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Abstract: In this study, we explore how the strategic positioning of conductive yarns influences
the performance of plated knit strain sensors fabricated using commercial knitting machines with
both conductive and non-conductive yarns. Our study reveals that sensors with conductive yarns
located at the rear, referred to as ‘purl plated sensors’, exhibit superior performance in comparison to
those with conductive yarns at the front, or ‘knit plated sensors’. Specifically, purl plated sensors
demonstrate a higher sensitivity, evidenced by a gauge factor ranging from 3 to 18, and a minimized
strain delay, indicated by a 1% strain in their electromechanical response. To elucidate the mechanisms
behind these observations, we developed an equivalent circuit model. This model examines the
role of contact resistance within varying yarn configurations on the sensors’ sensitivity, highlighting
the critical influence of contact resistance in conductive yarns subjected to wale-wise stretching
on sensor responsiveness. Furthermore, our findings illustrate that the purl plated sensors benefit
from the vertical movement of non-conductive yarns, which promotes enhanced contact between
adjacent conductive yarns, thereby improving both the stability and sensitivity of the sensors. The
practicality of these sensors is confirmed through bending cycle tests with an in situ monitoring
system, showcasing the purl plated sensors’ exceptional reproducibility, with a standard deviation
of 0.015 across 1000 cycles, and their superior sensitivity, making them ideal for wearable devices
designed for real-time joint movement monitoring. This research highlights the critical importance
of conductive yarn placement in sensor efficacy, providing valuable guidance for crafting advanced
textile-based strain sensors.

Keywords: conductive yarn placement; seamlessly integrated sensor; purl/knit plated sensors;
contact resistances; wale-wise stretching; circuit modeling; bending cycle test

1. Introduction

Textile sensors, which were integral for the development of smart garments, have
attracted increasing attention for use in applications in human–device interfaces [1–5],
human health and motion monitoring [6–9], sports analytics [10,11], soft robotics [12,13],
and physical therapy [9,14]. These sensors can be seamlessly integrated into fabrics [6,15],
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thereby offering exceptional comfort and versatility. The boundaries of smart fashion
are increasingly being pushed by the use of conventional textile techniques like weaving,
knitting, braiding, and embroidery to create in-fabric sensors.

Knitted strain sensors are particularly useful in smart garment applications due to their
inherent loop structure, which offers the flexibility and resilience needed for precise strain
measurement. Moreover, the knitting process not only allows for design modifications
in pattern and loop configuration to tune sensor sensitivity, but it also enables the easy
integration of conductive yarns into fabrics, thus facilitating the development of scalable
and robust smart garments [16].

Many studies have used plating techniques in knitting to create strain sensors. This
approach, which is marked by its design flexibility [17–19] and robust processing capa-
bilities [20], significantly enhances the sensors’ sensitivity, longevity, and resistance to
washing [21,22]. A crucial consideration with these sensors is the interaction between the
two types of yarns, which is largely influenced by the chosen placement of the conductive
yarn within the knitting structure [20]. Specifically, the conductive yarn can be integrated
into either the knit or purl stitches on the fabrics of the plated structures. Expertly combin-
ing these two fundamental stitches—knit and purl—in plated sensors makes it possible to
engineer stitch patterns that are tailored to specific application needs.

Several notable studies have helped advance research in this area. For example, Atalay
et al. [23] highlighted the vital link between base fabric attributes and sensor performance,
while emphasizing the important effect that the selection of materials like elastomeric yarn
and fabric design has on the functionality of knitted strain sensors. Xie et al.’s findings
reveal that blending cotton with stainless steel yarn notably boosts the sensitivity, comfort,
and durability of knitted fabric strain sensors, further highlighting the importance of
material choice in wearable sensor design [24]. In another study, Raji et al. [25] examined
the influence of different elastic yarn types and rib fabric structures on the efficacy of
knitted underwear strain sensors. In two studies, Liu et al. [26] first provided insights into
the linear relationship between the resistive properties of knitted fabrics and the proportion
of conductive float and tuck stitches and then developed a geometric model integrated
with a simplified resistive network; this model is key in determining the resistive impact
of conductive float stitches in various knitted structures and calculating the equivalent
electrical resistance in fabrics with floated stitches [27]. Warncke et al. [28] conducted
a comprehensive investigation to develop drift-free elastic strain sensors with robust
sensor signals for motion capture, considering various knit patterns and conductive yarn
incorporations and the size of the strain sensors. This study is pivotal for understanding the
cyclic electromechanical properties of weft-knitted strain sensors. Further, Liang et al. [29]
introduced a size prediction model crucial for the fabrication of designed knit strain sensors,
while Bozal et al. [30] shed light on the significance of conductive yarn positioning in rib-
structured sensors developed using plating techniques.

