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Abstract: Smoke detectors face the challenges of increasing accuracy, sensitivity, and high reliability
in complex use environments to ensure the timeliness, accuracy, and reliability of very early fire
detection. The improvement in and innovation of the principle and algorithm of smoke particle
concentration detection provide an opportunity for the performance improvement in the detector.
This study is a new refinement of the smoke concentration detection principle based on capacitive
detection of cell structures, and detection signals are processed by a multiscale smoke particle
concentration detection algorithm to calculate particle concentration. Through experiments, it is
found that the detector provides effective detection of smoke particle concentrations ranging from
0 to 10% obs/m; moreover, the detector can detect smoke particles at parts per million (PPM)
concentration levels (at 2 and 5 PPM), and the accuracy of the detector can reach at least the 0.5 PPM
level. Furthermore, the detector can detect smoke particle concentrations at better than 1 PPM
accuracy even in an environment with 6% obs/m oil gas particles, 7% obs/m large dust interference
particles, or 8% obs/m small dust interference particles.

Keywords: extreme early fire detection; smoke concentration detection; capacitive detection; multi-
scale signal processing

1. Introduction

Very low concentrations of smoke particles can be effectively detected during very
early fire detection. This approach can effectively warn of, and thus prevent, the further
development of fires and minimize losses of all kinds. Unfortunately, there are more than
100,000 cases of no alarm generation or alarm failure [1], and more than 200,000 false
alarms were responded to by fire departments, with these statistics being from the China
Emergency Management Department in 2023 [2]. These factors result in unnecessary losses,
waste of firefighting resources, and declining public confidence. The fast and accurate
detection of smoke particles from fast-spreading fires is critical for avoiding losses and
saving lives.

Smoke concentration detection technology confronts the challenges of interfering
particles in complex environments, false alarm resistance, and adaptation. Conventional
point smoke detectors cannot cope with harsh and intrusive environments [3]. Photoelectric
smoke detectors are not in a position to distinguish between particle signals of different
sizes, but the detector response speed increases when the emitting light source is a green
LED [4]. Very low-concentration smoke particles released from very early fires can be
effectively recognized by a photoelectric aspirating smoke detector, and this type of detector
has achieved successful commercial application [5]. However, this approach can only
partially eliminate the effect of other interfering particles through the filter and cannot
distinguish the particle type. These factors significantly limit the applicability of the
detector. The impact of the airflow direction on the mounting angle of the detector needs to
be considered when designing the layout style of the pipeline [6]; the air sample pipeline
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needs to be complexly modeled in 3D to verify the reasonableness of the pipeline layout [7];
and the trajectories of smoke particles need to be identified by using computational fluid
dynamics [8]. The false alarm resistance of a detector can be improved by adding a
combustible gas detection module for alarm calibration [9]. However, this approach
also influences the sensitivity of the detector to a certain extent. A capacitive bending
smoke sensor can increase its sensitivity by increasing the component contract area. A
capacitive smoke sensor based on MEMS technology can detect smoke generated by
hydrogen-containing substances during the smoldering stage. However, it is not sensitive
to carbon-containing substances and still cannot distinguish the type of smoke particle [10].
Smoke particles can be detected in vacuum environments by utilizing finely machined
capacitive sensors, but they still cannot distinguish between particle types [11]. The use of
series capacitors can increase the sensitivity of the sensor to smoke particles. However, it is
not possible to realize the detection of smoke particles at the PPM level or to distinguish the
type of smoke particle [12]. While very low concentrations of smoke particles generated by
very early fires are effectively detected, the effective identification of particle types is still a
problem. Moreover, the false alarm rate of the detector tends to increase, and its reliability
will be greatly affected in complex environments where oil gas particles and dust particles
of different sizes are present.

In this study, a structure for analyzing and detecting smoke particles based on capac-
itive detection element cells is designed, which uses particles of different sizes to form
mixed signals with different amplitudes and frequencies when they pass through the de-
tection structure. A multiscale algorithm is used to detect smoke particle concentrations
by sequentially analyzing mixed signals via time-frequency domain analysis, extracting
smoke particle signals, sensitizing smoke signals, and calculating smoke concentrations.
On the one hand, the detector will have higher detection accuracy and sensitivity because
smoke particles are identified by the newly designed capacitive detection cell. On the other
hand, the detector can differentiate signal characteristics effectively between dissimilar
particles through the newly designed particle detection structure and algorithm so that
the reliability of the detector increases in complex environments. The sensitivity, accuracy,
and reliability of the proposed method were verified through a limit concentration detec-
tion experiment, smoke concentration detection experiment, and anti-interference ability
experiment, respectively.

