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Abstract: In recent years, there has been a notable rise in the number of patients afflicted with
laryngeal diseases, including cancer, trauma, and other ailments leading to voice loss. Currently,
the market is witnessing a pressing demand for medical and healthcare products designed to assist
individuals with voice defects, prompting the invention of the artificial throat (AT). This user-friendly
device eliminates the need for complex procedures like phonation reconstruction surgery. Therefore,
in this review, we will initially give a careful introduction to the intelligent AT, which can act
not only as a sound sensor but also as a thin-film sound emitter. Then, the sensing principle to
detect sound will be discussed carefully, including capacitive, piezoelectric, electromagnetic, and
piezoresistive components employed in the realm of sound sensing. Following this, the development
of thermoacoustic theory and different materials made of sound emitters will also be analyzed. After
that, various algorithms utilized by the intelligent AT for speech pattern recognition will be reviewed,
including some classical algorithms and neural network algorithms. Finally, the outlook, challenge,
and conclusion of the intelligent AT will be stated. The intelligent AT presents clear advantages for
patients with voice impairments, demonstrating significant social values.

Keywords: artificial throat; sound sensor; thermoacoustic effect; machine learning

1. Introduction

Verbal communication is the basic communication method of human beings. How-
ever, some patients in the world have deficiencies in language ability. In China, oral and
oropharyngeal cancer accounts for approximately 307,000 new cases each year, constituting
over half of the 572,000 new cases identified worldwide [1–3]. In addition to laryngeal
cancer, diseases such as esophageal cancer and other unexpected accidents will also se-
riously affect patients’ linguistic ability. The interpersonal communication and quality
of life of the mute people will also be seriously spoiled, leading to a negative impact on
their mental and physical health [4]. Therefore, how to effectively reconstruct the vocal
function of speech-impaired people, aiming at minimizing the detrimental effects of speech
impairment, has become the focus of the whole society.

Nowadays, one of the most widely used pronunciation reconstruction methods is still
the conventional electrolarynx [5]. The conventional electrolarynx (Figure 1a) [6], composed
of motorized transducers with large rigidity, volume, and complex structure, can assist
mute people to emit sound [7]. The working principle of the conventional electrolarynx is
initially creating vibrations of the oral or pharyngeal at a constant fundamental frequency.
Then, these vibrations will be transmitted to the throat or mouth. Following this, after
interacting with the vocal cord tissue, the patient can produce audible speech [5,8]. The
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usage is shown in Figure 1b. Currently, most of the currently available electrolarynx has
been adapted, designed, and modified on this working principle. For example, Isshiki et al.
proposed an electrolarynx with better performance in voice [9]. Wu et al. put forward a
method of solving the problem to eliminate the abnormal acoustic properties [10].
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monotonous sound, which lacks variation compared to natural sounds. This poor quality 
of sound may seriously affect the patient’s voice expression and communication 
experience, limiting their ability to communicate fluently. Therefore, the conventional 
electrolarynx has significant deficiencies in sound quality and learning difficulty, which 
affects speech recovery in patients with laryngeal cancer or laryngectomy. 

In recent years, with the continuous development of materials science, solid-state 
physics, and electronic engineering, new methods have been provided to solve the 
difficult problems plaguing the development of the conventional electrolarynx [11]. In 
conventional electrolarynx, it is limited to being used as a sound emitter. However, the 
latest developing artificial throat (AT) can not only be used as a sound emitter but also as 
an intelligent sound sensor, integrating sound perception technology with the assistance 
of algorithms. As for the sound sensor, capacitive, piezoelectric, electromagnetic, and 
piezoresistive materials have been widely leveraged in the field. Some sound sensors are 
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Figure 1. The conventional electrolarynx. (a) The overview of the conventional electrolarynx.
Reproduced with permission [6]. (b) The usage of the conventional electrolarynx [8].

However, despite continuous changes and improvements, the conventional electro-
larynx still has many shortcomings that have not been effectively addressed. First, the
conventional electrolarynx is a hand-held device that takes up a person’s hand and restricts
the normal movement of the hand. Second, managing the conventional electrolarynx is
challenging. Initially, the patients often need to spend much time finding the most suitable
site to attach the electrolarynx to the neck muscles. In addition to the proper site, the
interface between the conventional electrolarynx and the skin significantly influences its
vocalization. Consequently, achieving the appropriate tightness to adhere the electrolarynx
to the neck muscle is also a time-consuming process for patients. Third, the conventional
electrolarynx is only capable of producing a mechanized and monotonous sound, which
lacks variation compared to natural sounds. This poor quality of sound may seriously
affect the patient’s voice expression and communication experience, limiting their ability to
communicate fluently. Therefore, the conventional electrolarynx has significant deficiencies
in sound quality and learning difficulty, which affects speech recovery in patients with
laryngeal cancer or laryngectomy.

In recent years, with the continuous development of materials science, solid-state
physics, and electronic engineering, new methods have been provided to solve the difficult
problems plaguing the development of the conventional electrolarynx [11]. In conventional
electrolarynx, it is limited to being used as a sound emitter. However, the latest developing
artificial throat (AT) can not only be used as a sound emitter but also as an intelligent sound
sensor, integrating sound perception technology with the assistance of algorithms. As for
the sound sensor, capacitive, piezoelectric, electromagnetic, and piezoresistive materials
have been widely leveraged in the field. Some sound sensors are self-powered and can
be combined with other physiological signs. In terms of sound emitters, conventional
sound emitters typically rely on the electromagnetic effect with rigid and solid materials.
In contrast, thermoacoustic materials are often flexible and thin, which could be fabricated
as thin-film sound emitters. This characteristic makes them exceptionally well-suited
for wearable applications. In contrast to the conventional electrolarynx, the latest AT
developed based on new materials is lightweight, thin in thickness, simple in structure, soft
in use, and comfortable to wear. These attributes collectively contribute to an enhanced
patient experience.

As mentioned before, with the assistance of a machine learning algorithm, the AT
has progressively gained intelligence in speech detection and recognition, addressing
the deficiency of the electrolarynx in this regard. In 2020, Jin et al. developed a model
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with a large amount of data to recognize the long vowels and short vowels of human
pronunciations, and the recognition accuracy can reach 83.6% in the long vowels, and
88.9% in the short vowels. Afterward, many other models have also been used in the speech
recognition of AT, such as SR-CNN [12], AlexNet [13,14], Inception V3 [13], SCNN [15],
etc. Obviously, machine learning algorithms have greatly assisted AT in breaking through
the deficiencies of the electrolarynx in receiving voices. Moreover, AT combined with a
machine learning algorithm brings these speech-impaired patients more effective assistance
than the conventional electrolarynx.

In this review, we aim to give an overview of the intelligent flexible AT, which consists
of the sound emitter, sensor, and recognition algorithm (Figure 2). The concept and compo-
sition of the AT are initially elucidated, and compared with the conventional electrolarynx.
The second part focuses on the sound sensor, which covers not only sound but also other
physiological signals, including electromyographic (EMG) signals that reflect voice infor-
mation. In the third section, a thin-film sound emitter based on the thermoacoustic effect
will be discussed, which can help the user to emit sound. In the fourth section, a detailed
review of the intelligent AT, supported by various algorithms for sound wave recognition,
will be stated, such as some digital signal processing techniques, classical machine learning
algorithms, deep learning algorithms, and so on. Finally, the outlooks and limitations will
be given. This review is helpful for the researchers who intend to study the AT devices.
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2. Sound Sensor

When a sound emitter vibrates, such as the vocal cords of a person, the strings of
a musical instrument, or other objects, it induces the surrounding medium to generate
alternating zones of compression and rarefaction. This phenomenon gives rise to the
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production of sound. Sound can be regarded as a combination of simple harmonic waves,
which can propagate through a solid, liquid, or gas [21–24]. When a sound wave strikes
the human’s ear membrane, the different frequencies of sound result in various levels of
vibration; only the frequencies ranging from 20 Hz to 20 kHz can stimulate the human
nervous response to produce the hearing sensation [25,26]. Within this process, the human
ear plays a key role, acting as a sound sensor with a sophisticated structure. Owing to the
sophisticated design, human ears have a high sensitivity to voice. In the realm of sound
sensors, the material and structure also need to be specially designed to detect sound,
especially weak sound.

Recent decades have witnessed the rapid development of sound sensors. Capaci-
tive, piezoelectric, electromagnetic, and piezoresistive sensors have been widely studied.
Moreover, the design of sensing materials and the preparation of sensors have significantly
improved. Furthermore, when integrated with other human physiological signals, sound
detection has achieved high levels of accuracy.

2.1. Capacitive Sound Sensor

The capacitance for the common plain plates can be expressed as

C = ε
S
d

, (1)

where ε is the dielectric coefficient of the medium between the plates, depending on the
physical property of the material between the plates. S stands for the area of one plate, and
d is the distance between the plates. Derived from this formula, the capacitive sensor can be
divided into three categories: the first category is based on a variable dielectric coefficient,
when the dielectric changes, the capacitance will change. Many humidity sensors are
developed on this basis. The second category considers the changes in area [27–29]. The
third category is building on the shift in distance. Considering the characteristics of the
sound waves, many capacitive sensors are based on the distance changes between movable
plates and other fixed plates [30].

The principle of the third category of capacitive sound sensors can be stated as follows:
A bias voltage is initially applied to load the plates. Subsequently, the voltage between
the two plates remains constant unless an incoming sound wave induces vibrations in
the movable plates. This vibration leads to a change in capacitance and, consequently, a
variation in voltage [31]. In this manner, the capacitive sound sensor senses the acoustic
signal, transforming it into an electrical signal with a flat frequency response [32].

Lee et al. realized a sound sensor with a sophisticated capacitive structure [33].
When the device is attached to the neck skin, the vibration of the neck muscles will cause
changes in the capacitance between the movable plates and the fixed plates (Figure 3a).
When connected to the capacitance sensing circuit that effectively converts capacitance
changes to voltage variations, the vibration of the neck muscles will be transformed into
an electrical signal (Figure 3b). Compared with the conventional microphone, the device
could effectively resist noise interference, owing to it recognizing the voice just by the skin
vibration (Figure 3c).
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Figure 3. Sound sensor based on capacitive and piezoelectric effect. (a) Illustration of the capacitive
sound sensor attached to the neck and the diaphragm structure. (b) The circuit diagram within
the sensor. (c) Comparison of waveform and frequency spectrum in silent and noisy environments
when a person speaks ‘light on’ with the capacitive sound sensor and licrophone. (i) utilizes the
capacitive sound sensor, while (ii) utilizes the licrophone [33]. (d) Sound sensor structure based on
the piezoelectric materials [17].

2.2. Piezoelectric Sound Sensor

The ability to generate an electrical charge by applying mechanical stress is called the
piezoelectric effect [34], which can be found in some materials, such as polyvinylidene diflu-
oride (PVDF) [17,35–37], lead zirconium titanate (PZT) [36,38–40], zinc oxide (ZnO) [41–43].
Compared with capacitive sensors, piezoelectric sensors do not require an additional bias
voltage to be supplied and do not require additional circuit design. Furthermore, a quantity
of sensors can also be self-powered.

Lang et al. developed a PVDF-based sound sensor using electrospinning technology
(Figure 3d) [17]. Figure 4a schematically illustrates a proposed sound-sensing mechanism.
When the sound wave hits the sensor, the sound absorption induces vibration of the
nanofiber network, the Au layer, and the polyethylene terephthalate (PET) sheet. Part
of the nanofiber mesh is covered by a PET sheet and Au layer, but part of the nanofiber
mesh is directly exposed to the sound absorption. The directly exposed part vibrates more
intensively than those covered, causing asymmetric vibrations on the propagation along
the fiber and a heightened sensitivity in sound perception. In addition, the piezoelectric
sound sensor has good sound perception at low frequencies. Figure 4b-ii demonstrates
its ability to effectively distinguish between two different low frequencies, approximately
190 Hz and 260 Hz. However, its measured sound pressure after 400 Hz will rapidly drop
to 0, so its performance at high frequencies is notably inferior to that of the capacitive
sensor [32,37]. Recent studies have shown another key physical property of this material:
the thickness of the piezoelectric material plays a key role in sound detection. Lim et al.
fabricated a piezoelectric sound sensor with single-walled carbon nanotubes (SWCNTs)
and a PVDF network with varying thicknesses. They discovered that the output voltage
and impedance would show a nearly linear relationship within a proper thickness. If the
thickness is too small (below 200 µm), the impedance will drop rapidly, possibly linked to
a short circuit inside the electrostatic spinning filament [37].
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Figure 4. Sound sensor based on piezoelectric effect. (a) When sound waves hit the piezoelectric
nanofibers, vibration of the piezoelectric materials takes place. (b-i) is the voltage spectrum un-
der double-frequency sound waves, while (b-ii) is the frequency under double-frequency sound
waves [17].

