
Record

	
TB

	
TP

	
TP

	
TP

	
TP

	

	

	




	
100

	
2239

	
2236

	
2235

	
2232

	
2214

	
−1

	
−4

	
−22




	
101

	
1860

	
1856

	
1855

	
1856

	
1852

	
−1

	
0

	
−4




	
102

	
99

	
95

	
92

	
90

	
82

	
−3

	
−5

	
−13




	
103

	
2082

	
2080

	
2080

	
2080

	
2079

	
0

	
0

	
−1




	
104

	
163

	
163

	
163

	
163

	
162

	
0

	
0

	
−1




	
105

	
2526

	
2484

	
2479

	
2427

	
2378

	
−5

	
−57

	
−106




	
106

	
1507

	
1490

	
1492

	
1486

	
1485

	
2

	
−4

	
−5




	
108

	
1739

	
1610

	
1574

	
1556

	
1547

	
−36

	
−54

	
−63




	
112

	
2537

	
2536

	
2432

	
2270

	
2177

	
−104

	
−266

	
−359




	
113

	
1789

	
1787

	
1788

	
1788

	
1788

	
1

	
1

	
1




	
114

	
1820

	
1817

	
1811

	
1769

	
1723

	
−6

	
−48

	
−94




	
115

	
1953

	
1950

	
1950

	
1948

	
1938

	
0

	
−2

	
−12




	
116

	
2302

	
2275

	
2268

	
2228

	
2195

	
−7

	
−47

	
−80




	
117

	
1534

	
1534

	
1446

	
1381

	
1328

	
−88

	
−153

	
−206




	
119

	
1543

	
1542

	
1533

	
1480

	
1434

	
−9

	
−62

	
−108




	
121

	
1861

	
1860

	
1682

	
1579

	
1485

	
−178

	
−281

	
−375




	
122

	
2476

	
2475

	
2424

	
2339

	
2289

	
−51

	
−136

	
−186




	
123

	
1515

	
1513

	
1513

	
1491

	
1462

	
0

	
−22

	
−51




	
200

	
1743

	
1741

	
1739

	
1729

	
1716

	
−2

	
−12

	
−25




	
201

	
1625

	
1623

	
1623

	
1615

	
1604

	
0

	
−8

	
−19




	
202

	
2061

	
2061

	
2061

	
2049

	
2027

	
0

	
−12

	
−34




	
203

	
2529

	
2449

	
2344

	
2262

	
2188

	
−105

	
−187

	
−261




	
205

	
2571

	
2567

	
2567

	
2552

	
2525

	
0

	
−15

	
−42




	
208

	
1586

	
1569

	
1568

	
1563

	
1548

	
−1

	
−6

	
−21




	
209

	
2621

	
2620

	
2619

	
2618

	
2617

	
−1

	
−2

	
−3




	
210

	
2423

	
2418

	
2415

	
2394

	
2365

	
−3

	
−24

	
−53




	
212

	
923

	
922

	
922

	
921

	
921

	
0

	
−1

	
−1




	
213

	
2641

	
2638

	
2639

	
2634

	
2608

	
1

	
−4

	
−30




	
215

	
3195

	
3194

	
3194

	
3191

	
3187

	
0

	
−3

	
−7




	
217

	
244

	
244

	
243

	
242

	
240

	
−1

	
−2

	
−4




	
219

	
2082

	
2079

	
2077

	
2044

	
2007

	
−2

	
−35

	
−72




	
220

	
1954

	
1953

	
1951

	
1948

	
1939

	
−2

	
−5

	
−14




	
221

	
2031

	
2030

	
2031

	
2027

	
2015

	
1

	
−3

	
−15




	
222

	
2062

	
2055

	
2044

	
2021

	
1983

	
−11

	
−34

	
−72




	
223

	
2029

	
2028

	
2024

	
1999

	
1967

	
−4

	
−29

	
−61




	
228

	
1688

	
1677

	
1677

	
1635

	
1605

	
0

	
−42

	
−72




	
230

	
2255

	
2252

	
2252

	
2252

	
2252

	
0

	
0

	
0




	
231

	
314

	
314

	
314

	
314

	
314

	
0

	
0

	
0




	
233

	
2230

	
2224

	
2224

	
2190

	
2162

	
0

	
−34

	
−62




	
234

	
2700

	
2696

	
2697

	
2698

	
2689

	
1

	
2

	
−7




	
TOTAL

	
75,052

	
74,657

	
74,042

	
73,061

	
72,097

	
−615

	
−1596

	
−2560











 





Table 8. Results for Algorithm 3, N-type morphology beats and DTT = 3 (8.33 ms), from the MIT-BIH AD. Improvements in results are marked in bold. Records 107, 109, 111, 118, 124, 207, 214, and 232 are not shown, as there are no N-type morphology beats in those records.