2. Capacitive Smoke Particle Detection Principle and Design
2.1. Capacitive Particle-Analyzing Detector Structure

As shown in Figure 1, the capacitive particle analysis structure mainly consists of
a pair of capacitive particle detection plates, a gas sample sampling path, a motive air
path, and a signal processing circuit. Capacitive particle detection plates consist of a fixed
capacitive plate and a flexible capacitive plate for detecting the particle type. The gas
sample sampling path consists of inlet/outlet fans, inlet/outlet gas lines, and a particle
detection chamber to sample the air samples. The power gas path consists of filters, a
blower, and a variable diameter jet exhaust to provide the kinetic energy for the sampled
air to collide with the flexible capacitive plate.

In addition, the variable diameter jet will blow on the whole detection chamber by
changing the shape of its nozzle according to a pre-set program, and will remove all kinds
of particles from the detection chamber with the help of airflow formed by the inlet and
outlet fan after sending out an alarm signal from the detector.

The power consumption of the detector is 3.6 W, and the noise produced is 35 dB. It is
mainly used in the powerhouse of ships but is also suitable for distributed applications in
apartments or small buildings.
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Figure 1. Capacitive particle analysis structure schematic.

2.2. Particle Detection Principle

As seen in Figure 2a, smoke particles and interference particles are simultaneously
inhaled into the particle detection chamber by the inlet fan. The air inhaled by the blower
will be purified into clean power gas after going through two layers of coarse and fine
filters. Inhaled smoke particles and interference particles are blown by such gas to the
flexible capacitive plate and collide with it. Let us assume that vertical deformations of
AL; and AL; are formed by a collision between interference particles and smoke particles
on the flexible capacitive plate, respectively. Then, the capacitance on the capacitance cell
changes as follows:

CALz — d—AL,

Car, = 758
{ 1 dg.AALl (1)

where Cap, and Cpy, are the capacitance variations generated on the impinged capacitance
cell by interference particles and smoke particles, respectively; d is the distance between
the fixed capacitive plate and the flexible capacitive plate before the collision; ¢ is the
permittivity of the capacitor; and A is the relative projected area of the two capacitive
plates. Since the force of the blower does not change during the detection process, and the
deformation of the flexible capacitor pole by the blower only occurs when the detector is
turned on and the deformation is fixed, the capacitance variation of the capacitor will not
be changed by the force of the blower during the detection process.

A fixed DC voltage U is applied between the fixed capacitive plate and the flexible
capacitive plate. A precision sampling resistor is connected in series between two signal
stackers of the fixed capacitive plate and flexible capacitive plate, and the signal stacker
is used to collect the electrical signal produced by capacitive cells. Induced currents flow
through the sampling resistor, and a voltage is produced when the change in capacitance is
caused by particle impacts on the flexible plate. The fixed DC voltage U is 5V, the relative
projected area of the two capacitive plates A is 25 x 15 cm?, and the distance d is 5.6 mm.
As shown in Figure 2b, the precision resistor 2R20 (in Figure 2b) is a 1000 M() resistor.
Precision resistors only mean the precision of the resistance value, which here is 0.01%. The
signal stackers are the operational amplifiers 2U1 and 2U2 in Figure 2b and are used to
sample the voltage across the precision resistor 2R20.



Sensors 2024, 24, 1692

4 0f 20

Inlet fan

Flexible capacitive plate O Interference particle instantiation
. . . . @ Smoke particle instantiation
Capacitive particle detection cell matrix o] F
Alr flow |
- Blower.
Interference particle|impact point.
Fixed capacitive plate=—<] @
Smoke particle |impact point (E\#i
.\r—-‘\\‘,;,
Signal stacker__|
Variable diameter jot
Outlet gas line
Signal transmission line 28
o]
Outlet fan
2t osmovee
2my20 o7 ez =
ey
fios ioe ol -l
Nk
T
= = [V | ReT
257
e Lamgpe |, . 2us c1s
5 7| *S3] inates
[ ] *‘ oveer \W/ IC
e 5 =
w3 ™ 2 vazt
2
Sl l
oD i
20 s = o2
o 2Rs. K fios =
bes -
L s [ F o =
ks | o == —003DVEC
| s
olcer T
R0
« ? R ez
Lefoop Us c20
s gy —H [ o =
2=y ~ =

== 2o
04

Iz

on-505

(b) Signal processing circuit.
Figure 2. Particle detection schematic and signal processing circuit.