Owing to the fact that in piezoelectric sensors, the mechanical input can be converted
directly into an electrical output with no external power source required, this type of
sensor is considered to be self-powered, which is promising in fields like sound energy
harvesting [44,45]. The working process of the self-powered device can be explained in
Figure 5a [32,46]. Figure 5a-i schematically illustrates the structure of the spring-substrate
nanogenerator, which is composed of a metal spring. The metal spring is composed of an Ag
electrode and a quantity of ZnO nanowires which are passivated with polymethyl methacry-
late (PMMA). When a tiny plate weighing 15.2 N is placed on the self-powered sensor, the
piezoelectric sensor will produce an output voltage of 0.23 V. Furthermore, Figure 5a-iii
shows an almost linear relationship between the output voltage and current, exhibiting a
sensitivity of 2.8 nA × kg−1 and 45 mV × kg−1. This remarkable sensitivity indicates the
sensor’s performance which has been employed in piezoelectric sound detection.
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of the PAN-PVDF noise harvester structure. (f) The sound sensor powers the calculator to perform 
the calculation process [48]. 

Cui et al. achieved a sound-driven triboelectric nanogenerator (TENG) based on the 
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basic electronic components, like LEDs, but also power other commercial products. This 
indicates that these sound sensors have an exceptionally wide range of applications. Shao 
et al. fabricated a single-layer piezoelectric nanofiber sound sensor utilizing PET films, Au 
electrodes, and PAN-PVDF fiber membrane (Figure 5e). This sensor can power the calcu-
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rent. However, this classic structure is mostly rigid and only partially flexible due to lim-
itations such as coils and magnets [49–51]. 

As a result of advancements in manufacturing methods for achieving flexible mag-
netic membranes, Zhao et al. successfully produced flexible neodymium magnet (NdFeB) 
membranes in the origami approaches in 2019 [52]. In 2020, they manufactured an addi-
tional fully flexible electromagnetic sensor incorporating NdFeB (Figure 6a), enabling re-
peated bending and twisting for attachment to the body [18]. Moreover, this fully flexible 
structure can serve as a sound sensor by utilizing the electromagnetic induction between 
the copper coil and magnetic membrane to detect the vibration of the vocal cords (Figure 
6b,c). 

Figure 5. Self-powered piezoelectric sound sensors. (a-i) Schematic structure of nanogenerator based
on ZnO. (a-ii,a-iii) The voltage and current vary when weight is put on the nanogenerator sensor [32].
(b) Schematic of a fabricated sound TENG. (c) SEM image of the PVDF nanofibers. (d) 138 LEDs were
driven by the sound TENG with the sound of 144 dB and 160 Hz [47]. (e) Structure of the PAN-PVDF
noise harvester structure. (f) The sound sensor powers the calculator to perform the calculation
process [48].

Cui et al. achieved a sound-driven triboelectric nanogenerator (TENG) based on the
piezoelectric material PVDF (Figure 5b,c). Their device demonstrates the capability to
instantaneously illuminate 138 LEDs, as shown in the inset of Figure 5d, in response to a
114 dB/160 Hz sound [47]. The energy generated by this nanogenerator can not only light
the basic electronic components, like LEDs, but also power other commercial products.
This indicates that these sound sensors have an exceptionally wide range of applications.
Shao et al. fabricated a single-layer piezoelectric nanofiber sound sensor utilizing PET
films, Au electrodes, and PAN-PVDF fiber membrane (Figure 5e). This sensor can power
the calculator to perform the calculation process and charge the capacitor (Figure 5f) [48].

2.3. Electromagnetic Sound Sensor

The classic structure of electromagnetic sensors is often composed of a coil, a di-
aphragm, and a permanent magnet. When the diaphragm is vibrated by sound waves, the
diaphragm will drive the coil to move in the magnetic field, thus generating output current.
However, this classic structure is mostly rigid and only partially flexible due to limitations
such as coils and magnets [49–51].

As a result of advancements in manufacturing methods for achieving flexible magnetic
membranes, Huang et al. successfully produced flexible neodymium magnet (NdFeB) mem-
branes in the origami approaches in 2019 [52]. In 2020, they manufactured an additional
fully flexible electromagnetic sensor incorporating NdFeB (Figure 6a), enabling repeated
bending and twisting for attachment to the body [18]. Moreover, this fully flexible structure
can serve as a sound sensor by utilizing the electromagnetic induction between the copper
coil and magnetic membrane to detect the vibration of the vocal cords (Figure 6b,c).
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2.4. Piezoresistive Sound Sensor 
The piezoresistive effect refers to the change in resistance of a material of 

semiconductor or metal when mechanical strain is applied [53–56]. The piezoresistive 
effect in metals and semiconductors was discovered in the 18th century and 19th 
respectively. For some electrical conductors with the same physical property when 
measured in different directions, the relative resistance change can be derived as ∆ = ∆ 1 2𝑣 ∆ , (2) 

where 𝑙  describes the length of the electrical conductor, 𝑣  is Possion’s ration of the 
electrical conductor, and 𝜌 is the resistivity. As described in this formula, the change of 
the length ∆𝑙  and the variance of the 𝜌 ∆𝜌  determine the change of resistance ∆𝑅  
[54,57]. 

As depicted in Figure 7a, the application of an external force induces compressive 
deformation in the sensor within increasing material contact, which creates additional 
conductive paths and varying resistance. In recent years, studies have indicated that strain 
sensors fabricated with nanomaterials, when exposed to sound waves, generally exhibit 
the piezoresistive effect and are widely recognized as sound sensors. These nanomaterials 
include graphene [55,58,59], carbon nanotube (CNT) [60–62], MXene [19,63–66], and so 
on. Tao et al. fabricated a sound sensor with graphene, derived from the graphene 
resistance changes in response to applied forces [58]. Ma et al. developed a piezoresistive 
sensor capitalizing on highly ordered hierarchical architectures of hybrid 3D 
MXene/reduced graphene oxide (MXene/rGO) (Figure 7b). This design combines the large 
specific surface area of graphene oxide with the excellent conductivity of MXene, enabling 
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Figure 6. Electromagnetic effect-based sound sensor. (a) The structure of the electromagnetic sensor.
(b) The sensor is attached to the neck for voice identification. (c) The time-frequency diagram
measured by a sensor attached to the neck and the frequency spectrum converted by a fast Fourier
transform [18].

2.4. Piezoresistive Sound Sensor

The piezoresistive effect refers to the change in resistance of a material of semicon-
ductor or metal when mechanical strain is applied [53–56]. The piezoresistive effect in
metals and semiconductors was discovered in the 18th century and 19th respectively. For
some electrical conductors with the same physical property when measured in different
directions, the relative resistance change can be derived as

∆R
R

=
∆l
l
(1 + 2v) +

∆ρ

ρ
, (2)

where l describes the length of the electrical conductor, v is Possion’s ration of the electrical
conductor, and ρ is the resistivity. As described in this formula, the change of the length
(∆l) and the variance of the ρ (∆ρ) determine the change of resistance (∆R) [54,57].

As depicted in Figure 7a, the application of an external force induces compressive
deformation in the sensor within increasing material contact, which creates additional
conductive paths and varying resistance. In recent years, studies have indicated that strain
sensors fabricated with nanomaterials, when exposed to sound waves, generally exhibit
the piezoresistive effect and are widely recognized as sound sensors. These nanomaterials
include graphene [55,58,59], carbon nanotube (CNT) [60–62], MXene [19,63–66], and so on.
Tao et al. fabricated a sound sensor with graphene, derived from the graphene resistance
changes in response to applied forces [58]. Ma et al. developed a piezoresistive sensor
capitalizing on highly ordered hierarchical architectures of hybrid 3D MXene/reduced
graphene oxide (MXene/rGO) (Figure 7b). This design combines the large specific surface
area of graphene oxide with the excellent conductivity of MXene, enabling the sensor
to recognize a wider range of pressures and detect the vibration when attached to the
throat (Figure 7c) [19]. Gong et al. proposed an ultrathin gold nanowires (AuNWs)
impregnated tissue paper sandwiched between a blank PDMS sheet and a patterned PDMS
sheet (Figure 7d), which could achieve the sensitivity of 1.14 kPa−1. As illustrated in
Figure 7e,f, when a voltage is fixed, the application of external pressure results in a decrease
in resistance and an increase in current [67].



Sensors 2024, 24, 1493 9 of 29Sensors 2024, 24, 1493 9 of 30 
 

 

 
Figure 7. Piezoresistive effect-based sound sensor. (a) The schematic illustration of the piezoresistive 
material sensing mechanism. (b) The fabrication process of the MX/rGO sensor. (c) The continuous 
monitoring of the tiny strain and human voice using MX/rGO sensors [19]. (d) Schematic illustration 
of the fabrication of the piezoresistive sensor based on AuNWs. (e,f) The illustration of the sensing 
mechanism and current changes when applying pressure [67]. 

2.5. Silent Speech Interfaces in Sound Recognition 
Alternative methods for sound recognition exist for scenarios where sound signals 

are unavailable. One such method is the silent speech interface, a system capable of gen-
erating a digital representation of speech by acquiring sensor data during the human 
speech production process [68]. For instance, some physiological signals during speaking 
are relevant to vocalization information, which can serve as a sensor in the silent speech 
interface [69–72]. Tanja Schultz et al. obtained a high recognition rate of oral word signals 
by using EMG signals [73]. Liu et al. fabricated a tattoo-like patch to acquire the EMG from 

Figure 7. Piezoresistive effect-based sound sensor. (a) The schematic illustration of the piezoresistive
material sensing mechanism. (b) The fabrication process of the MX/rGO sensor. (c) The continuous
monitoring of the tiny strain and human voice using MX/rGO sensors [19]. (d) Schematic illustration
of the fabrication of the piezoresistive sensor based on AuNWs. (e,f) The illustration of the sensing
mechanism and current changes when applying pressure [67].

2.5. Silent Speech Interfaces in Sound Recognition

Alternative methods for sound recognition exist for scenarios where sound signals
are unavailable. One such method is the silent speech interface, a system capable of
generating a digital representation of speech by acquiring sensor data during the human
speech production process [68]. For instance, some physiological signals during speaking
are relevant to vocalization information, which can serve as a sensor in the silent speech
interface [69–72]. Tanja Schultz et al. obtained a high recognition rate of oral word signals
by using EMG signals [73]. Liu et al. fabricated a tattoo-like patch to acquire the EMG from
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three muscle channels to recognize the instructions [74]. Compared with the acquisition of
only a single resistance or voltage signal, the simultaneous acquisition of the EMG signal
and other physiological signals will bring great help to the subsequent signal processing and
speech recognition [75,76]. Tian et al. proposed a dual-channel speech recognition system
based on the EMG and mechanical sensors. In comparison to utilizing the mechanical signal
of the neck muscles, the signals including the movement of the neck muscles and EMG
exhibit superior performance in sound detection and recognition [77]. In addition to EMG,
electroencephalographic (EEG) also plays a role in speech recognition. Pradeep Kumar
et al. developed a speech recognition framework with the help of EEG signals with high
accuracy in the recognition task of 30 text and not-text classes [78]. Anne Porbadnigk et al.
also investigated the use of EMG by utilizing 16 EEG channels with a 128-cap montage for
speech recognition [79]. Apart from the physiological signals, silent speech interfaces also
include some real-time characterization of the vocal tract methods such as using ultrasound
and optical imaging of the tongue and lips for speech recognition.