Table 8. Results for Algorithm 3, N-type morphology beats and DTT = 3 (8.33 ms), from the MIT-BIH AD. Improvements in results are marked in bold. Records 107, 109, 111, 118, 124, 207, 214, and 232 are not shown, as there are no N-type morphology beats in those records.





	
MIT-BIH Arrhythmia

Database, Normal—N-Type Beats

	
No Noise Added

	
SNR = 15 dB

	
SNR = 7 dB

	
SNR = 3 dB

	
SNR = 15 dB vs. No Noise Added

	
SNR = 7 dB vs. No Noise Added

	
SNR = 3 dB vs. No Noise Added






	
Record

	
TB

	
TP

	
TP

	
TP

	
TP

	

	

	




	
100

	
2239

	
202

	
197

	
168

	
156

	
−5

	
−34

	
−46




	
101

	
1860

	
16

	
32

	
32

	
36

	
16

	
16

	
20




	
102

	
99

	
0

	
0

	
1

	
1

	
0

	
1

	
1




	
103

	
2082

	
2

	
3

	
2

	
1

	
1

	
0

	
−1




	
104

	
163

	
8

	
9

	
12

	
8

	
1

	
4

	
0




	
105

	
2526

	
35

	
37

	
45

	
56

	
2

	
10

	
21




	
106

	
1507

	
0

	
1

	
0

	
2

	
1

	
0

	
2




	
108

	
1739

	
2

	
6

	
17

	
28

	
4

	
15

	
26




	
112

	
2537

	
58

	
165

	
208

	
239

	
107

	
150

	
181




	
113

	
1789

	
0

	
0

	
0

	
0

	
0

	
0

	
0




	
114

	
1820

	
244

	
224

	
228

	
211

	
−20

	
−16

	
−33




	
115

	
1953

	
0

	
0

	
0

	
1

	
0

	
0

	
1




	
116

	
2302

	
0

	
2

	
3

	
8

	
2

	
3

	
8




	
117

	
1534

	
679

	
530

	
490

	
488

	
−149

	
−189

	
−191




	
119

	
1543

	
0

	
0

	
1

	
1

	
0

	
1

	
1




	
121

	
1861

	
0

	
32

	
66

	
89

	
32

	
66

	
89




	
122

	
2476

	
0

	
1

	
7

	
11

	
1

	
7

	
11




	
123

	
1515

	
0

	
0

	
0

	
0

	
0

	
0

	
0




	
200

	
1743

	
0

	
0

	
0

	
10

	
0

	
0

	
10




	
201

	
1625

	
0

	
2

	
4

	
5

	
2

	
4

	
5




	
202

	
2061

	
0

	
1

	
3

	
2

	
1

	
3

	
2




	
203

	
2529

	
39

	
62

	
82

	
101

	
23

	
43

	
62




	
205

	
2571

	
29

	
37

	
42

	
47

	
8

	
13

	
18




	
208

	
1586

	
89

	
90

	
79

	
80

	
1

	
−10

	
−9




	
209

	
2621

	
2

	
1

	
5

	
7

	
−1

	
3

	
5




	
210

	
2423

	
0

	
7

	
12

	
15

	
7

	
12

	
15




	
212

	
923

	
0

	
0

	
1

	
1

	
0

	
1

	
1




	
213

	
2641

	
0

	
0

	
2

	
1

	
0

	
2

	
1




	
215

	
3195

	
1

	
4

	
12

	
17

	
3

	
11

	
16




	
217

	
244

	
0

	
0

	
0

	
1

	
0

	
0

	
1




	
219

	
2082

	
2

	
2

	
2

	
4

	
0

	
0

	
2




	
220

	
1954

	
0

	
1

	
1

	
1

	
1

	
1

	
1




	
221

	
2031

	
0

	
1

	
2

	
4

	
1

	
2

	
4




	
222

	
2062

	
630

	
662

	
607

	
587

	
32

	
−23

	
−43




	
223

	
2029

	
0

	
1

	
6

	
6

	
1

	
6

	
6




	
228

	
1688

	
6

	
20

	
27

	
32

	
14

	
21

	
26




	
230

	
2255

	
0

	
0

	
0

	
1

	
0

	
0

	
1




	
231

	
314

	
0

	
0

	
0

	
0

	
0

	
0

	
0




	
233

	
2230

	
0

	
0

	
2

	
2

	
0

	
2

	
2




	
234

	
2700

	
0

	
0

	
0

	
1

	
0

	
0

	
1




	
TOTAL

	
75,052

	
2044

	
2130

	
2169

	
2261

	
86

	
125

	
217











 





Table 9. Results for Algorithm 3, N-type morphology beats and DTT = 17 (47.22 ms), from the MIT-BIH AD. Improvements in results are marked in bold. Records 107, 109, 111, 118, 124, 207, 214, and 232 are not shown, as there are no N-type morphology beats in those records.
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MIT-BIH Arrhythmia

Database, Normal—N-TYPE beats

	
No Noise Added

	
SNR = 15 dB

	
SNR = 7 dB

	
SNR = 3 dB

	
SNR = 15 dB vs. No Noise Added

	
SNR = 7 dB vs. No Noise Added

	
SNR = 3 dB vs. No Noise Added






	
Record

	
TB

	
TP

	
TP

	
TP

	
TP

	

	

	