2.3. Capacitor Detection Cell Design

Owing to the blower, the capacitive cell’s vertical orientation detection capability is
applicable only since particles collide with the flexible plate in that orientation, and the
cutting orientation detection capability of the capacitive cell does not have to be considered.

The perpendicular orientation of the capacitive cell is designed based on the dense
grid medium, as shown in Figure 3a. It mainly consists of a cell strain detection pole, a
cell dielectric layer, and the fixed-cell plate, and the cell strain detection pole consists of
several microdetection units connected by a bus line. Eventually, the electrical signal from
the microdetection units is collected and converted by the cell signal conversion circuit.
The cell dielectric layer is composed of a frothy silicon-lipid mixture. The fixed-cell plate
design is built on rigid structures that prevent cutting orientation movement from affecting

cell detection accuracy.
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Figure 3. Capacitive detection cell.

As seen in Figure 3b, the smoke particles collide with the vertically oriented strain-
inducing pole of the capacitive cell under the action of the blower. Under the effect of
the collision force F,, the dense grid medium will be compressed, which will change the
distance between the fixed plate and the strain-inducing pole, thus changing the capacitance
value of the capacitor. The detection of smoke particles is obtained by detecting the change
in electrical signals caused by changes in capacitance. The capacitive detector cell is
designed with a micro-nano structure, making it sensitive enough to detect smoke particles
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at PPM-level concentrations. The size of the capacitive detection cell is 45 pm. The material
of the detection cell is carbon fiber.

Assuming that the invariant of the cell microdetection unit is AL after collision with
particles, it can be expressed as follows [13]:

_ Fd
paEAs

(2)

where p4 is the filling rate of the cell dielectric layer, E is the elastic recovery of the cell
dielectric layer, and Ag is the area of the cell dielectric layer.
F, can be expressed as follows [14]:

Fy = 6iFfanRi @3)

where J; is the inertia coefficient of particle type i, R; is the diameter of particle type i, and
Ffay is the driving force of the blower to the particles. Furthermore, capacitance variations
can be obtained after the cell microdetection unit collides with particles, as shown in
Equation (4), and the sensitivity can be expressed by Equation (5).

eA; eA;
Crr. = L — ! 4
AL; d — AL, d _ 5iFfunRid ( )
paEAg
aCALi SAipAEAs

= (5)

) 2
MR g (PAEAS - 5iFfanRid)

where A; is the sensing electrode area of the microdetection unit and AL; is the invariant of
the cell microdetection unit after collision with particles. Because F, has a much smaller
impact than p4EAs, the impact F, can be ignored. At this point, the sensitivity can be
expressed as follows:

E)CALI. SAZ'

dR;  dpaEA, (6)

A mixture of flexible body and gas gaps form between the cell strain detection pole
and the fixed cell plate. Equation (6) shows that the filling rate of the mixture on the
cell dielectric layer should be reduced to improve the sensitivity. The minimum particle
diameter that can be detected by the detector is 0.5 um, its mass is 0.16 ug, and the detector’s
sensitivity is 5.14 pf/pm.

3. Signal Output Model and Algorithm Model
3.1. Model of the Output Signal from the Particle Analysis Structure

The capacitance changes when the flexible capacitive plate collides with particles.
Because a fixed DC voltage is applied between two plates, an alternating current will
produce a change in capacitance, the amplitude of which is the superposition of all weak
AC signals caused by collisions between particles (including smoke particles and interfering
particles) and capacitive cells, and the signal will be output by the signal stacker between
two plates [15].

. dCSle

: dCar, n dCar, N dCar,

Toum = U dt FTRRRRT

] )

=U-|

where Iy, is the total alternating current signal synthesized by the signal stacker and Csy,,
is the superposition of changes in the capacitance of the capacitor. The AC voltage signal is
obtained on the precision resistor in series between two signal stacks [16].

