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Abstract: Respiratory diseases are among the leading causes of death globally, with the COVID-19
pandemic serving as a prominent example. Issues such as infections affect a large population and,
depending on the mode of transmission, can rapidly spread worldwide, impacting thousands of
individuals. These diseases manifest in mild and severe forms, with severely affected patients requir-
ing ventilatory support. The air–oxygen blender is a critical component of mechanical ventilators,
responsible for mixing air and oxygen in precise proportions to ensure a constant supply. The most
commonly used version of this equipment is the analog model, which faces several challenges. These
include a lack of precision in adjustments and the inspiratory fraction of oxygen, as well as gas
wastage from cylinders as pressure decreases. The research proposes a blender model utilizing only
dynamic pressure sensors to calculate oxygen saturation, based on Bernoulli’s equation. The model
underwent validation through simulation, revealing a linear relationship between pressures and
oxygen saturation up to a mixture outlet pressure of 500 cmH2O. Beyond this value, the relationship
begins to exhibit non-linearities. However, these non-linearities can be mitigated through a calibration
algorithm that adjusts the mathematical model. This research represents a relevant advancement in
the field, addressing the scarcity of work focused on this essential equipment crucial for saving lives.

Keywords: blender; FIO2; mechanical ventilator; simulation

1. Introduction

The COVID-19 pandemic exposed the fragility of healthcare systems worldwide, par-
ticularly regarding resource scarcity and the management of critically ill patients. The
overwhelming demand for mechanical ventilation, a life-saving technology for severe
respiratory cases, highlighted critical limitations in equipment availability and perfor-
mance. One crucial element in these ventilators, the air–O2 blender, proved susceptible to
challenges like imprecise adjustments, flow sensor limitations, and efficiency decline with
cylinder pressure depletion. These issues directly impacted patient care and outcomes,
particularly during the peak of the pandemic when resources were most stretched.

Instances like the one witnessed in the state of Amazonas, Brazil served as an illustra-
tion of the severity of the situation in the absence of adequate resources or planning. The
critical shortage of oxygen cylinders throughout the state marked the peak of the ensuing
chaos, resulting in multiple fatalities among hospitalized patients [1–3].

One crucial tool in the battle against COVID-19 is the utilization of mechanical ven-
tilation to address severe cases. This vital equipment, found in ICUs for patients with
comorbidities, administers a controlled air–oxygen mixture with regulated pressure and
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volume. Its function varies, acting as a complement to the patient’s breathing or fully
taking over, depending on the severity of the situation. The structure of a mechanical
ventilator is relatively simple, comprising an air–oxygen blender, unidirectional valves,
a microcontroller system for parameter control and adjustments, a breathing circuit, and
an integrated humidifier [4–6]. Despite its critical role in saving lives, prolonged use or
imprecise adjustments in mechanical ventilation are associated with various physical and
mental issues in patients post-ICU discharge. Therefore, the manufacturing process must
follow rigorous standards with no room for error [7,8].

The air–O2 blender stands out as the central component in any mechanical ventila-
tion equipment. Tasked with regulating the air and O2 proportions for patients, thereby
controlling the inspiratory oxygen fraction (FiO2), it can be constructed in various ways,
such as a Venturi tube, Poppet-configuration area asset variation, three-terminal solenoid
valves, or electronic devices. Typically, a blender includes an air inlet, an O2 inlet, a by-
pass system for excessive pressures, a gas equilibrium stage, and a mixing stage [9–12].
Previous studies have evaluated similar aspects on Venturi, turbine, or mixer systems for
non-invasive ventilation [13,14].

At the air and oxygen inlet, filters are in place to prevent contamination, and one-way
valves ensure that the gas flow does not return. The bypass system relies on the pressure
difference between the two gases entering the equipment. If this limit is surpassed, an
audible or visual alarm is triggered, and all gas is redirected to a valve, releasing it into
the surrounding air. Balancing is a critical step since gases can pass through the valves
at varying pressures; thus, balancing is set to the lowest inlet pressure. The mixing stage
involves a chamber where the two gases, now equalized, enter. This mechanism is operator-
adjusted, allowing the operator to define the percentage of oxygen, and whereas blenders
commonly feature manual adjustment, applications with automatic controllers are also
available. Feedback on the percentage of the air–oxygen mixture is not always present, and
when available, it typically comes through flow sensors [15–18].