	
100

	
2239

	
2239

	
2104

	
1906

	
1829

	
−135

	
−333

	
−410




	
101

	
1860

	
1853

	
1697

	
1530

	
1452

	
−156

	
−323

	
−401




	
102

	
99

	
99

	
88

	
82

	
77

	
−11

	
−17

	
−22




	
103

	
2082

	
2082

	
1954

	
1759

	
1690

	
−128

	
−323

	
−392




	
104

	
163

	
159

	
156

	
146

	
138

	
−3

	
−13

	
−21




	
105

	
2526

	
2440

	
2166

	
1999

	
1987

	
−274

	
−441

	
−453




	
106

	
1507

	
1500

	
1331

	
1227

	
1202

	
−169

	
−273

	
−298




	
108

	
1739

	
1570

	
1256

	
1149

	
1160

	
−314

	
−421

	
−410




	
112

	
2537

	
2534

	
2101

	
2079

	
2014

	
−433

	
−455

	
−520




	
113

	
1789

	
1789

	
1684

	
1556

	
1539

	
−105

	
−233

	
−250




	
114

	
1820

	
1393

	
1432

	
1356

	
1277

	
39

	
−37

	
−116




	
115

	
1953

	
1953

	
1618

	
1535

	
1545

	
−335

	
−418

	
−408




	
116

	
2302

	
2277

	
1859

	
1884

	
1950

	
−418

	
−393

	
−327




	
117

	
1534

	
1532

	
1236

	
1208

	
1242

	
−296

	
−324

	
−290




	
119

	
1543

	
1543

	
1168

	
1194

	
1225

	
−375

	
−349

	
−318




	
121

	
1861

	
1857

	
1436

	
1375

	
1345

	
−421

	
−482

	
−512




	
122

	
2476

	
2474

	
1948

	
1991

	
2012

	
−526

	
−483

	
−462




	
123

	
1515

	
1515

	
1158

	
1147

	
1164

	
−357

	
−368

	
−351




	
200

	
1743

	
1711

	
0

	
0

	
1408

	
−1711

	
−1711

	
−303




	
201

	
1625

	
1621

	
1609

	
1497

	
1406

	
−12

	
−124

	
−215




	
202

	
2061

	
2058

	
1974

	
1799

	
1723

	
−84

	
−259

	
−335




	
203

	
2529

	
2453

	
2236

	
2078

	
2042

	
−217

	
−375

	
−411




	
205

	
2571

	
2567

	
2456

	
2239

	
2174

	
−111

	
−328

	
−393




	
208

	
1586

	
1559

	
1429

	
1325

	
1307

	
−130

	
−234

	
−252




	
209

	
2621

	
2607

	
2562

	
2389

	
2329

	
−45

	
−218

	
−278




	
210

	
2423

	
2393

	
2350

	
2164

	
2004

	
−43

	
−229

	
−389




	
212

	
923

	
916

	
862

	
799

	
746

	
−54

	
−117

	
−170




	
213

	
2641

	
2632

	
2346

	
2221

	
2208

	
−286

	
−411

	
−424




	
215

	
3195

	
3187

	
3156

	
3003

	
2916

	
−31

	
−184

	
−271




	
217

	
244

	
244

	
217

	
198

	
199

	
−27

	
−46

	
−45




	
219

	
2082

	
2082

	
1724

	
1671

	
1659

	
−358

	
−411

	
−423




	
220

	
1954

	
1953

	
1642

	
1534

	
1537

	
−311

	
−419

	
−416




	
221

	
2031

	
2027

	
1955

	
1754

	
1726

	
−72

	
−273

	
−301




	
222

	
2062

	
1665

	
1712

	
1613

	
1530

	
47

	
−52

	
−135




	
223

	
2029

	
2028

	
1740

	
1670

	
1619

	
−288

	
−358

	
−409




	
228

	
1688

	
1649

	
1540

	
1381

	
1336

	
−109

	
−268

	
−313




	
230

	
2255

	
2245

	
2089

	
1904

	
1831

	
−156

	
−341

	
−414




	
231

	
314

	
314

	
296

	
254

	
246

	
−18

	
−60

	
−68




	
233

	
2230

	
2228

	
1980

	
1836

	
1839

	
−248

	
−392

	
−389




	
234

	
2700

	
2699

	
2540

	
2346

	
2251

	
−159

	
−353

	
−448




	
TOTAL

	
75,052

	
73,647

	
64,807

	
60,798

	
60,884

	
−8840

	
−12,849

	
−12,763











 





Table 10. Results for Algorithm 4, N-type morphology beats and DTT = 3 (8.33 ms), from the MIT-BIH AD. Improvements in results are marked in bold. Records 107, 109, 111, 118, 124, 207, 214, and 232 are not shown, as there are no N-type morphology beats in those records.
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MIT-BIH Arrhythmia

Database, Normal—N-Type Beats

	
No Noise Added

	
SNR = 15 dB

	
SNR = 7 dB

	
SNR = 3 dB

	
SNR = 15 dB vs. No Noise Added

	
SNR = 7 dB vs. No Noise Added

	
SNR = 3 dB vs. No Noise Added






	
Record

	
TB

	
TP

	
TP

	
TP

	
TP

	

	

	