Despite the extensive research investigating various factors influencing knit sensor
properties—such as yarn types, stitch patterns, and dimensions—we still lack a compre-
hensive understanding of how these elements interact to affect sensor performance. Our
study, therefore, aims to bridge this gap by focusing on the fundamental effects of basic
stitches (knit and purl) and the interaction between conductive and non-conductive yarns.
Elucidating these basics is expected to make a key contribution to the development of more
complex stitch patterns in plated knit sensor designs [31,32].

In our research, we used a plated knit technique to create plain plated knit strain
sensors, where the conductive yarn is positioned on the back (or front) side in the same
manner as it is integrated into the purl (or knit) stitch on the fabrics. Our study focused
on understanding how this specific yarn arrangement affected the sensors’ performance.
We also use optical microscopy to observe how non-conductive yarns behaved under
elongation, particularly in relation to the type of stitch used, i.e., knit or purl. These
observations provided valuable insights into the relationship between stitch type and yarn
interaction. Moreover, we developed a simple equivalent circuit model to estimate the
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impact of conductive interlocked and jammed loops on the contact resistance of these
sensors. Our results indicated that positioning the conductive yarn at the back of the plated
knit sensor (termed a ‘purl plated sensor’) led to markedly enhanced performance over
the arrangement in which the conductive yarn was positioned at the front of the sensor
(termed ‘knit plated sensor’), specifically in terms of higher gauge factor, improved stability,
and responsiveness. We also demonstrate the practical applicability of these sensors in
monitoring joint movements, supported by in situ data transmission and analysis. This
research brings a novel perspective to smart textiles by delving into the fundamental
aspects of stitch selection and yarn placement in plated knit strain sensors. The integration
of circuit modeling, simulation, and cyclic bending tests marks a pioneering approach that
could lead to enhanced sensor designs for tailored applications.

2. Experimental
2.1. Materials and Methods

For the strain sensor design, a plain knit design was chosen and knitted on a CMS330
KI W TT SPORT E7.2 (14 gauge) computerized flat knitting machine (STOLL, Reutingen,
Germany) using a silver-coated nylon conductive yarn that was purchased from AMANN
(Bonnigheim, Germany). This silver-coated nylon conductive yarns are chosen due to their
superior electromechanical properties [33], unidirectional response to tension [25], and
better suitability for wearability and durability [33] in practical strain sensor applications,
compared with stainless steel-based fibers. Simultaneously, we chose a 50% wool and
50% acrylic blend for the non-conductive yarn, capitalizing on wool’s warmth, comfort,
and insulating qualities, alongside acrylic’s flexibility, stretchability, affordability, and ease
of maintenance. The silver-coated conductive yarn has an initial resistance of 530 Ω/m.
Non-conductive yarn consisting of a 1:1 ratio of acryl and wool was also obtained from
C&TEX (Seoul, Republic of Korea) and used as an insulating layer to make the knitted base
fabric and plated sensors.

Figure 1 illustrates two types of strain sensors integrated into machine-knitted fabrics,
as shown in parts (a) and (b), using both conductive (light blue) and non-conductive
(dark blue) yarns. The conductive yarn is managed by a plating yarn carrier and the non-
conductive yarn by an intarsia yarn carrier, as detailed in part (c). The strategic modification
of the carriers’ positions enables the creation of fundamental knit and purl stitches. For knit
stitches, the conductive yarn is brought to the forefront, forming the visible ‘V’ pattern on
the fabric’s surface as depicted in the schematic of (b). Conversely, the purl stitches bring
the non-conductive yarn to the surface, creating the ‘bump’ texture shown in the schematic
of (a). The selective positioning of yarns is dynamically orchestrated by alternating the
position of the plating and intarsia carriers during the knitting process. This ensures the
conductive yarn is knit into an integrated network of sensors within the fabric, which is
primarily composed of non-conductive yarn.
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Figure 1. Illustration of machine-knitted textiles incorporating strain sensors, utilizing conductive
yarns (light blue) and non-conductive yarns (dark blue). The figure demonstrates (a) the purl stitch
pattern, (b) the knit stitch pattern, and (c) the plated knitting technique used for integrating the strain
sensor. For parts (a,b), both the textile’s appearance and a schematic of the front side are shown.