Usum = Lsum * Rsamp 8)
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where Rsgmp is the electrical resistance of the precision sampling resistor and Uy, is the AC
voltage applied to the precision sampling resistor. A superposition of sinusoidal voltages
with different frequencies and amplitudes will be formed after filtering and amplification
by the signal processing circuit (as illustrated in Figure 1) [17].

U(t) = Z ARi - sin [wRi -t QD] ©9)
Ri:RSrRNl /RNZH'

where R; is the diameter of different particles, R; is the diameter of smoke particles to be
detected, Ry,, Ry, etc. are the diameters of interfering particles, wg; is the frequency of
the signal produced by particles with a diameter R;, Ag, is the amplitude of the signal
produced by particles with a diameter R;, ¢ is the offset angle of the signal, and £ is the time.

3.2. Smoke Concentration Detection Algorithm
3.2.1. Overall Design of the Multiscale Smoke Particle Concentration Detection Algorithm

The signal output of the detector is formed in part by the superposition of signals
generated by particles at different times. The weak signal needs to be amplified with the
signal enhancement technique because the size of the smoke particles is insignificant, as
shown in Figure 4. These drawbacks stop the use of a single method for signal processing
from meeting the demand for smoke concentration detection. The multiscale smoke
concentration detection algorithm is a combinatorial algorithm of a continuous wavelet
transform, a smooth wavelet transform, the sensitization of smoke signals, and single-
frequency point concentration calculations. Therefore, the multiscale smoke concentration
detection algorithm—a combination of multiple signal analysis methods—will be used for
this detection, and its main steps can be divided as follows:

(a) First, the time position of the smoke particle signal in the detector output signal is
determined.

(b) After that, the smoke particle signal needs to be extracted.

(c) Subsequently, the signal after extraction is sensitized and amplified.

(d) Finally, the smoke concentration is calculated via single-frequency analysis.
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Figure 4. A flowchart of the multiscale smoke particle concentration detection algorithm.
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3.2.2. Time-Frequency Analysis of Signals

First, a time-spectrum analysis of the detector output signal is performed by using a
continuous wavelet transform along the time axis, and the moment at which the smoke
particle signal appears is determined. The continuous wavelet transform of the continuous
signal f(t) can be expressed as follows [16]:

WIy(a,0) = (0, pun(0) = [ s (57 ) 10

where 4 is the scale parameter of the wavelet function, b is the translation parameter of the
wavelet function, 1, ,(f) is the wavelet basis function for parameters a and b, 1*(t) is the
conjugate function of the wavelet basis function, and f(t) is the source signal function.

The relationship between the wavelet decomposition scale and signal frequency after
transformation can be expressed as follows [18]:

fu=1: ey

a
where f, is the actual signal frequency after decomposition, f is the center frequency of
the wavelet basis function, and f; is the sampling frequency of the signal. According to
the sampling theorem, the value ranges of the scale parameter are satisfied a € [2f;, o]
so that the value ranges of the frequency of the wavelet basis function can be satisfied

fe €10, fs/2].

3.2.3. Smoke Particle Signal Separation

In addition, the smoke particle signal is extracted from the detector output signal by a
stationary wavelet transform.

In the stationary wavelet transform, the scale parameter a needs to be discretized, and
the translation parameter b must remain constant so that the signal after the transform
has the same length as the original signal f(¢). The stationary wavelet transform can be
obtained through discrete sampling of the scale parameter a within the binary sequence
{2/} (where j € Z) [19].

SWTGb) = (O ual0) = = [ fow (57 Jiez a2

Equation (12) shows that only the scale parameter a is discretized by the stationary
wavelet transform, and the translation parameter b remains constant. In this way, the
wavelet coefficients are all retained, and the length of the wavelet coefficients remains
constant after each transform.

There are two ways of upsampling and downsampling at the same time so that
the lengths of the signal between the original signal and the high- and low-frequency
coefficients after the transform remain constant when the original signal is disintegrated
by the stationary wavelet transform. This sampling mode is achieved by interpolating 2/
zeros between the two coefficients of the high-pass and low-pass filters; the high-pass and
low-pass filter coefficients are stripped in this way. The high-pass and low-pass filters in
the transformation can be expressed as follows [20]:

‘ ‘
_ g(—v), k=2m
k) = 2 13
s(k) { 0, others 13)
¢ L
h(k) = h<ﬁ)' k= 2m (14)
0, others

where j,k,m € Z, g(k) and h(k) denote the unit response functions of the high-pass and
low-pass filters, respectively.
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Furthermore, the decomposition based on the Mallat algorithm can be obtained as
follows [21]:

Sj+1(n)

diy1(n)

M
— ¥ S(k)g" (k- 2n)

U j=01,] (15)
= ¥ dj(k)h*(k —2n)

k=1
where j is the decomposition depth of the Mallat algorithm, | is the number of decompo-
sitions of the signal, 7 is the degree of decomposition of the signal, k is the order number
of the decomposed sequence, M is the sampling point upper limit of the decomposed
sequence, and S;(k) and d;(k) denote the coefficients of the high-pass and low-pass filters,
respectively, at the jth signal decomposition.

The detector output signal, which includes the smoke particle signal period, is decom-
posed by the stationary wavelet transform based on the Mallat algorithm. Let us assume
that the eigenfrequency of the awaiting detection smoke particle signal is wg, and that the
eigenfrequency of the interfering particle signal is wg;. The signal that contains only smoke
particles can be acquired after the i step of stationary wavelet decomposition.

In Figure 5, 2-s2-step decomposition is shown as an example. First, the original signal
f(t) is decomposed by high-pass and low-pass filters with coefficients SRy, and hg,,,
respectively, and the signal S filters the interference caused by interference particles of size
Ry, and the interference signal d Ry, generated by particles of this size. Subsequently, the
signal S is decomposed again by another high-pass and low-pass filter with coefficients
§Rrs and hg,, respectively, and the signal Sg, contains only the signal generated by smoke
particles and the signal d Ry, generated by interference particles of size Ry, .

RNI

Figure 5. Signal decomposition diagram of the detector output signal obtained by the stationary

wavelet transform.

The relationship between the coefficients SRy, and h Ry, of high-pass and low-pass
filters in the first decomposition layer and the eigenfrequency WRy, of the interference
signal caused by particles with size Ry, can be expressed as follows [22]:

kn
gRNl = IBRNI wRng<2jNi> (16)
I = Bro wro b N (17)
Ry = ﬁRNl Ry 2Ny

kny kn . . .
where g (217) and h <2]Tll) are the unit response functions of the high-pass and low-pass
filter decomposition depths, respectively, and N; and g N, are the correction coefficients

for the eigenfrequency w Ry, °



Sensors 2024, 24, 1692 10 of 20

Similarly, the relationship among the coefficients ¢r, and hg, of the high-pass and
low-pass filters in the second decomposition layer and the eigenfrequency wg, of the smoke
signal caused by particles of size R, can be expressed as follows [23]:

kg

S§Rs = PRsWRsE s (18)
kg

hrg = Brgwrsh szs 19)

k k
where g <2]f]55> and h <2]ZSS> are the unit response functions of the high-pass and low-

pass filter decomposition depths, and Ng and B, are the correction coefficients for the
eigenfrequency wg,.

3.2.4. Signal Sensitization and Smoke Concentration Calculation

A programmable circuit, as shown in Figure 6, is included in the signal processing
circuit in Figure 1. The circuit comprises two operational amplifiers (op. amps.), U28A and
U29A, and a digital potentiometer U25. The very low-amplitude raw output at the sensitive
element is amplified through a two-stage amplifier circuit comprising U28A and U29A.
The gain of the output signal can be adapted by changing the tap position of the digital
potentiometer U25. Finally, the processed analog signal is sent to an analog-to-digital
converter (ADC).

Sks = SR x Gain (20)

where Sp _ is the sensitized smoke particle concentration signal and Gain is the signal
magnification.

The fast Fourier transform (FFT) algorithm was utilized to calculate the modulus of a
single frequency point after separation and sensitization. Near the characteristic frequency
w of the smoke particle signal, the characteristic frequency modulus Mg can be obtained.

Finally, the smoke concentration can be calculated by bringing the modulus Mg, into
the smoke concentration characterization line as follows [24]:

Colrg = YRy X MRg + PR (21)

where Colg, is the calculated smoke concentration, g, is the slope of the smoke concentra-
tion characteristic line, and pg, is the constant of the smoke concentration characteristic line.
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Figure 6. Cont.
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Figure 6. Circuit schematic and typical output signal.