	
100

	
2239

	
376

	
522

	
608

	
616

	
146

	
232

	
240




	
101

	
1860

	
303

	
434

	
500

	
516

	
131

	
197

	
213




	
102

	
99

	
16

	
31

	
23

	
21

	
15

	
7

	
5




	
103

	
2082

	
197

	
301

	
411

	
448

	
104

	
214

	
251




	
104

	
163

	
18

	
23

	
29

	
29

	
5

	
11

	
11




	
105

	
2526

	
2178

	
2021

	
1778

	
1626

	
−157

	
−400

	
−552




	
106

	
1507

	
396

	
432

	
476

	
480

	
36

	
80

	
84




	
108

	
1739

	
96

	
209

	
232

	
223

	
113

	
136

	
127




	
112

	
2537

	
7

	
155

	
131

	
105

	
148

	
124

	
98




	
113

	
1789

	
199

	
289

	
370

	
415

	
90

	
171

	
216




	
114

	
1820

	
71

	
138

	
137

	
132

	
67

	
66

	
61




	
115

	
1953

	
4

	
84

	
157

	
196

	
80

	
153

	
192




	
116

	
2302

	
64

	
337

	
365

	
385

	
273

	
301

	
321




	
117

	
1534

	
142

	
308

	
313

	
292

	
166

	
171

	
150




	
119

	
1543

	
756

	
796

	
667

	
588

	
40

	
−89

	
−168




	
121

	
1861

	
663

	
467

	
153

	
87

	
−196

	
−510

	
−576




	
122

	
2476

	
2123

	
1734

	
1383

	
1141

	
−389

	
−740

	
−982




	
123

	
1515

	
7

	
74

	
147

	
153

	
67

	
140

	
146




	
200

	
1743

	
1

	
20

	
52

	
70

	
19

	
51

	
69




	
201

	
1625

	
27

	
117

	
185

	
228

	
90

	
158

	
201




	
202

	
2061

	
11

	
48

	
127

	
204

	
37

	
116

	
193




	
203

	
2529

	
114

	
210

	
221

	
227

	
96

	
107

	
113




	
205

	
2571

	
561

	
741

	
788

	
730

	
180

	
227

	
169




	
208

	
1586

	
314

	
440

	
441

	
408

	
126

	
127

	
94




	
209

	
2621

	
71

	
186

	
304

	
355

	
115

	
233

	
284




	
210

	
2423

	
54

	
329

	
400

	
464

	
275

	
346

	
410




	
212

	
923

	
514

	
511

	
499

	
490

	
−3

	
−15

	
−24




	
213

	
2641

	
772

	
1714

	
1635

	
1392

	
942

	
863

	
620




	
215

	
3195

	
3

	
24

	
90

	
129

	
21

	
87

	
126




	
217

	
244

	
0

	
14

	
19

	
22

	
14

	
19

	
22




	
219

	
2082

	
75

	
466

	
563

	
537

	
391

	
488

	
462




	
220

	
1954

	
7

	
74

	
161

	
196

	
67

	
154

	
189




	
221

	
2031

	
45

	
200

	
312

	
355

	
155

	
267

	
310




	
222

	
2062

	
543

	
607

	
600

	
593

	
64

	
57

	
50




	
223

	
2029

	
10

	
73

	
107

	
97

	
63

	
97

	
87




	
228

	
1688

	
336

	
543

	
504

	
504

	
207

	
168

	
168




	
230

	
2255

	
0

	
2

	
11

	
28

	
2

	
11

	
28




	
231

	
314

	
106

	
111

	
116

	
126

	
5

	
10

	
20




	
233

	
2230

	
14

	
209

	
321

	
337

	
195

	
307

	
323




	
234

	
2700

	
706

	
872

	
953

	
997

	
166

	
247

	
291




	
TOTAL

	
75,052

	
11,900

	
15,866

	
16,289

	
15,942

	
3966

	
4389

	
4042











 





Table 11. Results for Algorithm 4, N-type morphology beats and DTT = 17 (47.22 ms), from the MIT-BIH AD. Improvements in results are marked in bold. Records 107, 109, 111, 118, 124, 207, 214, and 232 are not shown, as there are no N-type morphology beats in those records.
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MIT-BIH Arrhythmia

Database, Normal—N-Type Beats

	
No Noise Added

	
SNR = 15 dB

	
SNR = 7 dB

	
SNR = 3 dB

	
SNR = 15 dB vs. No Noise Added

	
SNR = 7 dB vs. No Noise Added

	
SNR = 3 dB vs. No Noise Added






	
Record

	
TB

	
TP

	
TP

	
TP

	
TP

	

	

	