As stated before, the sensing principles for the latest generation of flexible and wear-
able sound sensors including capacitive, piezoresistive, piezoelectric, etc. The present
sensors have been gradually miniaturized and flexible with soft, highly curved properties,
playing a crucial role in the voice recognition capabilities of AT. However, the current AT
still have problems such as sensitivity and accuracy, which need to be further improved.
Additionally, optimal performance and durability during use also need to be focused [57].

3. Sound Emitter

The sound emitter is an important component of the AT. The successful restoration of
patients’ voices with the help of AT relies on the performance of the sound emitter [80]. A
sound emitter is a transducer that converts electrical signals into sound signals. Taking the
most common moving-coil sound emitter as an example, audio-electrical signals are trans-
mitted through an electromagnetic effect. This effect induces vibrations in its diaphragm,
resonating with the surrounding air and generating sound. However, the electromagnetic
effect requires a permanent magnet, a coil, and a diaphragm to create vibrations in the air
and then produce sound. As a result, moving-coil speakers are typically larger in size [6].
In addition to utilizing the traditional vibrating sound emitter, the AT can also produce
sound by means of the thermoacoustic (TA) effect [81]. This sound emitter is only a thin
film with a small size. Due to this principle, the AT can be worn directly on the patient’s
larynx as an electronic skin [82].

The sound emitters based on the TA effect is a device that generates sound using heat.
The physical process of the TA effect can be described as follows: when an alternating
current signal passes through a thin metal film, the film generates Joule heat, which is
rapidly transferred to the surrounding air medium. Due to the periodic rise and fall of the
temperature of the surface of the metal, the air molecules in the thin layer of the surface
of the metal are constantly expanding and contracting, thus generating sound waves. By
controlling the rate of heating and cooling, the frequency of the sound produced can be
modulated, allowing for the generation of different sound intensities and tones [11,83].

3.1. Development of the TA Sound Emitter

The TA effect was discovered more than 200 years ago. In the 18th century, Byron
Higgins experimented with a hydrogen flame placed in the proper position in a vertical
tube with openings at both ends, and sound was produced in the tube. This is historically
known as a singing flame and was the first discovery of the thermoacoustic effect.

In 1917, Arnold and Crandall proposed a TA sound emitter made of suspended
700-nm platinum film (Figure 8a) [84]. Then, they analyzed its sound-emitting mechanisms
theoretically. When an AC current with the sound frequency passes through the surface of
a platinum film with a low heat capacity, the heat is transferred to the ambient air, causing
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the air to expand periodically, thus producing sound. In their theory, the formula of the SP
can be derived as

Prms =

√
αρ0

2
√

πT0
× 1

r
×Pinput

√
f

Cs
, (3)

where Cs is the heat capacity per unit area (HCPUA) of the thermoacoustic thin film, and
f is the frequency of the excitation frequency. Pinput and r are the input power and the
distance between the thin film with the microphone, respectively. α, ρ0, and T0 are the
thermal diffusivity, density, and temperature of the ambient gas. This equation indicates
that the sound pressure produced by the TA sound emitters increases with smaller HCPUA,
higher frequency, and input power.
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Figure 8. Development of the TA sound emitter. (a) Simple TA sound emitter made of the platinum
strip [84]. (b-i) Cross-sectional view of the fabricated device and set-up for sound measurement. (b-ii)
Photograph of a top view of the device [81]. (c-i) Schematic illustration of the experimental setup for
CNT thin film sound emitters. (c-ii) A4 paper size CNT thin film sound emitter. (c-iii) the cylindrical
cage shape CNT thin film sound emitter [83].

Their theoretical model led to the derivation of the basic sound generation equation.
However, over the subsequent 100 years, the TA sound emitter has been overlooked, due to
the specific properties of materials and the limitation of signals being only at 4 kHz, coupled
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with low sound pressure. Nonetheless, it is crucial to acknowledge that this theoretical
groundwork provides a foundation for the subsequent development of the thermal.

It was not until 1999 that H. Shinoda et al. extended Amold et al.’s surface-sounding
theory. They introduced a porous-silicon-based sound emitter in Nature (Figure 8b) [81].
This approach involved applying a 30-nm-thick aluminum film on top of a 10-µm-thick,
porous silicon layer, resulting in a wide-band sound emitter capable of achieving a notable
sound pressure of 0.1 Pa (1–100 kHz). In this work, they enhanced and refined the previous
module. In their theory, the SP can be described as

P(x, ω) =

√
γαa

Ca

PA
vTA

× exp(−jkx)√
αC

× q(ω), (4)

where PA is atmospheric pressure, TA is room temperature, v is the sound velocity,
γ = Cp

Cv
= 1.4, Cp is the heat capacity at constant pressure, Cv is the heat capacity at constant

volume, k is the wavenumber of sound in free space. αa is the thermal conductivity in air,
and Ca is the HCPUA.

In the 21st century, the development of nanotechnology has led to breakthroughs in
TA sound emitter devices. In 2008, Xiao et al. achieved a groundbreaking in thermoacoustic
theory [83,85]. They fabricated a sound emitter utilizing CNT (Figure 8c). This device
boasts a wide frequency response range and a high SPL, due to the low HCPUA of CNT.
However, their experimental results did not align with Arnold and Crandall’s theory, then
they identified that Arnold’s theory neglected the rate of heat loss per unit area of the thin
film and the instantaneous heat exchange per unit area. Based on this observation, they
proposed their own model as follows:

Prms =

√
αρ0

2
√

πT0
× 1

r
×Pinput ×

√
f

Cs
×

f
f2√(

1 +
√

f
f1

)2
+

(
f
f2
+

√
f
f1

)2
, (5)

In their new module, two constants f1 and f2 were added, f1 = αβ2

πk2 and f2 = β0
πCs

.
Additionally, the previous Arnold’s theory is only suitable for higher HCPUA and is not
applicable to smaller HCPUA. Xiao et al. introduced a modified model that overcame these
limitations. Based on their theory’s findings, they fabricated a CNT thin film TA sound
emitter, which possesses the merits of nanometer thickness and are transparent, flexible,
and stretchable [83].

In 2010, Hu et al. modeled a TA sound emitter in the low and high-frequency bands
on the basis of H. Shinoda [86], confirming that there exists a very wide range of con-
stant amplitude-frequency response mostly in the ultrasonic region for TA emission from
any solid. In the same year, V. Vesterinen et al. verified the theoretical model by using
nanoscale aluminum as a sound-emitting layer (Figure 9a) [87]. Then, they concluded that
the primary factor influencing sound pressure in the low-frequency band is the properties
of the substrate, whereas in the high-frequency band, the material’s heat capacity is the
predominant major. However, there are still some defects in Hu’s model. In 2011, Tian et al.
prepared graphene as a thermoacoustic device by means of chemical vapor deposition
(CVD) (Figure 9b) [88]. Then, they elucidated the relationship between the surface temper-
ature of the sound-emitting layer and the applied energy. Their experimental results are
not in line with the previous module. They found that in Hu’s module, they omitted the 30
nm aluminum which functioned as the heat source. They assumed that the conductor was
thin enough for this aspect and could be neglected. Owing to these findings, they modified
their module as follows:
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Figure 9. Development of the TA sound emitter. (a-i) An illustration of sound radiation from array
of metal wires in modeling and experiments of TA sound emitters. (a-ii) comparisons between
measurement and analytic model [87]. (b-i) Schematic diagram of test platform for graphene sound
emitter. (b-ii) Onsite photo of the experimental setup. [88] (c-i) onsite photo of the experimental setup
for graphene-based intelligent AT. (c-ii) the SPL versus the frequency showing that the model agrees
well with experimental results [58].

For f < as
4πL2

S
at low frequencies in far-field, the SP could be derived as

Prms =
R0√
2r0

× γ − 1
vg

×
eg

M(es + ac) + eg
× q0, (6)
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for f > as
4πL2

S
at low frequencies in far-field, the SP could be derived as

Prms =
R0√
2r0

× γ − 1
vg

×
eg

(es + ac) + eg
× q0, (7)

where f is the frequency of voice; αs and Ls is the thermal diffusivity and thickness of
the substrate, respectively; r0 is the distance between the TA sound emitters and the
microphone for the test; γ is the heat capacity ratio in gas; υg is the velocity of voice in
gas; ei is the thermal effusivity of material which is determined by material; q0 is the input
power density; M is a frequency-related factor.

Xie et al. also proposed a new model [89], based on the energy conversation, which is
easy to analyze and calcite. They module can be displayed as follows:

prms =
mair· f ·

.
(Qair)

2
√

2CpT0r
, (8)

where mair is the molecular weight of air, f is the frequency of the acoustic, Qair is the
thermal energy diffused into the air, Cp is the heat capacity at constant pressure, T0 is the
room temperature and r is the measuring distance from the source. Tao et al. verified the
correctness of the experiment (Figure 9c) [58].

3.2. TA Sound Emitter Made of Different Materials

A high-performance TA sound emitter needs to efficiently conduct heat into the air
and convert it into sound. This imposes elevated requirements on the sound-generating ma-
terial, which needs to have a very low specific HCPUA. In order to make high-performance
TA sound emitter devices, three conditions should be satisfied. First, the conductor should
be thin enough with a low HCPUA. Second, the conductor should be suspended to prevent
thermal leakage from the substrate. Third, the conductor area should be large enough to
build a sufficient sound field [90]. Various materials can be used in the construction of
TA sound emitters, each with its own set of characteristics and applications. There are
some common materials including graphene [90–92], MXene [11,93], CNT [94–96], metallic
nanowires [97,98], and so on.

3.2.1. Graphene

Graphene is an emerging two-dimensional material with high electromobility, high
flexibility, and low heat capacity. It is very suitable to be applied in TA sound emitters.
Graphene-based TA devices combine the advantages of graphene and TA sound emitter,
exhibiting unique and excellent performance. The sonic frequency required will change as
the frequency of the excitation voltage is altered.

CVD is a common technique for graphene preparation. In 2012, J. Suk et al. prepared
a graphene film with excellent light transmission by CVD and fabricated it into a TA
sound emitter (Figure 10a) [91]. Then, they demonstrated the effect of different substrates
and areas of substrates on the sound pressure through experimental studies. For the first
time, they improved the influence of the sound pressure from the membrane material
to the flexible substrate, such as PET. Meanwhile, they experimented with the TA sound
emitter with different curvatures, which opened a new application of the TA sound emitter
in flexible devices. Using the same fabrication technique, CVD, Tian et al. prepared
monolayer graphene, which has a defect-free structure and excellent light transmission
and can be controlled in terms of the number of layers [90]. The monolayer graphene
was then fabricated into graphene headphones (Figure 10b). Then they tested its delay,
flatness, and power linearity. Due to its ultra-high frequency response, TA sound emitter
headphones have been utilized in animal studies as signal transmitters, facilitating the
future exploration of animal communication.
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Figure 10. TA sound emitter made of different materials. (a) Monolayer graphene on PET as transpar-
ent and flexible sound emitters [91]. (b) Graphene earphone in a commercial earphone casing [90].
(c) Schematic of graphene sound emitter when attached to throat [80]. (d) Schematic diagram of
the interaction paradigm of the intelligent artificial graphene throat [13]. (e) Schematic structure
of MXene-based TA sound emitter [93]. (f) Schematic of the MXene-based TA sound measure-
ment setup [20]. (g) Schematic diagram of suspended CNT-based TA sound emitter geometry [99].
(h) Schematic structure of SWCNTs-based TA sound emitter [16]. (i) Photograph of flexible and
transparent silver nanowire-based sound emitter [100]. (j) Optical image of gold nanowire-based TA
sound emitter [101].
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The frequency of graphene TA sound emitters is linked to the voltage and current
applied. M.S. Heath et al. proposed a graphene-based ultrasonic TA sound emitter by
combining various frequencies of alternating current applied to a thermoacoustic device to
generate sound waves of different frequencies. The TA device was then made into a field
effect tube, and the bias voltage was controlled to switch the TA sound emitter on and off
and adjust the volume of the TA sound emitter [92].