The overall size of the sample including the non-conductive region and the conductive
sensing area was 90 mm × 255 mm. The conductive yarn has a yarn count of Tex28, whereas
the non-conductive yarn has a yarn count of Tex34 × 2. The conductive sensor’s course
density was 14 courses/20 mm, and its wale density was 34 wales/40 mm. The size of the
selectively plated sensors was 20 mm × 40 mm (14 courses × 34 wales).

2.2. Electromechanical Test Setup
2.2.1. Measurement of Electromechanical Properties

A universal testing machine (UTM) with a 100 N load cell was used to generate a
stretching of the knitted fabric sensors between 0 and 30% at a constant speed of 0.5 mm/s.
A pair of clamps was used to fix the fabric in the wale direction. Textile samples for
mechanical testing were prepared by cutting textiles to 40 mm (course) × 100 mm (wale)
with a conductive sensing area of 20 mm (14 courses) × 40 mm (34 wales). The initial
length of the fabric sample, which is known as the gauge length, was set at 80 mm. For
the electromechanical tests, four alligator clips were attached to the ends of the conductive
sensing area to measure the resistance using a four-point method where a constant current
was applied to the two outer clips, and the resulting voltage drop was measured from the
two inner clips. A digital multimeter system (KEITHLEY (DAQ6510, Keithley Instrument,
Cleveland, OH, USA)) was used for real-time monitoring of the resistance during the
stretching of the fabric sample.

2.2.2. Durability Test: Cyclic Flexing
Test Equipment Description

We evaluated the sample’s dynamic bending resistance using an E-textile flexing tester,
model CKFT-T400 (Netest, Hwasung-si, Republic of Korea) as shown in Figure 2a. This
device secured the sample on a cylindrical holder, ensuring it was firmly clamped at the
ends for stability during testing. This holder, which simulates the movement of a human
joint, has a diameter of 80 mm and is coated with a 3 mm thick silicone layer. The tested
plated knit strain sensors, which were crafted on a knitting machine, measured 140 mm
in the wale direction and 90 mm in the course direction. These sensors showed a specific
sensing area of 20 mm by 40 mm, as illustrated in Figure 2b. The flexing tester could vary
the bending angle from 0 to 135◦ and adjust the speed from 0 to 69 cycles per minute (cpm).
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In our tests, we consistently maintained a bending speed of 50 cpm and a bending angle of
90◦ across 1000 bending cycles.
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(a) E-textile flexing tester; (b) wireless fabric sensor system consisting of a purl stitch plated sensor,
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of a fabric sensor system; and (c) a schematic of the voltage divider in the sensor system that shows
the calculation of the voltage drop (Vout) across the sensor.

Design of a Durable Wireless Electronic System for Testing

The fabric sensor system (Figure 2b), which is designed for potential commercial use,
delivers accurate measurements and rapid response times. An accompanying schematic
(shown in the inset of Figure 2b) demonstrates the front side layout of the fabric, which
features a seamlessly integrated knit strain sensor, an interconnection module, and a
microcontroller unit (MCU) module. The interconnection lines are constructed using highly
conductive yarns with a resistance of 85 Ω/m. We used a lockstitch technique on the textile
base to form two interconnection lines linking the sensor and the MCU, with the longer one
having a resistance of roughly 10 Ω and the shorter one having a resistance of about 4 Ω.

One interconnection line extends from the sensor’s wale end to a male snap fastener
that serves as the ground connection. The second line begins at the opposite wale end of
the sensor, leading to another snap fastener that is supplied with a stable 3.3 volts. This
configuration allows for the voltage variation to be monitored at two points on the sensor
under dynamic conditions. We collected the sensor’s strain signals at 10 Hz via a voltage
divider, which was governed by the following equation:

VOUT =
R2

R2 + R1
·VIN

where R1 is the reference resistance of 100 Ω, R2 is the sensor’s variable resistance that
changes with strain, VOUT is the sensor’s output voltage, and VIN is the input voltage of
3.3 volts.
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2.3. Modeling of the Plated Knitted Strain Sensor