	
100

	
2239

	
1920

	
1889

	
1909

	
1851

	
−31

	
−11

	
−69




	
101

	
1860

	
1332

	
1359

	
1381

	
1361

	
27

	
49

	
29




	
102

	
99

	
20

	
45

	
37

	
36

	
25

	
17

	
16




	
103

	
2082

	
1339

	
1480

	
1554

	
1602

	
141

	
215

	
263




	
104

	
163

	
58

	
85

	
96

	
93

	
27

	
38

	
35




	
105

	
2526

	
2372

	
2281

	
2093

	
2001

	
−91

	
−279

	
−371




	
106

	
1507

	
1500

	
1473

	
1438

	
1399

	
−27

	
−62

	
−101




	
108

	
1739

	
457

	
891

	
929

	
933

	
434

	
472

	
476




	
112

	
2537

	
1117

	
1503

	
1545

	
1462

	
386

	
428

	
345




	
113

	
1789

	
645

	
958

	
1107

	
1185

	
313

	
462

	
540




	
114

	
1820

	
579

	
873

	
920

	
923

	
294

	
341

	
344




	
115

	
1953

	
393

	
768

	
956

	
1017

	
375

	
563

	
624




	
116

	
2302

	
1388

	
1745

	
1744

	
1721

	
357

	
356

	
333




	
117

	
1534

	
409

	
857

	
907

	
905

	
448

	
498

	
496




	
119

	
1543

	
1508

	
1408

	
1266

	
1211

	
−100

	
−242

	
−297




	
121

	
1861

	
1036

	
1123

	
979

	
873

	
87

	
−57

	
−163




	
122

	
2476

	
2459

	
2205

	
2038

	
1958

	
−254

	
−421

	
−501




	
123

	
1515

	
313

	
736

	
864

	
859

	
423

	
551

	
546




	
200

	
1743

	
678

	
952

	
1040

	
1074

	
274

	
362

	
396




	
201

	
1625

	
964

	
1131

	
1184

	
1183

	
167

	
220

	
219




	
202

	
2061

	
895

	
1216

	
1333

	
1353

	
321

	
438

	
458




	
203

	
2529

	
1277

	
1649

	
1668

	
1692

	
372

	
391

	
415




	
205

	
2571

	
2018

	
2159

	
2137

	
2087

	
141

	
119

	
69




	
208

	
1586

	
1127

	
1271

	
1267

	
1216

	
144

	
140

	
89




	
209

	
2621

	
957

	
1354

	
1582

	
1656

	
397

	
625

	
699




	
210

	
2423

	
1026

	
1515

	
1622

	
1649

	
489

	
596

	
623




	
212

	
923

	
856

	
842

	
848

	
829

	
−14

	
−8

	
−27




	
213

	
2641

	
1558

	
2161

	
2180

	
2083

	
603

	
622

	
525




	
215

	
3195

	
922

	
1300

	
1521

	