The graphene sound emitter exhibits outstanding electromobility and flexibility, en-
abling its attachment to a person’s skin. In this capacity, it serves as a sound emitter in AT.
In 2019, Wei et al. proposed a wearable skinlike ultrasensitive artificial graphene, which can
serve as a sound emitter and can be directly attached to the larynx of the aphasic person
(Figure 10c) [80]. In 2023, Yang et al. also fabricated an AT within a graphene sound emitter
(Figure 10d) [13].

3.2.2. MXene

MXene is 2D transition metal carbides or carbonitrides with the composition Mn+1XnTx,
where M is a transition metal; X is carbon or nitrogen; T represents surface functional groups
such as -OH, =O, and -F; and n is an integer from one to four [85,102–105]. In particular, the
abundant surface functional groups on MXene enable strong adhesion to various substrates.
This capability allows the fabrication of mechanically stable flexible TA sound emitters,
ensuring resistance to delamination from substrates during mechanical deformations [20].

In comparison to graphene, the MXene-based sound emitter device has a higher
SP than that of graphene with the same thickness. Gou et al. fabricated MXene-based
TA sound emitters using anodic aluminum oxide (AAO) and polyimide (PI) substrates
(Figure 10e) [93]. These Ti3C2 MXene exhibits a higher SPL of 68.2 dB (f = 15 kHz) and
displays a very stable sound output spectrum when the frequency varies from 100 Hz to
20 kHz.

The property of TA sound emitters based on MXene is stable. In a study conducted
in 2023, Kim et al. successfully fabricated an ultrathin MXene-based TA sound emitter ex-
hibiting consistent sound performance for 14 days (Figure 10f) [20]. Moreover, these sound
emitters exhibit deformability in various configurations such as bent, twisted, cylindrical,
and stretched-kirigami. They can be manipulated into diverse 2D and 3D shapes under
different mechanical deformations.

3.2.3. CNT

CNTs are cylindrical structures composed of carbon atoms with extraordinary elec-
trical and mechanical properties. CNTs exist in various forms, including SWCNTs and
multi-walled carbon nanotubes (MWCNTs), depending on the number of layers of carbon
atoms [106]. CNTs have low HCPUA and high surface area per unit volume, which helps
to generate high-level TA sound. In addition, the aerogel structure of CNT films facilitates
the permeation of gas molecules, boosting its efficiency remarkably in sound emitting [16].

In 2015, Mason et al. observed the thermoacoustic transduction process at the single-
molecule level, as illustrated in Figure 10g [99]. Leveraging this minimal length scale, they
tested the assumptions made in previous models used to describe 2D thermoacoustic films.
Additionally, they sought to establish correlations between the thermoacoustic efficiencies
of these nanotube devices and their electrical impedance, aiming to gain insights into
underlying loss mechanisms.

Similar to the previously discussed graphene TA sound emitters, when the HCPUA of
CNT films is so low, the CNT TA sound emitters can also achieve very high SP. Romanov
et al. fabricated TA sound emitters made of thin and freestanding films of randomly
oriented SWCNTs (Figure 10h) [16] with a small HCPUA, the maximum frequency of the
emitting sound can reach as high as 100 kHz.
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3.2.4. Metallic Nanowires

Metallic nanowires are extremely thin wires with diameters on the nanoscale, with
many unique behaviors that have not been seen in bulk materials. [100,107–110]. Ag
nanowires (AgNWs) are one kind of metallic nanowires, and there is high conductivity
and transmittance in random networks. Utilizing this property, Tian et al. fabricated
flexible, ultrathin, and transparent sound-emitting devices with a low driving voltage, as
illustrated in Figure 10i [100]. However, the presence of nanowire–nanowire junctions
within these devices poses challenges in precisely defining their lateral dimensions. In
contrast to AgNWs, AuNWs exhibit distinct properties. They can be precisely defined
lateral dimensions. Consequently, AuNWs allow for experimental performance comparison
with theoretical predictions. By employing AuNWs, Dutta et al. prepared TA sound
emitters consisting of arrays (Figure 10j) [101]. Their results fit with the classical theory
proposed by Vesterinen et al. [87].

Due to the high intrinsic electrical conductivity of copper, copper nanowires (CuNWs)
also represent a promising future in the TA sound emitter. Bobinger et al. fabricated TA sound
emitters utilizing CuNWs [110], featuring an exceptional HCPUA of 1.9 × 10−2 J/(m2K),
rendering them well-suitable for applications of TA sound emitters.

In summary, TA sound emitters have been invented and discussed since the early 20th
century. Since then, these emitters have undergone significant evolution and refinement,
paralleling the continuous advancements in material preparation techniques. In the process,
materials have evolved from nanoscale aluminum layers to carbon nanotubes, and finally
to graphene, which is now the dominant material. Furthermore, applications have also tran-
sitioned from the simplicity of basic TA sound emitters to their integration and expanded
use, including sophisticated roles such as serving as sound emitters in intelligent AT.

4. Post-Processing and Recognition Algorithm

Based on sound detect devices mentioned in Section 2, vibration signals and other
physiological signals can be collected directly. Semantic analysis of these signals is the
ultimate purpose of AT, as these signals contain rich and crucial infseormation for commu-
nication [111–114]. The simplest way for recognition and distinction is directly observing
the electrical output wave or capturing the wave with a microcontroller in the time do-
main [80,115,116]. Nevertheless, some throat vibration signals with similar pronunciations
can be challenging to distinguish in the time domain. To accurately analyze semantic
information, machine learning is an appropriate solution [72,117–119].

Depending on whether the input data is labeled, the machine learning algorithm
can mainly be devised into supervised learning, where the input data is labeled, and
unsupervised learning, where the input data is not labeled. The training set for the
semantic recognition needs to be labeled, so most of the machine learning algorithm
utilized is supervised learning algorithms, such as neutral network [120–122], support
vector machine (SVM) [123], Bayes classification [124], and so on.

4.1. SVM

SVM is a supervised machine learning algorithm used for classification and regression
tasks. SVM classifies data by constructing hyperplanes in a high-dimensional space. It
represents samples as points, maximizing the gap between distinct categories. SVM adapts
to complex patterns using kernel functions, making it suitable for diverse applications like
image recognition and text classification. Moreover, due to its ability to identify decisive
support vectors and eliminate numerous redundant training samples, SVM is a helpful tool
for avoiding the “dimension disaster”. Fang et al. fabricated a PVDF flexible piezoelectric
sensor to collect the throat vibration signals, utilizing the SVM to recognize and process the
signals [114]. During the machine learning process, the number of training sets and test
sets is very important which determines the accuracy and training cost. In this work, they
discovered that when the number of training set samples and test set samples was 50 and
100, a very small sample, the training sets and test sets can represent the best performance.
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As for the hyper parameter, they adopted a heuristic method Grid Search-Support Vector
Machine (GSSVM), which finds the appropriate hyper parameters through a grid search
with a specified range and step size. As depicted in Figure 11a,b, the 3D viewer illustrates
that when the penalty factor ‘c’ was set to 22.6274, the recognition accuracy reached its
optimum level. The result of accuracy for speaker recognition and semantic recognition
can reach as high as 95.97% and 97.5%, respectively.
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4.2. Neural Network

Neural network is a computational model, inspired by the structure and function
of the human brain, particularly the work principle of neurons. A convolutional neural
network (CNN) is a specialized type of neural network that learns feature engineering by
itself. The CNN with deep structures is adept at uncovering concealed intrinsic connections
within the data and extracting abstract features effectively. The structure of the CNN
consists of an input layer, convolutional layers, pooling layers, fully connected layers, and
output layers. As a fundamental building block, the convolutional layers apply filters or
kernels to extract the features in the input data. Moreover, the pooling layers follow the
convolutional layers and are used to downsample the spatial dimensions of the input and
reduce computation. In the end, the fully connected layers connect every neuron from the
previous layers to the current layers and lead to the output layers that produce the final
predictions. Jin et al. developed an MXene-based AT and harnessed CNN to accomplish
the categorization task of distinguishing between long and short vowels (Figure 12) [12].
Owing to the deep structure of the neural network, a large amount of data is required.
In this work, a total of 1500 data was adopted, including 750 long vowels and 750 short
vowels. Among them, 1050 data were randomly selected as the training data set, and the
others were used as the testing data set. After about 200 epochs of training, the result of
accuracy for long vowels and short vowels reached 83.6% and 88.9% respectively.

4.3. Relief

Relief is a feature selection algorithm employed in machine learning and data mining.
Especially beneficial when dealing with datasets containing numerous features, Relief
aims to recognize the most crucial features for a predictive model. As an algorithm
capable of identifying the most relevant features, Relief can collaborate with other feature
extraction algorithms such as CNN and others, to identify valuable features, and reduce
data dimensions. Yang et al. utilizing an integrated machine learning model proposed a
graphene-based intelligent wearable AT for speech recognition and interaction [13]. In this
work, they take advantage of the groundbreaking architectures within the realm of CNN,
AlexNet for feature extraction, and introduce an improved AlexNet model. Furthermore,
they choose Relief for feature selection and SVM as a classifier. As shown in Figure 13,
the improved AlexNet extracts 10 features through the five convolution layers and other
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layers, then the Relief sorts the most important features for the SVM to classify. Compared
with other models, including single AlexNet and another ensemble model (improved
AlexNet + SVM), the model composed of improved AlexNet, Relief, and SVM attains
significant enhancement in classification and time cost (Figure 14a). The result of accuracy
can reach more than 90% in the task of recognizing daily words.
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rate [13]. (b) The illustration of Au/PU nanomesh strain sensor and Au nanomesh EMG electrodes.
(c) The SCNN algorithm consists of ResNet18 for the EMG signal and two-layer CNN for the stress
signal. (d) The training loss and classification accuracy for the SCNN model [15].

In addition to employing machine learning algorithms, mixed-modality is also har-
nessed in the signals acquisition and process, a mixed-modality signals can capture different
aspects of information, resulting in enhanced accuracy and performance compared to using
a single modality in isolation [76]. Qiao et al. applied the Au nanomesh as the physiological
electrodes to detect EMG signal, while leveraging the Au/PU nanomesh as the strain sen-
sor in the throat (Figure 14b). Furthermore, they introduced a synergetic CNN algorithm
(Figure 14c) consisting of a modified CNN to analyze the EMG signals and a two-layer
CNN to analyze the stress-strain, aiming at distinguishing voice signals. The result of the
accuracy can reach as high as 98.9% (Figure 14d) [15].
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In summary, the speech recognition function serves as the bridge connecting the sound
sensor component of AT to the sound emitter component. Nowadays, the advancement
of machine learning algorithms, including CNN, AlexNet, and other artificial algorithms,
has significantly improved recognition accuracy and expanded the language corpus. This
expansion has broadened the application landscape of AT.

5. AT Serving as a Sound Sensor and Emitter

This paper has introduced the three components of AT in early sections, namely, the
sound-sensing part, the sound-emitting part, and the speech recognition part. However,
it should be noted that the AT is not comprised of a single component; rather, it is a
combination of the three parts.

Wei et al. developed a device that integrates both sound sensing and sound emission
capabilities with speech recognition functions. They devised a system for sound sensing
utilizing a custom-made circuit board (Figure 15a,b) and performed feature extraction
in the time domain based on changes in resistance (Figure 15c), then they connected the
AT to the microcontroller which transforms the changes of the resistances into different
voltages. Variances in voltage will result in different sounds in the emitter section of the AT.
Consequently, if the tester executes strong movements, there will be a significant voltage
variation, causing the sound emitter to say “OK”. Conversely, if the tester’s movements are
weak, the sound emitter will state “NO” [80].
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a sound and motion sensor. (b) The sound detection system. The sound detection device is connected
to the circuit board and displays resistance. (c) The resistance response to the sound “Happy New
Year” [80].