4. Experimental
4.1. Introduction of the Experimental Device

A smoke concentration experimental device was used to test the performance of this
detector, as shown in Figure 7. The experiment box is the chamber that holds the detector
used in the experiment. The experimental equipment is produced by Beijing Yuanhengliye
Corporation (Beijing, China), and its model number is SMK-2000. This experimental device
is composed of a smoke particle generator, an interference generator, a concentration de-
tection device, an experiment box, etc. The smoke particle generator generates simulated
smoke particles at different concentrations during a fire. An interference generator gener-
ates oil gas or dust particles of different sizes and concentrations in different environments.
The flue mixture of the above particles was generated, and uniform particles were mixed
into the experimental box when the concentration detected by the concentration detection
device reached the set conditions. The concentration accuracy of various particles generated
by this device (as shown in Figure 7a) is 0.0001 PPM. Particle concentration was measured
by an optical densitometer (as shown in Figure 7c). Dust particles are made up of quicklime,
while oil gas particles are composed of gasified diesel oil.
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(b) Smoke generator.

(c) Concentration detector device.

Figure 7. Cont.
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Figure 7. Experimental equipment and part details.

4.2. Limit of the Concentration Detection Experiment

The smoke particles were separated at concentrations of 2.0 ppm and 5.0 ppm by this
device, after which these particles were used to conduct a concentration limit detection
experiment on the detector. The time domain signal of the smoke particle output from the
detector is shown in Figure 8, and its spectrum is given in Figure 9. The eigenfrequency
wg, of the smoke particles can be found to be 210 Hz.
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Figure 8. Time domain signal for limit of concentration detection.
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Figure 9. Limit concentration detection spectrum.

The exact calculations are shown in Table 1, and the deviations are expressed on a
parts-per-million (PPM) scale. The deviation is the difference between the concentration
(the value shown on the concentration meter on the test set) produced by the device (shown
in Figure 7) and the actual concentration (the concentration is calculated by inputting the
modulus calculated by the detector at the smoke particle characteristic frequency point wg,
into Equation (20)) measured by the detector.

Table 1. Smoke limit concentration experiment results.

Smoke Concentration Modulus Detection Concentration Deviation
(PPM) (Dimensionless) (PPM) (PPM)
2 PPM 0.000150994058 2.3 PPM 0.2 PPM
5 PPM 0.0003774835145 5.2 PPM 0.3 PPM

As shown in Table 1, the results are 5.2 PPM and 2.3 PPM, with a detection deviation
of less than 0.5 PPM when the detector detects smoke particles at concentrations of 2 PPM
and 5 PPM, respectively.

4.3. Smoke Concentration Detection Experiment

Smoke particles with concentrations ranging from 0% obs/m to 10% obs/m were
separated by this device, and these particles were used to conduct a concentration limit
detection experiment on the detector. The time domain and signal spectrum are shown in
Figure 10 and Figure 11, respectively, and the detection results are shown in Table 2.

Table 2. Smoke concentration experiment results.

Smoke Concentration Modulus Detection Concentration Deviation
(%obs/m) (Dimensionless) (%o0bs/m) (PPM)
1 58.2667029 1.0000003 0.3 PPM
2 116.5334059 2.0000002 0.2 PPM
3 174.8001084 3.0000003 0.3 PPM
4 233.0668105 4.0000004 0.4 PPM
5 291.3335132 5.0000003 0.3 PPM
6 349.6002158 6.0000002 0.2 PPM
7 407.8669182 7.0000003 0.3 PPM
8 466.1336209 8.0000004 0.4 PPM
9 524.4003241 9.0000002 0.2 PPM

—_
o

582.6670265 10.0000003 0.2 PPM
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Figure 11. Frequency domain signal of 0-10% obs/m smoke particle concentration.
4.4. Anti-Interference Ability Experiment

Mixed particles with 6% obs/m oil gas particles, 7% obs/m large dust interference
particles, 8% obs/m small dust interference particles, and 2% obs/m smoke particles were
prepared, and mixed particles were pumped into the experimental box of this device for an
anti-interference experiment.

The signal output from this detector is shown in Figure 12. Subsequently, the signal of

various mixed particles is transformed by a continuous wavelet transform to obtain the
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time—frequency distribution, as shown in Figure 13. From that figure, it can be seen that
there are 4 main frequencies, and the signal with a frequency of 210 Hz is distributed over
the whole timeline. This phenomenon occurs because smoke particles, which have a much
smaller particle size (usually on the um level) compared to other interfering particles, are
more uniformly distributed in the mixed particles. Therefore, the detector can maintain a
uniform number of smoke particles colliding with the detection cell at all times.