Figure 3a–c illustrate the schematic structure of the plated knitted fabric, focusing on a
unit loop within a dotted red box in Figure 3a’s left side, and a resistive network circuit for
a 1 course × 2 wale unit structure, highlighted in a dotted red box in Figure 3a’s right side.
This unit structure comprises two needle loops and one sinker loop. It features two types
of contact resistance (RCV, RCH) and three length resistances (RLH, RLV), all outlined within
a red dotted frame. RLH and RLV represent the length resistances of the needle loop and
the limb, respectively, while RCV and RCH denote the contact resistances of the interlocked
conductive loops and the jammed conductive loops, respectively [34]. The length resistance
of a loop is influenced by its electrical resistivity and length, while the contact resistance is
primarily influenced by the contact force [35].
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A weft plain fabric consists of continuous loops that are interconnected in the course
direction and intermeshed in the wale direction. The 1 × 2-unit loop, which is analogous
to a fabric circuit network, as illustrated in Figure 3c, forms the basis for constructing a
complete fabric circuit network. This network incorporates two types of resistors: vertical
resistance (RV) and horizontal resistance (RH). RV is calculated as the sum of RLV and RCV,
which are arranged in series along the wale direction. Meanwhile, RH is determined using
the formula 1/RH = 1/RCH + 1/RLH, where RLH and RCH are connected in parallel in the
course direction. Figure 3d illustrates a simplification of this circuit network.

The simplified circuit network calculates the equivalent resistance (Req), which is
defined as the ratio of applied voltage (U) to the total circuit current (Itot).

Req = U/Itot (1)

Using Kirchhoff’s voltage law and MATLAB software (R2023b), the circuit network
equations were established and solved to determine Itot [35].

The relationship of the contact resistances (RCV, RCH) with the force applied to the
fabric sensor and their relationships with RV and RH are crucial for simulating the equiva-
lent resistance—the applied force curve. RCV, which is the contact resistance of vertically
overlapped conductive yarns, is calculated using Holm theory [36], by which it is inversely
proportional to the square root of the contacting normal force (FN):

RCV = B/
√

FN (2)
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Here, B is assumed to be a constant. The contacting normal force (FN) depends on the
loop configuration and dimensions, along with the applied force (F) on the fabric [35]. This
relationship is expressed as follows:

FN = 2
F

G × NW
(3)

where NW is the yarn number in the wale direction and G is a geometrical constant of the
loops [35].

Consequently, RCV can be defined as follows:

RCV = C/
√

F (4)

where C is a constant. Similarly, RCH, which is the resistance for horizontally jammed
contacts, can be expressed using a similar formula with a different constant (C′):

RCH = C′/
√

F (5)

Therefore, the equivalent vertical and horizontal resistances in the circuit model can
be described as follows:

RV = RCV + RLV = C/
√

F + RLV (6)

RH =
RCH × RLH
RCH + RLH

=
(C′/

√
F)× RLH

(C′/
√

F + RLH)
(7)

These relationships were utilized in the simplified circuit network to calculate Req
following the previously described process.

The calculations utilized several parameters, including geometrical factors such as
the number of wales (NW = 100), wale number (14), and course number (27). Additionally,
the geometrical constant G was determined based on measurements of loop geometrical
dimensions: L1 (the length of a loop leg), L2 (the distance between the centers of overlapping
loops), and L3 (course spacing) [35]. These measurements were essential for establishing
the geometrical constant G. The influence of RV and RH on the applied force, alongside Req,
was assessed through circuit model simulations. Table 1 presents the input parameters used
in these simulations, detailing the number of wales, courses, and specific loop geometrical
factors, as well as the resultant output parameters for RV and RH, for both purl and knit
sensors under varying applied force scenarios. It also includes the derived values of Req.
The comprehensive results of these simulations are elaborated upon in the Results Section.

Table 1. Parameters and results from simulation models.