Tao et al. utilizing the microcontroller also developed a device comprising a sound
receiver and sound emitter with a voice recognition function in the time domain. Figure 16a
shows the workflows of the recognition process. The microcontroller will initially detect
the amplitude and the duration of the voice by capturing the resistance of the graphene AT
until either the amplitude or time reaches the thresholds. Afterward, the digital function
generator will be applied to the graphene AT for 3 s. In their device, different amplitude
and last time will lead to the activation of different digital function generators, producing
varied volumes and frequencies [58].
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fast’, ‘What’s for lunch’, and ‘What’s for dinner’ can be accurately identified, achieving a 
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Figure 16. The AT can serve as a sound sensor and emitter with a speech recognition function. (a) The
working procedure of the artificial throat [58]. (b) The composition of the AT based on Au/PVA
and Au/PU nanomesh [15]. (c) Schematic view of a sound emitter using graphene as the emission
component [88]. (d) The AT can detect the movement of the throat and emit sound. (e) The tester
wearing the graphene AT. Scale bar, 1 cm [58]. (f) The AT serves as the sound emitter and sound
sensor simultaneously [58].

Qiao et al. further proposed AT combined with sound sensors, sound emitters, and
speech recognition, as previously mentioned [15]. Utilizing machine learning algorithms
for speech recognition, individual English letters, such as ‘B’, ‘C’, ‘D’, ‘E’, and ‘F’, can
be discerned through the combination of EMG and strain sensor, Au/PVA nanomesh, in
the neck muscle. Following the classification by the algorithms, the sound sensor is then
repurposed as a sound emitter, producing the corresponding letter at an intensity of 78 dB.

With larger datasets and more sophisticated algorithms, as introduced in the paper
previously, Yang et al. proposed an enhanced and more intelligent AT [13]. Their innovation
extends the scope from identifying individual letters to recognizing complete sentences.
Common everyday language sentences like ‘I’m back’, ‘I’m fine’, ‘What’s for breakfast’,
‘What’s for lunch’, and ‘What’s for dinner’ can be accurately identified, achieving a high
correct rate in patients with a laryngectomy. Following the classification of these sentences
by artificial intelligence algorithms, the AT can speak the corresponding sounds at an
approximate intensity of 60 dB. Additionally, the device exhibits robust performance,
effectively recognizing sentences in subtle sounds or noisy environments. Table 1 compares
various devices with sound emitting and detecting functions.
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Table 1. The device with sound emitting and sound detecting functions.

Material Substrate Principle of Sound
Emitting

Signal of Sound
Detecting Algorithm Accuracy Reference

Graphene PI TA effect Vibration None None [58]

Graphene PI TA effect Vibration None None [80]

Au and Au/PU PU TA effect Vibration and EMG Synergetic
GNN 98.9% [15]

Graphene PI TA effect Vibration and EMG CNN >88.14% [13]

MXene Parylene and
so on TA effect Unable to detect None None [20]

MXene PDMS Unable to emit Vibration CR-CNN >70% [12]

CNT None TA effect Unable to detect None None [16]

CNT Zn Unable to emit Vibration None None [125]

In conclusion, AT is a combination of the sound sensor and sound emitter with a
speech recognition function. Each part performs a specific function in speech recognition
and sound emitting. In terms of sound sensors, a variety of materials, such as graphene
and Au/Pu nanomesh, have been widely used in sound harvesting, which can effectively
capture the physiological signals and vibration signals of the human body (Figure 16b) [15].
Then, artificial intelligence algorithms such as SVM, CNN, and Relief are applied to infer
physiological signals from the voice signals, recognizing distinctive features. Following
this, by utilizing thermoacoustic materials such as graphene film (Figure 16c) [88], the
collected information will be output as audio signals. The AT commonly used is often a
device that combines all of the three functions in one unit (Figure 16d–f) [58].

6. Challenge and Prospect

The recent research developments of intelligent flexible AT with sound emitting,
detecting, and recognizing abilities are demonstrated above. However, many challenges
still need to be overcome.

In the post-process and artificial algorithms, the current artificial algorithms used for
AT are less general, and smaller in datasets with a restricted capability to recognize content.
On the one hand, the existing databases are still small, much less than the size of databases
in image recognition such as the ImageNet database. In the ImageNet database, there are
millions of annotated images, totaling approximately 14 million images with 20 thousand
various kinds of objects captured from various angles, perspectives, and environments.
However, most of the databases for AT have been built only by the researchers themselves,
and the databases are limited in terms of the daily language they can cover, making it
difficult to cover other aspects of life. In Yang’s model [13], the dataset size is less than ten
thousand, with fewer than ten categories for each classification task. In Jin’s model [12],
there are only 1900 elements in their dataset with only two categories in the classification
task. Consequently, the existing trained models are less general, and limited to some basic
phrases and sentences. On the other hand, the researchers lack the willingness to upload
the self-built databases. In consequence, the existing public database for AT is extremely
rare, lacking a substantial foundation for training large-scale AT speech recognition models.

In terms of hardware, the flexibility of the current AT circuit is still deficient. In the
existing soft wearable instruments, the circuit is always flexible and combined with the
sensors. In 2023, Yoo et al., in Rogers’ group, proposed a wireless sensing system for physi-
ological monitoring that integrated the circuit and sensors into a single combination [126].
Similarly, in 2023, Shinjae Kwon et al. also developed a sleep monitoring system that
combined the circuits and sensors into a unified assembly [127]. However, current AT often
requires pairing with external power supplies, microcontrollers, etc., which hampers their
portability and impedes their widespread adoption and practical use. The cooperation
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relationship between sensors, circuits, and microcontrollers also should be optimized. Fur-
thermore, to enhance stability and achieve a higher signal-to-noise ratio, it is necessary to
incorporate facilities and devices designed for shielding against external interference. The
ideal solution is a system where the sensors, circuits, microprocessors, etc. are flexible and
as small as possible.

In addition to the two aspects mentioned earlier, the existing AT also falls short of
meeting the requirements of portable medical products. The current trend in the develop-
ment of portable medical products is toward multifunctionality, catering to a wide range of
operating scenarios. The pursuit of multifunctionality not only enhances efficiency but also
reduces costs and resource consumption, expanding the scope of applications. However,
the functions of the existing AT are relatively homogeneous and require further improve-
ment to align with the evolving direction of medical device development. In the near future,
it is crucial to expand the application scope of the AT. Firstly, we can leverage the AT’s
capability to acquire EMG signals for sleep monitoring to diagnose certain diseases. Then,
we can enhance our algorithms to enable language translation functionalities, allowing the
AT to assist individuals with communication barriers due to language differences, not just
limited to these people with larynx diseases.

Additionally, there is another issue that requires attention. There are relatively limited
experimental studies on the AT in clinical applications, which leads to a lack of experimen-
tal data to support the clinical safety of the AT. In Yang’s study [13], patients wore the AT for
a short duration during testing. However, the effects of prolonged wear and environmental
factors such as temperature and humidity on the functionality of the AT remain unclear.
Additionally, the study only involved one patient as a tester, which may limit the gener-
alizability of the findings. More participants are needed for a more comprehensive and
reliable assessment. In the studies conducted by Jin [12], the evaluation of AT was limited
to healthy individuals, lacking data from patients and clinical practice settings. Although
the intelligent AT technology theoretically has the potential in medical applications, more
experimental data is needed to assess its feasibility and safety in practical medical settings.

In conclusion, a comprehensive review of the AT has been demonstrated which
consists of the detection, emitting sound, and algorithms for speech recognition. The sensor
for detecting sound can be divided into capacitive, piezoelectric, electromagnetic, and
piezoresistive. Then some devices for emitting sound, including the TA effect are discussed.
The algorithms utilized by AT for speech recognition also has been analyzed carefully.
Finally, we state the challenge and outlook of this AT. Compared with the conventional
electrolarynx, the AT with flexible material and adhesive to the skin very well is more
portable and easier to use for mute people and is superior in other aspects.

Author Contributions: Investigation, J.F., Z.D., C.L. (Chuting Liu), L.S., X.L. and M.P.; Resources,
S.P. and H.L.; Writing—Original Draft Preparation, J.F. and Z.D.; Writing—Review & Editing, Y.Q.,
C.L. (Chang Liu), J.L. and J.W.; Visualization, J.F. and Z.D.; Supervision, Y.Q. and J.Z.; Project
Administration, Y.Q. and J.Z.; Funding Acquisition, Y.Q. and J.Z. All authors have read and agreed to
the published version of the manuscript.

Funding: This work was supported by National Natural Science Foundation of China (No. 62201624;
32000939; 21775168; 22174167; 51861145202; U20A20168), Shenzhen Science and Technology Pro-
gram (RCBS20221008093310024), Shenzhen Research Funding Program (JCYJ20190807160401657;
JCYJ201908073000608), the Open Research Fund Program of Beijing National Research Center for
Information Science and Technology (BR2023KF02010). The authors are also thankful for the support
from Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province
(No. 2020B1212060077).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.



Sensors 2024, 24, 1493 25 of 29

References
1. Siegel, R.L.; Miller, K.D.; Wagle, N.S.; Jemal, A. Cancer statistics, 2023. CA Cancer J. Clin. 2023, 73, 17–48. [CrossRef] [PubMed]
2. Ferlay, J.; Colombet, M.; Soerjomataram, I.; Mathers, C.; Parkin, D.M.; Piñeros, M.; Znaor, A.; Bray, F. Estimating the global cancer

incidence and mortality in 2018: GLOBOCAN sources and methods. Int. J. Cancer 2019, 144, 1941–1953. [CrossRef]
3. Siegel, R.L.; Miller, K.D.; Goding Sauer, A.; Fedewa, S.A.; Butterly, L.F.; Anderson, J.C.; Cercek, A.; Smith, R.A.; Jemal, A.

Colorectal cancer statistics, 2020. CA Cancer J. Clin. 2020, 70, 145–164. [CrossRef]
4. da Silva, A.P.; Feliciano, T.; Freitas, S.V.; Esteves, S.; e Sousa, C.A. Quality of life in patients submitted to total laryngectomy.

J. Voice Off. J. Voice Found. 2015, 29, 382–388. [CrossRef]
5. Tang, C.G.; Sinclair, C.F. Voice restoration after total laryngectomy. Otolaryngol. Clin. N. Am. 2015, 48, 687–702. [CrossRef]
6. Liu, H.; Ng, M.L. Electrolarynx in voice rehabilitation. Auris Nasus Larynx 2007, 34, 327–332. [CrossRef]
7. Barney, H.; Haworth, F.; Dunn, H. An experimental transistorized artificial larynx. Bell Syst. Tech. J. 1959, 38, 1337–1356. [CrossRef]
8. Kaye, R.; Tang, C.G.; Sinclair, C.F. The electrolarynx: Voice restoration after total laryngectomy. Med. Devices Evid. Res. 2017, 10,

133–140. [CrossRef]
9. Isshiki, N.; Tanabe, M. Acoustic and aerodynamic study of a superior electrolarynx speaker. Folia Phoniatr. Logop. 1972, 24, 65–76.

[CrossRef]
10. Wu, L.; Wan, C.; Wang, S.; Wan, M. Improvement of Electrolaryngeal Speech Quality Using a Supraglottal Voice Source With

Compensation of Vocal Tract Characteristics. IEEE Trans. Biomed. Eng. 2013, 60, 1965–1974.
11. Qiao, Y.; Gou, G.; Wu, F.; Jian, J.; Li, X.; Hirtz, T.; Zhao, Y.; Zhi, Y.; Wang, F.; Tian, H.; et al. Graphene-Based Thermoacoustic Sound

Source. ACS Nano 2020, 14, 3779–3804. [CrossRef]
12. Jin, Y.; Wen, B.; Gu, Z.; Jiang, X.; Shu, X.; Zeng, Z.; Zhang, Y.; Guo, Z.; Chen, Y.; Zheng, T.; et al. Deep-Learning-Enabled

MXene-Based Artificial Throat: Toward Sound Detection and Speech Recognition. Adv. Mater. Technol. 2020, 5, 2000262.
[CrossRef]

13. Yang, Q.; Jin, W.; Zhang, Q.; Wei, Y.; Guo, Z.; Li, X.; Yang, Y.; Luo, Q.; Tian, H.; Ren, T.-L. Mixed-modality speech recognition and
interaction using a wearable artificial throat. Nat. Mach. Intell. 2023, 5, 169–180. [CrossRef]

14. Abd Almisreb, A.; Jamil, N.; Din, N.M. Utilizing AlexNet deep transfer learning for ear recognition. In Proceedings of the 2018
Fourth International Conference on Information Retrieval and Knowledge Management (CAMP), Kota Kinabalu, Malaysia,
26–28 March 2018; IEEE: New York, NY, USA, 2018; pp. 1–5.