Output Signal
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Figure 12. Interference experiment detector signal output diagram.
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Figure 13. Time-frequency distribution.

Furthermore, the signals generated by mixed particles are decomposed to obtain the
smoke particle signal. The time domain diagrams before and after signal decomposition
are shown in Figure 14. Then, a spectral analysis of the various particle signals after
decomposition was performed, as shown in Figure 15. It is apparent from this figure
that there are 4 main frequency points at 20 Hz (oil gas particle signal), 80 Hz (large dust
interference particle signal), 158 Hz (small dust interference particle signal), and 210 Hz
(smoke particle signal). The result is shown in Table 3.
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Figure 15. Spectral distribution of each particle.

Table 3. Anti-interference ability experiment results.

Smoke Concentration Modulus Detection Concentration Deviation
(%obs/m) (Dimensionless) (%obs/m) (PPM)
2 116.5334079 2.0000007 0.7 PPM

For different concentration combinations of each type of particle, the characteristic
frequency of each particle remains constant, and only the modulus changes, because the
characteristic frequencies of each type of particle are only related to their size.

4.5. Anti-Water Vapor Interference Experiment

To verify the anti-false alarm performance of the sensor in humid environments, a
certain amount of water vapor was generated by an air humidifier. The sensor then inhaled
water vapor and introduced smoke particles at a concentration of 2% obs/m into the
detector. The signal is shown in Figure 16. Then, a spectral analysis of 2 particle signals
after decomposition was performed, as shown in Figure 17. It is apparent from this figure
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that there are 2 main frequency points at 37 Hz (water vapor particle signal) and 210 Hz

(smoke particle signal).
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Figure 16. Signal decomposition diagram of false alarm experiment using water vapor.
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4.6. Anti-High-Density Electrically Conductive Salt Spray Particle Interference Experiment

To verify the anti-false alarm performance of the sensor in marine environments, a
certain amount of high-density electrically conductive salt spray particles was generated by
an air humidifier by adding ocean saltwater to it. The sensor then inhaled electrically con-
ductive salt spray particles and introduced smoke particles at a concentration of 2% obs/m
into the detector. The experiment results are 2 obs/m having just been turned on and also
1 week later, as shown in Table 4.

Table 4. Anti-high-density electrically conductive salt spray particle interference experiment results.

Smoke Detection . .
. . Modulus . Deviation
Time Concentration (Dimensionless) Concentration (PPM)
(%obs/m) (%obs/m)
Just turned on 2 116.5334079 2.0000007 0.7 PPM

1 week later

2 116.4561856 1.9999935 6.5 PPM
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5. Conclusions

(1) When the detector detects smoke particles with concentrations of 2 PPM and 5 PPM,
the results were 2.3 PPM and 5.2 PPM, and deviations were less than 0.5 PPM. The
following is illustrated by these results: The limit of the smoke particle concentration
measured by the detector reaches the PPM level. The designed capacitive detection cell
effectively improves the sensitivity of the detector and can measure the concentration
of smoke particles effectively at the PPM level.

(2) When the detector detects smoke particles with concentrations of 0-10% obs/m, the
resulting deviations were less than 0.5 PPM. The following is illustrated by this result:
The designed detector can effectively detect smoke particles at a concentration of
0-10% obs/m, and the detection accuracy can be higher than that of the PPM level.
The newly designed capacitive particle analysis detector and multiscale smoke particle
concentration detection algorithm can carry out high-precision detection of smoke
particles at various concentrations.

(3) When the detector detects the mixed particles (6% obs/m oil gas particles, 7% obs/m
large size dust interference particles, 8% obs/m small size dust interference particles,
and 2% obs/m smoke particles), the detection result of smoke particles was 2.0000007 %
obs/m, and the deviation was less than 1 PPM. The following is illustrated by these
results: even when there is interference from oil, gas, or dust particles, the detector
can still accurately detect at a higher level than the PPM level. This paper shows that
capacitive particle analysis and detection structures based on capacitive detection
cells combined with a multiscale smoke particle concentration detection algorithm
can effectively improve the reliability of detectors to eliminate the influence of other
interfering particles on detector performance in complex environments.
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