1651

	
378

	
599

	
729




	
217

	
244

	
55

	
135

	
145

	
149

	
80

	
90

	
94




	
219

	
2082

	
726

	
1442

	
1536

	
1503

	
716

	
810

	
777




	
220

	
1954

	
1106

	
1277

	
1351

	
1372

	
171

	
245

	
266




	
221

	
2031

	
739

	
1235

	
1379

	
1438

	
496

	
640

	
699




	
222

	
2062

	
1870

	
1840

	
1795

	
1754

	
−30

	
−75

	
−116




	
223

	
2029

	
1220

	
1368

	
1359

	
1350

	
148

	
139

	
130




	
228

	
1688

	
1375

	
1406

	
1285

	
1242

	
31

	
−90

	
−133




	
230

	
2255

	
722

	
813

	
928

	
1009

	
91

	
206

	
287




	
231

	
314

	
291

	
278

	
278

	
283

	
−13

	
−13

	
−8




	
233

	
2230

	
1190

	
1458

	
1504

	
1483

	
268

	
314

	
293




	
234

	
2700

	
1943

	
2209

	
2270

	
2254

	
266

	
327

	
311




	
TOTAL

	
75,052

	
42,360

	
50,690

	
51,975

	
51,700

	
8330

	
9615

	
9340

















	
	
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.











© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).








Check ACS Ref Order





Check Foot Note Order





Check CrossRef













media/file4.png
] n]
) 1 ’ AN Y
» z/n| - ~ Z zin — 1 > Y1 [n]| >
long T4,
zn
n] High pass Tilter Recfificafion R peak location
EQG
Gl o e | il » ufn]
samples > a:_n] - m Zl :r:[n - 1} >» ,ul.n]l >
High pass filter Reclificafion
Decision block:

State 1 - Identification of a QRS search window using u/n] signal
State 2 - QRS detection by maximum value search of signal y/n]
State 3 - Waiting state





media/file18.png
TP/TB in %

Alg-2

® Alg-2 no added noise
1201 ® Alg-2 added noise SNR 15dB |
® Alg-2 added noise SNR 7dB
® Alg-2 added noise SNR 3dB
N L R \' P A
100+ g & ¢ @ o o '.oo ... $ & © g8 & o o
: :
80 s
®
' E
60
(1]
]
40
(]
201
0 8 17 31 45 59 317 31 45 59 B8 17 31 45 59 317 31 45 59 3 17 31 45 59 317 31 45 59

Detector Time Tolerance DTT in samples (1 sample=2.7778 ms)





media/file21.jpg
TPITBin %

20

100

Aga
" L ® v " Ty

0o [ v v X ..