15. Qiao, Y.; Gou, G.; Shuai, H.; Han, F.; Liu, H.; Tang, H.; Li, X.; Jian, J.; Wei, Y.; Li, Y.; et al. Electromyogram-strain synergetic
intelligent artificial throat. Chem. Eng. J. 2022, 449, 137741. [CrossRef]

16. Romanov, S.A.; Aliev, A.E.; Fine, B.V.; Anisimov, A.S.; Nasibulin, A.G. Highly efficient thermophones based on freestanding
single-walled carbon nanotube films. Nanoscale Horiz. 2019, 4, 1158–1163. [CrossRef]

17. Lang, C.; Fang, J.; Shao, H.; Ding, X.; Lin, T. High-sensitivity acoustic sensors from nanofibre webs. Nat. Commun. 2016, 7, 11108.
[CrossRef]

18. Zhao, Y.; Gao, S.; Zhang, X.; Huo, W.; Xu, H.; Chen, C.; Li, J.; Xu, K.; Huang, X. Fully flexible electromagnetic vibration sensors
with annular field confinement origami magnetic membranes. Adv. Funct. Mater. 2020, 30, 2001553. [CrossRef]

19. Ma, Y.; Yue, Y.; Zhang, H.; Cheng, F.; Zhao, W.; Rao, J.; Luo, S.; Wang, J.; Jiang, X.; Liu, Z.; et al. 3D Synergistical MXene/Reduced
Graphene Oxide Aerogel for a Piezoresistive Sensor. ACS Nano 2018, 12, 3209–3216. [CrossRef]

20. Kim, J.; Jung, G.; Jung, S.; Bae, M.H.; Yeom, J.; Park, J.; Lee, Y.; Kim, Y.R.; Kang, D.h.; Oh, J.H.; et al. Shape-Configurable
MXene-Based Thermoacoustic Loudspeakers with Tunable Sound Directivity. Adv. Mater. 2023, 35, 2306637. [CrossRef]

21. Sujatha, C. Fundamentals of Acoustics. In Vibration, Acoustics and Strain Measurement: Theory and Experiments; Sujatha, C., Ed.;
Springer International Publishing: Cham, Switzerland, 2023; pp. 161–217.

22. Beranek, L.; Mellow, T. Acoustics: Sound Fields, Transducers and Vibration; Academic Press: Cambridge, MA, USA, 2019.
23. Peters, R. Acoustics and Noise Control; Routledge: Abingdon, UK, 2013.
24. Schmitz, T.L.; Smith, K.S. Two degree of freedom forced vibration. In Mechanical Vibrations: Modeling and Measurement; Springer:

New York, NY, USA, 2012; pp. 167–198.
25. Tohyama, M. Sound in the Time Domain; Springer: Singapore, 2018.
26. Sivian, L.; White, S. On minimum audible sound fields. J. Acoust. Soc. Am. 1933, 4, 288–321. [CrossRef]
27. Lee, C.-Y.; Lee, G.-B. Humidity sensors: A review. Sens. Lett. 2005, 3, 1–15. [CrossRef]
28. Hong-Tao, S.; Ming-Tang, W.; Ping, L.; Xi, Y. Porosity control of humidity-sensitive ceramics and theoretical model of humidity-

sensitive characteristics. Sens. Actuators 1989, 19, 61–70. [CrossRef]
29. Reddy, A.; Narakathu, B.; Atashbar, M.; Rebros, M.; Rebrosova, E.; Joyce, M. Fully printed flexible humidity sensor. Procedia Eng.

2011, 25, 120–123. [CrossRef]
30. Miles, R.N. A compliant capacitive sensor for acoustics: Avoiding electrostatic forces at high bias voltages. IEEE Sens. J. 2018, 18,

5691–5698. [CrossRef]
31. Zawawi, S.A.; Hamzah, A.A.; Majlis, B.Y.; Mohd-Yasin, F. A review of MEMS capacitive microphones. Micromachines 2020, 11, 484.

[CrossRef]
32. Jung, Y.H.; Hong, S.K.; Wang, H.S.; Han, J.H.; Pham, T.X.; Park, H.; Kim, J.; Kang, S.; Yoo, C.D.; Lee, K.J. Flexible piezoelectric

acoustic sensors and machine learning for speech processing. Adv. Mater. 2020, 32, 1904020. [CrossRef]

https://doi.org/10.3322/caac.21763
https://www.ncbi.nlm.nih.gov/pubmed/36633525
https://doi.org/10.1002/ijc.31937
https://doi.org/10.3322/caac.21601
https://doi.org/10.1016/j.jvoice.2014.09.002
https://doi.org/10.1016/j.otc.2015.04.013
https://doi.org/10.1016/j.anl.2006.11.010
https://doi.org/10.1002/j.1538-7305.1959.tb01591.x
https://doi.org/10.2147/MDER.S133225
https://doi.org/10.1159/000263547
https://doi.org/10.1021/acsnano.9b10020
https://doi.org/10.1002/admt.202000262
https://doi.org/10.1038/s42256-023-00616-6
https://doi.org/10.1016/j.cej.2022.137741
https://doi.org/10.1039/C9NH00164F
https://doi.org/10.1038/ncomms11108
https://doi.org/10.1002/adfm.202001553
https://doi.org/10.1021/acsnano.7b06909
https://doi.org/10.1002/adma.202306637
https://doi.org/10.1121/1.1915608
https://doi.org/10.1166/sl.2005.001
https://doi.org/10.1016/0250-6874(89)87058-1
https://doi.org/10.1016/j.proeng.2011.12.030
https://doi.org/10.1109/JSEN.2018.2841345
https://doi.org/10.3390/mi11050484
https://doi.org/10.1002/adma.201904020


Sensors 2024, 24, 1493 26 of 29

33. Lee, S.; Kim, J.; Yun, I.; Bae, G.Y.; Kim, D.; Park, S.; Yi, I.-M.; Moon, W.; Chung, Y.; Cho, K. An ultrathin conformable vibration-
responsive electronic skin for quantitative vocal recognition. Nat. Commun. 2019, 10, 2468. [CrossRef]

34. Broadhurst, M.; Davis, G. Physical basis for piezoelectricity in PVDF. Ferroelectrics 1984, 60, 3–13. [CrossRef]
35. Cauda, V.; Stassi, S.; Bejtka, K.; Canavese, G. Nanoconfinement: An effective way to enhance PVDF piezoelectric properties. ACS

Appl. Mater. Interfaces 2013, 5, 6430–6437. [CrossRef]
36. Wang, Y.; Zheng, J.; Ren, G.; Zhang, P.; Xu, C. A flexible piezoelectric force sensor based on PVDF fabrics. Smart Mater. Struct.

2011, 20, 045009. [CrossRef]
37. Lim, J.; Kim, H.S. Effects of SWCNT/PVDF composite web behavior on acoustic piezoelectric property. Sens. Actuators A Phys.

2021, 330, 112840. [CrossRef]
38. Kang, M.-G.; Jung, W.-S.; Kang, C.-Y.; Yoon, S.-J. Recent Progress on PZT Based Piezoelectric Energy Harvesting Technologies.

Actuators 2016, 5, 5. [CrossRef]
39. Jain, A.; KJ, P.; Sharma, A.K.; Jain, A.; PN, R. Dielectric and piezoelectric properties of PVDF/PZT composites: A review. Polym.

Eng. Sci. 2015, 55, 1589–1616. [CrossRef]
40. Venkatragavaraj, E.; Satish, B.; Vinod, P.; Vijaya, M. Piezoelectric properties of ferroelectric PZT-polymer composites. J. Phys. D

Appl. Phys. 2001, 34, 487. [CrossRef]
41. Le, A.T.; Ahmadipour, M.; Pung, S.-Y. A review on ZnO-based piezoelectric nanogenerators: Synthesis, characterization

techniques, performance enhancement and applications. J. Alloys Compd. 2020, 844, 156172. [CrossRef]
42. Gullapalli, H.; Vemuru, V.S.; Kumar, A.; Botello-Mendez, A.; Vajtai, R.; Terrones, M.; Nagarajaiah, S.; Ajayan, P.M. Flexible

piezoelectric ZnO–paper nanocomposite strain sensor. Small 2010, 6, 1641–1646. [CrossRef]
43. Zhang, C.; Wang, X.; Chen, W.; Yang, J. An analysis of the extension of a ZnO piezoelectric semiconductor nanofiber under an

axial force. Smart Mater. Struct. 2017, 26, 025030. [CrossRef]
44. Wang, Z.L. Nanogenerators, self-powered systems, blue energy, piezotronics and piezo-phototronics–a recall on the original

thoughts for coining these fields. Nano Energy 2018, 54, 477–483. [CrossRef]
45. Qi, S.; Oudich, M.; Li, Y.; Assouar, B. Acoustic energy harvesting based on a planar acoustic metamaterial. Appl. Phys. Lett. 2016,

108, 263501. [CrossRef]
46. Lin, L.; Jing, Q.; Zhang, Y.; Hu, Y.; Wang, S.; Bando, Y.; Han, R.P.; Wang, Z.L. An elastic-spring-substrated nanogenerator as an

active sensor for self-powered balance. Energy Environ. Sci. 2013, 6, 1164–1169. [CrossRef]
47. Cui, N.; Gu, L.; Liu, J.; Bai, S.; Qiu, J.; Fu, J.; Kou, X.; Liu, H.; Qin, Y.; Wang, Z.L. High performance sound driven triboelectric

nanogenerator for harvesting noise energy. Nano Energy 2015, 15, 321–328. [CrossRef]
48. Shao, H.; Wang, H.; Cao, Y.; Ding, X.; Bai, R.; Chang, H.; Fang, J.; Jin, X.; Wang, W.; Lin, T. Single-layer piezoelectric nanofiber

membrane with substantially enhanced noise-to-electricity conversion from endogenous triboelectricity. Nano Energy 2021,
89, 106427. [CrossRef]

49. Yang, B.; Lee, C.; Xiang, W.; Xie, J.; He, J.H.; Kotlanka, R.K.; Low, S.P.; Feng, H. Electromagnetic energy harvesting from vibrations
of multiple frequencies. J. Micromechanics Microengineering 2009, 19, 035001. [CrossRef]

50. Liu, H.; Qian, Y.; Lee, C. A multi-frequency vibration-based MEMS electromagnetic energy harvesting device. Sens. Actuators A
Phys. 2013, 204, 37–43. [CrossRef]

51. Horng, R.-H.; Chen, K.-F.; Tsai, Y.-C.; Suen, C.-Y.; Chang, C.-C. Fabrication of a dual-planar-coil dynamic microphone by MEMS
techniques. J. Micromechanics Microengineering 2010, 20, 065004. [CrossRef]

52. Li, Y.; Qi, Z.; Yang, J.; Zhou, M.; Zhang, X.; Ling, W.; Zhang, Y.; Wu, Z.; Wang, H.; Ning, B.; et al. Origami NdFeB flexible
magnetic membranes with enhanced magnetism and programmable sequences of polarities. Adv. Funct. Mater. 2019, 29, 1904977.
[CrossRef]

53. Barlian, A.A.; Park, W.T.; Mallon, J.R.; Rastegar, A.J.; Pruitt, B.L. Review: Semiconductor Piezoresistance for Microsystems. Proc.
IEEE 2009, 97, 513–552. [CrossRef]