Input Parameters Output Parameters

NW = 100 RV: Purl Sensor : 1.50/
√

F + 6.99
Wale Number: 14 Knit Sensor : 1.20/

√
F + 12.82

Course Number: 27 RH: Purl Sensor : 1.77/
√

F + 3.84
Loop geometrical factors: Knit Sensor : 2.02/

√
F + 10.84

L1 = 1.5 mm, L2 = 1.0 mm, L3 = 2.0 mm Req

3. Results and Discussion
3.1. Stretching Test

Figure 4 depicts the resistance behavior of purl and knit plated sensors under varying
forces. Both sensor types demonstrate a marked decrease in resistance when subjected to
forces up to approximately 1 N, after which they exhibit more gradual declines. Notably, the
resistance of the purl sensor decreases more sharply in the initial stage of force application.
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This behavior suggests the existence of a more efficient contact between conductive yarns
in the purl sensor, particularly under lower forces (below 1 N).
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3.2. Simulated Results of Fabric Equivalent Resistance–Applied Force

The results of the simulation of fabric resistance, which is based on Kirchhoff’s voltage
law and conducted using MATLAB software, correlate well with the experimental data
(Figure 5). This correlation indicates that contact resistance significantly affects the per-
formance of the plated knit strain sensors. Central to this simulation is a multiple linear
regression model, which can be expressed as Req ≈ 1 + RV RH + R2

V + R2
H . This model

serves two purposes: first, it accurately fits the experimental curve of fabric resistance as a
function of applied force (illustrated in Figure 6), thus quantifying the resistance changes
under varying forces.
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Secondly, the model elucidates the relationship between vertical and horizontal re-
sistances (RH and RV) and the applied force (F), thus revealing how these directional
resistances influence sensor performance.

Figure 6 details the specific relationships between vertical and horizontal resistances
and the applied force for both sensor types. The resistance of the purl plated sensor is
characterized by RV = 1.50/

√
F + 6.99 and RH = 1.77/

√
F + 3.84, while that for the

knit plated sensor is characterized by RV = 1.20/
√

F + 12.82 and RH = 2.02/
√

F + 10.84.
Notably, the purl structure exhibits significantly lower vertical and horizontal resistances
compared to the knit structure, which contributes to the lower overall equivalent resistance
of the purl sensor. Further, it is crucial to effectively control the contact resistances and the
horizontal resistance to reduce the equivalent resistance of the plated knit strain sensors
under strain in the wale direction. The predictive accuracy of these models is high, with R2

values of 97.9% for the purl sensor and 96.3% for the knit sensor, both of which explain over
96% of the variation in resistance. The models’ validity is further reinforced by the results
of an F-test (F = 1477, p < 0.05), thus confirming their reliability in predicting changes in
resistance under strain in the wale direction.

The behavior of non-conductive yarn in plated strain sensors was studied under
varying loads using optical microscopy, with the results shown in Figure 7. Figure 7a
demonstrates the purl plated sensor in both relaxed and elongated states. Key findings
include the role played by non-conductive yarn among conductive yarns in determining the
fabric’s mechanical properties. In a relaxed state, non-conductive yarns create noticeable
separations and gaps in the fabric’s interlocked and jammed loops. Under a 10% strain,
these yarns retract, thereby closing the gaps in a directional manner. Specifically, the
non-conductive yarn located under a conductive needle loop rises, thus thickening the
area above the conductive yarn (marked in green), while the yarn that is located under a
conductive sinker loop descends (marked in yellow). This vertical movement is essential
for enhancing contact between loops, as shown in the circled areas in Figure 7a. This
pattern persists and becomes more pronounced at a 20% strain, indicating a consistent
mechanical response.

By contrast, Figure 7b illustrates a different behavior in knit plated sensors, where
non-conductive yarns move laterally instead of vertically. As the strain increases from
0% to 10%, these yarns are squeezed out from the conductive loops, eventually aligning
parallel to them (marked in yellow). At 20% strain, the yarns continue to move laterally,
thus thickening the areas between conductive yarns. This lateral displacement, which
likely occurs in a non-uniform manner, impedes efficient contact between conductive loops,
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ultimately leading to less stable contacts compared to the vertical movement in purl plated
sensors. This difference in yarn movement helps elucidate the structural and functional
variations between purl and knit plated sensors under strain.
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The sensors’ sensitivity, which is quantified in the form of the gauge factor (GF), is
explored in Figure 8. The GF is defined as the ratio of fractional change (∆R/R) in electrical
resistance to the strain (ε) in the stretching direction of the sensor [33].

GF =
∆R/R

ε
(8)
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With gauge factors ranging from 3 to 18, the purl sensor demonstrates a shorter strain
delay (1% strain) than the knit sensor (3% strain), which might indicate a faster response at
low strain levels.