31731455 817314559 317 314559 317314559 31731 4559 817 31 45 59

Detector Time Tolerance DT in samples (1 sample=2.7778 ms)





media/file13.png
ECG Amplitude [arb. unit]

ECG MIT-BIH Arrhythmia Database 05 ECG MIT-BIH Arrhythmia Database
— record 121 no added noise record 121 with added

noise for SNR 15 dB

0.0
2
>
o)

. J E‘_O-S
w
©
2

| A i,
<
O
O
w

-1.5¢

ok . , | =0 . . .
0 200 400 600 800 1000 0 200 . 400 600 800 10
Time [sample number] Time [sample number]

(a) (b)






media/file12.jpg
€6 Amliude rb. unt)

ECG M-8 Arthythmia Database

— e

Time [sampie romber]

(©

Prs——

o5

H

&

5

20,

ECG M6 Arnytha Database

EEET T

w
Time Sampe nmoer)

@

o





media/file3.jpg
el

)

1200 s v s s
i3 G ot s e

v





media/file22.png
TP/TB in %

120

100-

80

60

40

20

Alg-4

Alg-4 no added noise

Alg-4 added noise SNR 15dB
Alg-4 added noise SNR 7dB
Alg-4 added noise SNR 3dB

N L R Vv P A
e e
¢ * g ° s ® g ® ¢

oace00

0 W ¢ o
0
8 o .

L o
3 17 31 45 59 % 17 31 45 59 3 17 31 45 59 3 17 31 45 59 317314559;17314559

Detector Time Tolerance DTT in samples (1 sample=2.7778 ms)






media/file19.jpg
100

Ag:3

N . " v ’ A
HEFELL L '
: . e g
: CIEOR H
.t
H
.
€ 17314559 317 314559 817 31 4559 817314559 317 31 4559 17 N a5 59

Detector Time Tolerance DTT in samples (1 sample=2.7778 ms)





media/file7.jpg
HIS

Enn )






media/file23.png





media/file10.png
1.0 ECG MIT-BIH Database

—— MIT-BIH Arrhytmia Database record 121
——— MIT-BIH Noise Stress Database record "'muscle artifact’

0.5

:‘é
s |
:
.E. 0.0
Q
©
o
€05
<
o L’_‘
o
(W N

~1.0

—1.55 250 500 750 1000 1250 1500 1750 2000

Time [sample number]





media/file14.png
0.5

0.0

|
=
wn

I
.
o

ECG Amplitude [arb. unit]

|
=
u

ECG MIT-BIH Arrhythmia Database

record 121 with added
noise for SNR 7 dB

_2.00

200 400 600 800 1000
Time [sample number]

(c)

0.5

0.0

|
o
(9}

ECG Amplitude [arb. unit]
L8
o

|
=
W

-2.0

ECG MIT-BIH Arrhythmia Database

record 121 with added
noise for SNR 3dB

0

200 400 600 800 1000
Time [sample number]

(d)





media/file11.jpg
o5, ECG MIT-84 Arhythmia Database i ECG T4 Arhythmia Dtabase

— racord 121 0 ot s rocors 121wt sasea
RS
29— W10 2% w0 we wo
e ranpie e Time o amberl

(a) (b)





media/file6.png
ECG
analog
signal

EE—

Level
Crossing
Analog
Digital
Converter
with
Assymetrical
Hysteresis

ECG
non uniform
digital
samples

LC-ADC

.| Non uniform sample

processor

1. Signal change
direction - DV

2. Token

3. Time Data - Dt;

»

Peak detector

Time thresholding

R peak location

Beat detector

Y





media/file15.jpg
20

g1

Detector Time Tolerance DT in samples (1 sample=2.7778 ms)





nav.xhtml


  sensors-24-01698


  
    		
      sensors-24-01698
    


  




  





media/file16.png
TP/TB in %

100

80

60

40

20

Alg-1

® Alg-1 no added noise
® Al