54. Fiorillo, A.; Critello, C.; Pullano, S. Theory, technology and applications of piezoresistive sensors: A review. Sens. Actuators A
Phys. 2018, 281, 156–175. [CrossRef]

55. Irani, F.S.; Shafaghi, A.H.; Tasdelen, M.C.; Delipinar, T.; Kaya, C.E.; Yapici, G.G.; Yapici, M.K. Graphene as a piezoresistive
material in strain sensing applications. Micromachines 2022, 13, 119. [CrossRef]

56. Stassi, S.; Cauda, V.; Canavese, G.; Pirri, C.F. Flexible tactile sensing based on piezoresistive composites: A review. Sensors 2014,
14, 5296–5332. [CrossRef]

57. Lin, Z.; Duan, S.; Liu, M.; Dang, C.; Qian, S.; Zhang, L.; Wang, H.; Yan, W.; Zhu, M. Insights into Materials, Physics and
Applications in Flexible and Wearable Acoustic Sensing Technology. Adv. Mater. 2023, 2306880. [CrossRef] [PubMed]

58. Tao, L.-Q.; Tian, H.; Liu, Y.; Ju, Z.-Y.; Pang, Y.; Chen, Y.-Q.; Wang, D.-Y.; Tian, X.-G.; Yan, J.-C.; Deng, N.-Q.; et al. An intelligent
artificial throat with sound-sensing ability based on laser induced graphene. Nat. Commun. 2017, 8, 14579. [CrossRef] [PubMed]

59. Wang, Y.; Yang, T.; Lao, J.; Zhang, R.; Zhang, Y.; Zhu, M.; Li, X.; Zang, X.; Wang, K.; Yu, W.; et al. Ultra-sensitive graphene strain
sensor for sound signal acquisition and recognition. Nano Res. 2015, 8, 1627–1636. [CrossRef]

60. Yamada, T.; Hayamizu, Y.; Yamamoto, Y.; Yomogida, Y.; Izadi-Najafabadi, A.; Futaba, D.N.; Hata, K. A stretchable carbon
nanotube strain sensor for human-motion detection. Nat. Nanotechnol. 2011, 6, 296–301. [CrossRef]

61. Liu, Z.; Qi, D.; Guo, P.; Liu, Y.; Zhu, B.; Yang, H.; Liu, Y.; Li, B.; Zhang, C.; Yu, J.; et al. Thickness-gradient films for high gauge
factor stretchable strain sensors. Adv. Mater. 2015, 27, 6230–6237. [CrossRef]

https://doi.org/10.1038/s41467-019-10465-w
https://doi.org/10.1080/00150198408017504
https://doi.org/10.1021/am4016878
https://doi.org/10.1088/0964-1726/20/4/045009
https://doi.org/10.1016/j.sna.2021.112840
https://doi.org/10.3390/act5010005
https://doi.org/10.1002/pen.24088
https://doi.org/10.1088/0022-3727/34/4/308
https://doi.org/10.1016/j.jallcom.2020.156172
https://doi.org/10.1002/smll.201000254
https://doi.org/10.1088/1361-665X/aa542e
https://doi.org/10.1016/j.nanoen.2018.09.068
https://doi.org/10.1063/1.4954987
https://doi.org/10.1039/c3ee00107e
https://doi.org/10.1016/j.nanoen.2015.04.008
https://doi.org/10.1016/j.nanoen.2021.106427
https://doi.org/10.1088/0960-1317/19/3/035001
https://doi.org/10.1016/j.sna.2013.09.015
https://doi.org/10.1088/0960-1317/20/6/065004
https://doi.org/10.1002/adfm.201904977
https://doi.org/10.1109/JPROC.2009.2013612
https://doi.org/10.1016/j.sna.2018.07.006
https://doi.org/10.3390/mi13010119
https://doi.org/10.3390/s140305296
https://doi.org/10.1002/adma.202306880
https://www.ncbi.nlm.nih.gov/pubmed/38015990
https://doi.org/10.1038/ncomms14579
https://www.ncbi.nlm.nih.gov/pubmed/28232739
https://doi.org/10.1007/s12274-014-0652-3
https://doi.org/10.1038/nnano.2011.36
https://doi.org/10.1002/adma.201503288


Sensors 2024, 24, 1493 27 of 29

62. Hata, K.; Futaba, D.N.; Mizuno, K.; Namai, T.; Yumura, M.; Iijima, S. Water-assisted highly efficient synthesis of impurity-free
single-walled carbon nanotubes. Science 2004, 306, 1362–1364. [CrossRef]

63. Yue, Y.; Liu, N.; Ma, Y.; Wang, S.; Liu, W.; Luo, C.; Zhang, H.; Cheng, F.; Rao, J.; Hu, X.; et al. Highly Self-Healable 3D
Microsupercapacitor with MXene-Graphene Composite Aerogel. ACS Nano 2018, 12, 4224–4232. [CrossRef]

64. Li, P.; Shi, W.; Liu, W.; Chen, Y.; Xu, X.; Ye, S.; Yin, R.; Zhang, L.; Xu, L.; Cao, X. Fabrication of high-performance MXene-based
all-solid-state flexible microsupercapacitor based on a facile scratch method. Nanotechnology 2018, 29, 445401. [CrossRef]

65. Wang, Y.; Yue, Y.; Cheng, F.; Cheng, Y.; Ge, B.; Liu, N.; Gao, Y. Ti3C2T x MXene-based flexible piezoresistive physical sensors.
ACS Nano 2022, 16, 1734–1758. [CrossRef]

66. Cheng, Y.; Ma, Y.; Li, L.; Zhu, M.; Yue, Y.; Liu, W.; Wang, L.; Jia, S.; Li, C.; Qi, T.; et al. Bioinspired microspines for a high-
performance spray Ti3C2T x MXene-based piezoresistive sensor. Acs Nano 2020, 14, 2145–2155. [CrossRef]

67. Gong, S.; Schwalb, W.; Wang, Y.; Chen, Y.; Tang, Y.; Si, J.; Shirinzadeh, B.; Cheng, W. A wearable and highly sensitive pressure
sensor with ultrathin gold nanowires. Nat. Commun. 2014, 5, 3132. [CrossRef]

68. Denby, B.; Schultz, T.; Honda, K.; Hueber, T.; Gilbert, J.M.; Brumberg, J.S. Silent speech interfaces. Speech Commun. 2010, 52,
270–287. [CrossRef]

69. Janke, M.; Wand, M.; Schultz, T. A spectral mapping method for EMG-based recognition of silent speech. In Proceedings of the
International Workshop on Bio-Inspired Human-Machine Interfaces and Healthcare Applications, Valencia, Spain, 20–23 January
2010; SciTePress: Setúbal, Portugal, 2010; pp. 22–31.

70. Wand, M.; Janke, M.; Schultz, T. Tackling Speaking Mode Varieties in EMG-Based Speech Recognition. IEEE Trans. Biomed. Eng.
2014, 61, 2515–2526. [CrossRef]

71. Janke, M.; Diener, L. EMG-to-Speech: Direct Generation of Speech From Facial Electromyographic Signals. IEEE/ACM Trans.
Audio Speech Lang. Process. 2017, 25, 2375–2385. [CrossRef]

72. Qiao, Y.; Luo, J.; Cui, T.; Liu, H.; Tang, H.; Zeng, Y.; Liu, C.; Li, Y.; Jian, J.; Wu, J.; et al. Soft Electronics for Health Monitoring
Assisted by Machine Learning. Nano-Micro Lett. 2023, 15, 66. [CrossRef]

73. Schultz, T.; Wand, M. Modeling coarticulation in EMG-based continuous speech recognition. Speech Commun. 2010, 52, 341–353.
[CrossRef]

74. Liu, H.; Dong, W.; Li, Y.; Li, F.; Geng, J.; Zhu, M.; Chen, T.; Zhang, H.; Sun, L.; Lee, C. An epidermal sEMG tattoo-like patch as a
new human–machine interface for patients with loss of voice. Microsyst. Nanoeng. 2020, 6, 16. [CrossRef]

75. Ngiam, J.; Khosla, A.; Kim, M.; Nam, J.; Lee, H.; Ng, A.Y. Multimodal deep learning. In Proceedings of the 28th International
Conference on Machine Learning (ICML-11), Bellevue, WA, USA, 28 June–2 July 2011; pp. 689–696.

76. Baltrušaitis, T.; Ahuja, C.; Morency, L.P. Multimodal Machine Learning: A Survey and Taxonomy. IEEE Trans. Pattern Anal. Mach.
Intell. 2019, 41, 423–443. [CrossRef]

77. Tian, H.; Li, X.; Wei, Y.; Ji, S.; Yang, Q.; Gou, G.-Y.; Wang, X.; Wu, F.; Jian, J.; Guo, H.; et al. Bioinspired dual-channel speech
recognition using graphene-based electromyographic and mechanical sensors. Cell Rep. Phys. Sci. 2022, 32, 101075. [CrossRef]

78. Kumar, P.; Saini, R.; Roy, P.P.; Sahu, P.K.; Dogra, D.P. Envisioned speech recognition using EEG sensors. Pers. Ubiquitous Comput.
2018, 22, 185–199. [CrossRef]

79. Porbadnigk, A.; Wester, M.; Calliess, J.; Schultz, T. EEG-based speech recognition-impact of temporal effects. In Proceedings of
the International Conference on Bio-Inspired Systems and Signal Processing, Porto, Portugal, 14–17 January 2009; SciTePress:
Setúbal, Portugal, 2009; pp. 376–381.

80. Wei, Y.; Qiao, Y.; Jiang, G.; Wang, Y.; Wang, F.; Li, M.; Zhao, Y.; Tian, Y.; Gou, G.; Tan, S.; et al. A Wearable Skinlike Ultra-Sensitive
Artificial Graphene Throat. ACS Nano 2019, 13, 8639–8647. [CrossRef]

81. Shinoda, H.; Nakajima, T.; Ueno, K.; Koshida, N. Thermally induced ultrasonic emission from porous silicon. Nature 1999, 400,
853–855. [CrossRef]

82. Fuchs, A.K.; Hagmuller, M.; Kubin, G. The New Bionic Electro-Larynx Speech System. IEEE J. Sel. Top. Signal Process. 2016, 10,
952–961. [CrossRef]

83. Xiao, L.; Chen, Z.; Feng, C.; Liu, L.; Bai, Z.-Q.; Wang, Y.; Qian, L.; Zhang, Y.; Li, Q.; Jiang, K.; et al. Flexible, Stretchable, Transparent
Carbon Nanotube Thin Film Loudspeakers. Nano Lett. 2008, 8, 4539–4545. [CrossRef]

84. Arnold, H.D.; Crandall, I.B. The Thermophone as a Precision Source of Sound. Phys. Rev. 1917, 10, 22–38. [CrossRef]
85. Hantanasirisakul, K.; Gogotsi, Y. Electronic and Optical Properties of 2D Transition Metal Carbides and Nitrides (MXenes). Adv.

Mater. 2018, 30, 1804779. [CrossRef]
86. Hu, H.; Wang, D.; Wang, Z. Solution for acoustic field of thermo-acoustic emission from arbitrary source. AIP Adv. 2014, 4, 107114.

[CrossRef]
87. Vesterinen, V.; Niskanen, A.O.; Hassel, J.; Helistö, P. Fundamental Efficiency of Nanothermophones: Modeling and Experiments.