Sensors 2024, 24, 1690 11 of 14

3.3. Dynamic Bending Test of Textile Sensors

Given the complex and dynamic strains induced by human movements, durability is
a critical factor for wearable strain sensors. In particular, it is essential for these sensors
to maintain their electromechanical properties without degradation or failure caused by
fatigue deformation of the active materials.

For this reason, a durability test was conducted using a wireless strain sensing system
(illustrated in Figure 2) designed for bending applications, such as real-time monitoring of
joint movements (e.g., fingers, elbow, body joints).

Figure 9 presents the output voltage variation over 1000 bending cycles for two
different sensor structures. The insets show the strain–output voltage curves for four
bending–recovery cycles at the initial and final stage of bending, thus highlighting the
elapsed time–output voltage curves for single bending–recovery cycles of the purl plated
fabric sensor and the knit plated fabric sensor. The insets also show the behaviors of one
bending cycle of the sensors. During bending, the output voltage initially increases, after
which it rapidly decreases as the fabric extends further. At maximum fabric elongation,
the voltage drops to its lowest point. During recovery, as the fabric relaxes, the voltage
first increases and then decreases [8]. This variance in the output voltage at different stages
of bending and recovery is attributed to the strain delay in the fabric, thus reflecting the
hysteresis of the devices.
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Notably, compared to the knit plated variant, the purl plated sensor demonstrates
superior performance with less delay, higher sensitivity, and most importantly, greater
reproducibility. As demonstrated in Figure 9, the output voltage remains remarkably
consistent after 1000 bending cycles, underscoring the sensor’s exceptional reproducibil-
ity, quantified by a low standard deviation of 0.015 [37]. This contrasts markedly with
the knit strain sensor’s higher standard deviation of 0.118, highlighting the purl plated
sensor’s superior stability and reliability in performance measurements. In addition,
the amplitude of this curve correlates with the device’s gauge factor. For example, the
purl plated fabric demonstrates a voltage gauge factor, which is calculated as the ratio
of the normalized voltage change to the strain. This factor is 3.15, as determined by
(2.87 − 0.61)/(2.87 × 0.25), whereas the knit plated fabric has a factor of 2.46, as deter-
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mined by ((2.44 − 0.94)/(2.44 × 0.25)). These calculations were made under conditions
where a 25% strain was measured during 90◦ bending.

The dynamic response characteristics of the purl plated sensor were also assessed by
evaluating its response time. During the bending and relaxing states, the purl strain sensor
exhibited response times of approximately 350 ms and 250 ms, respectively. Meanwhile,
the knit strain sensor displayed response times of around 250 ms for bending and 300 ms
for relaxing. Given the typical use of textile strain sensors in wearable electronics, which
is to monitor human body motion and various external stimuli, these response times are
considered to be sufficient for real-time detection [19,38].

Operational stability was assessed through 1000 cycles of 90◦ bending, and the results
revealed that the purl sensor operated stably without degradation, as depicted in Figure 9,
thus indicating that the purl plated knit strain sensor possesses commendable operational
stability for practical applications.

4. Conclusions

In the present research, we examined how different stitching types—specifically purl
and knit—affect the performance of plated knit strain sensors. To this end, we developed a
simple equivalent circuit model that accounts for both horizontal and vertical resistances.
This model helped us understand the impact of contact resistances, both from jamming
and interlocking contacts, on the overall resistance of the fabric sensors. Our MATLAB
simulations highlighted the significant role played by horizontal contacts in decreasing
resistance during loading and unloading in knit fabrics. Interestingly, we found that
the purl stitch results in a lower contact resistance compared to the knit stitch. This
might be attributable to the unique vertical movement of non-conducting yarn in the purl
structure, which facilitates easier contact between adjacent conductive loops than the lateral
movement observed in the knit structure.

To explore the practical applicability of such an arrangement, we designed a plated
knit sensor system capable of in situ monitoring of bending motions. This system, which
was equipped with machinery enabling real-time observation of bending cycle tests, demon-
strated notable improvements in the purl structure’s performance. Compared to the knit
structure, the system using the purl structure’s attributes, such as sensitivity, stability, and
strain delay, were found to be significantly enhanced with a reasonable response time. Al-
together, these findings suggest that the purl stitch-based sensor could serve as an effective
platform for commercial wearable strain sensors.
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