Nano Lett. 2010, 10, 5020–5024. [CrossRef]
88. Tian, H.; Ren, T.-L.; Xie, D.; Wang, Y.-F.; Zhou, C.-J.; Feng, T.-T.; Fu, D.; Yang, Y.; Peng, P.-G.; Wang, L.-G.; et al. Graphene-on-Paper

Sound Source Devices. ACS Nano 2011, 5, 4878–4885. [CrossRef]
89. Xie, Q.-Y.; Ju, Z.-Y.; Tian, H.; Xue, Q.-T.; Chen, Y.-Q.; Tao, L.-Q.; Mohammad, M.A.; Zhang, X.-Y.; Yang, Y.; Ren, T.-L. A point

acoustic device based on aluminum nanowires. Nanoscale 2016, 8, 5516–5525. [CrossRef]
90. Tian, H.; Li, C.; Mohammad, M.A.; Cui, Y.-L.; Mi, W.-T.; Yang, Y.; Xie, D.; Ren, T.-L. Graphene Earphones: Entertainment for Both

Humans and Animals. ACS Nano 2014, 8, 5883–5890. [CrossRef]

https://doi.org/10.1126/science.1104962
https://doi.org/10.1021/acsnano.7b07528
https://doi.org/10.1088/1361-6528/aadad4
https://doi.org/10.1021/acsnano.1c09925
https://doi.org/10.1021/acsnano.9b08952
https://doi.org/10.1038/ncomms4132
https://doi.org/10.1016/j.specom.2009.08.002
https://doi.org/10.1109/TBME.2014.2319000
https://doi.org/10.1109/TASLP.2017.2738568
https://doi.org/10.1007/s40820-023-01029-1
https://doi.org/10.1016/j.specom.2009.12.002
https://doi.org/10.1038/s41378-019-0127-5
https://doi.org/10.1109/TPAMI.2018.2798607
https://doi.org/10.1016/j.xcrp.2022.101075
https://doi.org/10.1007/s00779-017-1083-4
https://doi.org/10.1021/acsnano.9b03218
https://doi.org/10.1038/23664
https://doi.org/10.1109/JSTSP.2016.2535970
https://doi.org/10.1021/nl802750z
https://doi.org/10.1103/PhysRev.10.22
https://doi.org/10.1002/adma.201804779
https://doi.org/10.1063/1.4898149
https://doi.org/10.1021/nl1031869
https://doi.org/10.1021/nn2009535
https://doi.org/10.1039/C5NR06999H
https://doi.org/10.1021/nn5009353


Sensors 2024, 24, 1493 28 of 29

91. Suk, J.W.; Kirk, K.; Hao, Y.; Hall, N.A.; Ruoff, R.S. Thermoacoustic Sound Generation from Monolayer Graphene for Transparent
and Flexible Sound Sources. Adv. Mater. 2012, 24, 6342–6347. [CrossRef]

92. Heath, M.S.; Horsell, D.W. Multi-frequency sound production and mixing in graphene. Sci. Rep. 2017, 7, 1363. [CrossRef]
93. Gou, G.-Y.; Jin, M.L.; Lee, B.-J.; Tian, H.; Wu, F.; Li, Y.-T.; Ju, Z.-Y.; Jian, J.-M.; Geng, X.-S.; Ren, J.; et al. Flexible two-dimensional

Ti3C2 MXene films as thermoacoustic devices. ACS Nano 2019, 13, 12613–12620. [CrossRef]
94. Aliev, A.E.; Gartstein, Y.N.; Baughman, R.H. Increasing the efficiency of thermoacoustic carbon nanotube sound projectors.

Nanotechnology 2013, 24, 235501. [CrossRef]
95. Zhou, Z.; Wang, J.; Rong, D.; Tong, Z.; Xu, X.; Lim, C. Design and characteristic analysis of CNT thin film thermoacoustic

transducer spherical array panel for low intensity focused ultrasound. J. Therm. Stress. 2021, 44, 582–596. [CrossRef]
96. Passeri, D.; Sassi, U.; Bettucci, A.; Tamburri, E.; Toschi, F.; Orlanducci, S.; Terranova, M.L.; Rossi, M. Thermoacoustic emission

from carbon nanotubes imaged by atomic force microscopy. Adv. Funct. Mater. 2012, 22, 2956–2963. [CrossRef]
97. Aliev, A.E.; Codoluto, D.; Baughman, R.H.; Ovalle-Robles, R.; Inoue, K.; Romanov, S.A.; Nasibulin, A.G.; Kumar, P.; Priya, S.;

Mayo, N.K.; et al. Thermoacoustic sound projector: Exceeding the fundamental efficiency of carbon nanotubes. Nanotechnology
2018, 29, 325704. [CrossRef]

98. Wang, K.; Yap, L.W.; Gong, S.; Wang, R.; Wang, S.J.; Cheng, W. Nanowire-Based Soft Wearable Human–Machine Interfaces for
Future Virtual and Augmented Reality Applications. Adv. Funct. Mater. 2021, 31, 2008347. [CrossRef]

99. Mason, B.J.; Chang, S.-W.; Chen, J.; Cronin, S.B.; Bushmaker, A.W. Thermoacoustic Transduction in Individual Suspended Carbon
Nanotubes. ACS Nano 2015, 9, 5372–5376. [CrossRef]

100. Tian, H.; Xie, D.; Yang, Y.; Ren, T.-L.; Lin, Y.-X.; Chen, Y.; Wang, Y.-F.; Zhou, C.-J.; Peng, P.-G.; Wang, L.-G.; et al. Flexible, ultrathin,
and transparent sound-emitting devices using silver nanowires film. Appl. Phys. Lett. 2011, 99, 253507. [CrossRef]

101. Dutta, R.; Albee, B.; Van Der Veer, W.E.; Harville, T.; Donovan, K.C.; Papamoschou, D.; Penner, R.M. Gold Nanowire Thermo-
phones. J. Phys. Chem. C 2014, 118, 29101–29107. [CrossRef]

102. Naguib, M.; Kurtoglu, M.; Presser, V.; Lu, J.; Niu, J.; Heon, M.; Hultman, L.; Gogotsi, Y.; Barsoum, M.W. Two-Dimensional
Nanocrystals Produced by Exfoliation of Ti3AlC2. Adv. Mater. 2011, 23, 4248–4253. [CrossRef]

103. Richard, B.; Shahana, C.; Vivek, R.; M., A.R.; Rasheed, P.A. Acoustics Platform Meet MXenes–A New Paradigm Shift in the Palette
of Biomedical Applications. Nanoscale 2023, 15, 18156–18172. [CrossRef]

104. Altan, A.; Namvari, M. Multifunctional, flexible, and mechanically robust polyimide-MXene nanocomposites: A review. 2D
Mater. 2023, 10, 042001. [CrossRef]

105. Niu, G.; Zhang, M.; Wu, B.; Zhuang, Y.; Ramachandran, R.; Zhao, C.; Wang, F. Nanocomposites of pre-oxidized Ti3C2Tx MXene
and SnO2 nanosheets for highly sensitive and stable formaldehyde gas sensor. Ceram. Int. 2023, 49, 2583–2590. [CrossRef]

106. Daschewski, M.; Boehm, R.; Prager, J.; Kreutzbruck, M.; Harrer, A. Physics of thermo-acoustic sound generation. J. Appl. Phys.
2013, 114, 114903. [CrossRef]

107. Sofiah, A.G.N.; Samykano, M.; Kadirgama, K.; Mohan, R.V.; Lah, N.A.C. Metallic nanowires: Mechanical properties–Theory and
experiment. Appl. Mater. Today 2018, 11, 320–337. [CrossRef]

108. Jiu, J.; Suganuma, K. Metallic nanowires and their application. IEEE Trans. Compon. Packag. Manuf. Technol. 2016, 6, 1733–1751.
[CrossRef]

109. Untiedt, C.; Rubio, G.; Vieira, S.; Agraït, N. Fabrication and characterization of metallic nanowires. Phys. Rev. B 1997, 56, 2154.
[CrossRef]

110. Bobinger, M.; La Torraca, P.; Mock, J.; Becherer, M.; Cattani, L.; Angeli, D.; Larcher, L.; Lugli, P. Solution-Processing of Copper
Nanowires for Transparent Heaters and Thermo-Acoustic Loudspeakers. IEEE Trans. Nanotechnol. 2018, 17, 940–947. [CrossRef]

111. Mubeen, N.; Shahina, A.; Khan, A.N.; Vinoth, G. Combining spectral features of standard and throat microphones for speaker
identification. In Proceedings of the 2012 International Conference on Recent Trends in Information Technology, Chennai, India,
19–21 April 2012; IEEE: New York, NY, USA, 2012; pp. 119–122.

112. Sahidullah, M.; Hautamäki, R.G.; Thomsen, D.A.L.; Kinnunen, T.; Tan, Z.-H.; Hautamäki, V.; Parts, R.; Pitkänen, M. Robust
speaker recognition with combined use of acoustic and throat microphone speech. Proc. Interspeech 2016, 1720–1724. [CrossRef]

113. Rastgoo, R.; Kiani, K.; Escalera, S. Sign language recognition: A deep survey. Expert Syst. Appl. 2021, 164, 113794. [CrossRef]
114. Fang, H.; Li, S.; Wang, D.; Bao, Z.; Xu, Y.; Jiang, W.; Deng, J.; Lin, K.; Xiao, Z.; Li, X.; et al. Decoding throat-language using

flexibility sensors with machine learning. Sens. Actuators A Phys. 2023, 352, 114192. [CrossRef]
115. Wang, G.; Liu, T.; Sun, X.-C.; Li, P.; Xu, Y.-S.; Hua, J.-G.; Yu, Y.-H.; Li, S.-X.; Dai, Y.-Z.; Song, X.-Y.; et al. Flexible pressure sensor

based on PVDF nanofiber. Sens. Actuators A Phys. 2018, 280, 319–325. [CrossRef]
116. Shuai, X.; Zhu, P.; Zeng, W.; Hu, Y.; Liang, X.; Zhang, Y.; Sun, R.; Wong, C.-p. Highly sensitive flexible pressure sensor based

on silver nanowires-embedded polydimethylsiloxane electrode with microarray structure. ACS Appl. Mater. Interfaces 2017, 9,
26314–26324. [CrossRef]

117. Cui, P.; Athey, S. Stable learning establishes some common ground between causal inference and machine learning. Nat. Mach.
Intell. 2022, 4, 110–115. [CrossRef]

118. Minaee, S.; Kalchbrenner, N.; Cambria, E.; Nikzad, N.; Chenaghlu, M.; Gao, J. Deep learning--based text classification: A compre-
hensive review. ACM Comput. Surv. (CSUR) 2021, 54, 1–40. [CrossRef]

119. Zhang, Z.; Geiger, J.; Pohjalainen, J.; Mousa, A.E.-D.; Jin, W.; Schuller, B. Deep learning for environmentally robust speech
recognition: An overview of recent developments. ACM Trans. Intell. Syst. Technol. (TIST) 2018, 9, 1–28. [CrossRef]

https://doi.org/10.1002/adma.201201782
https://doi.org/10.1038/s41598-017-01467-z
https://doi.org/10.1021/acsnano.9b03889
https://doi.org/10.1088/0957-4484/24/23/235501
https://doi.org/10.1080/01495739.2021.1883493
https://doi.org/10.1002/adfm.201200435
https://doi.org/10.1088/1361-6528/aac509
https://doi.org/10.1002/adfm.202008347
https://doi.org/10.1021/acsnano.5b01119
https://doi.org/10.1063/1.3671332
https://doi.org/10.1021/jp504195v
https://doi.org/10.1002/adma.201102306
https://doi.org/10.1039/D3NR04901A
https://doi.org/10.1088/2053-1583/acf327
https://doi.org/10.1016/j.ceramint.2022.09.238
https://doi.org/10.1063/1.4821121
https://doi.org/10.1016/j.apmt.2018.03.004
https://doi.org/10.1109/TCPMT.2016.2581829
https://doi.org/10.1103/PhysRevB.56.2154
https://doi.org/10.1109/TNANO.2018.2829547
https://doi.org/10.21437/Interspeech.2016-1153
https://doi.org/10.1016/j.eswa.2020.113794
https://doi.org/10.1016/j.sna.2023.114192
https://doi.org/10.1016/j.sna.2018.07.057
https://doi.org/10.1021/acsami.7b05753
https://doi.org/10.1038/s42256-022-00445-z
https://doi.org/10.1145/3439726
https://doi.org/10.1145/3178115


Sensors 2024, 24, 1493 29 of 29
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