The precise regulation of oxygen concentration has a direct impact on patient outcomes.
Delivering too little oxygen risks organ failure, whereas excessive oxygen can be toxic.
Current blenders, however, have limitations. They often rely on expensive flow sensors,
increasing healthcare costs. Manual adjustments introduce a potential for error, impacting
the accuracy of oxygen delivery. Additionally, these blenders often perform poorly at low
pressure, potentially compromising care for critically ill patients on reduced ventilator
settings. Addressing these limitations through innovative blender designs, such as sensors
with improved cost-effectiveness and automated adjustments, could significantly improve
patient care and outcomes, especially in resource-constrained settings [15–18].

Thus, this paper proposes a model for a new micro-controlled air–O2 blender with
output oxygen saturation determination based on the measurements from three pressure
sensors. The main contributions of this paper include:

• Development of a mathematical model to calculate oxygen saturation using only
measurements from three pressure sensors, considering their cost-effectiveness and
significantly shorter response time compared to flow sensors;

• Proposal for optimizing the utilization of air and oxygen cylinders through the mathe-
matical model and adjustment of valves during use;

• Introduction of a blender methodology designed to operate effectively at low pressures.

This paper is organized as follows. Section 2 provides a summary of the main contri-
butions related to the subject under study, aiming to highlight the innovation proposed in
the article. Section 3 demonstrates the proposed mathematical model and presents how the
simulation study was performed and its properties, as well as the algorithm used. Section 4
presents the outcomes obtained by applying the proposed method in the simulation study.
Section 5 focuses on the analysis and discussion of obtained results and, finally, Section 6
concludes the paper by summarizing the key findings and implications of this research
while suggesting the next steps towards this study.
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2. Related Work

Due to its limited exploration, there is not much research on technological advance-
ments for air–O2 blenders. With scarce and sometimes outdated references, this limitation
has posed challenges in researching the theoretical foundation, making this work important
in addressing this crucial topic.

The study conducted by Ng et al. [19] evaluates a specialized low-flow blender (0.5 to
4.0 L/min) designed for children up to 5 years old, offering safety, efficiency, and afford-
ability. Operating on the Venturi principle, the blender regulates a mixture of pressurized
oxygen gas and air through adjustments within the equipment body. Notably, its unique
feature allows for the use of nasal cannulas, reducing gas resistance during delivery. Test
results demonstrated oxygen concentration within 0.5% of the desired value and accuracy
within 0.1 L/min of the target flow. However, due to its low-flow limitation and manual
adjustment, it may not be suitable for severe illnesses and may lose accuracy over time
due to wear and tear. Introducing electronic valves and a methodology based on pressure
sensors, as proposed in this paper, enhances safety and durability by precisely adjusting
moving parts.

Similar to the previous study, the study by Mollazadeh et al. [20] introduces a Venturi
tube-based blender; although cost-effective and capable of adjusting FiO2, this method re-
lies heavily on precise manufacturing and adjustments due to its millimeter-scale openings.
In contrast, electronically controlled blenders offer greater user and medical team flexibility,
reducing precision concerns. Nevertheless, the crucial principle of affordability guides
efforts to enhance equipment accessibility, particularly in under-served regions, through
techniques such as 3D printing and resource optimization.

The equipment introduced by Mukkundi et al. [21] emphasizes simplicity, afford-
ability, and efficiency. With pressure capabilities of 0–8 cmH2O and a capacity of up
to 5.5 L per minute, it offers variable FiO2 ranging from 21% to 100% based on oxygen
flow. Utilizing an oxygen cylinder and atmospheric air pump as gas sources, it achieves
satisfactory results. However, limitations include inability to handle high pressures and
manual FiO2 adjustments prone to inaccuracies over time. Implementing the methodology
proposed in this article could enhance precision and provide more electronic data for
improved performance.

A key challenge with blenders lies in gas measurement accuracy, particularly for
mixed gas. According to Dion et al. [22], comparing flow measurements from blender
regulators with those from mechanical ventilators reveals a margin of error, particularly
pronounced in simpler, analog blenders. In some configurations, the actual flow can exceed
the indicated value by up to 1 L, posing significant risks, especially for newborns. Therefore,
the implementation of electronics and the proposed methodology based on pressure sensors
is crucial, offering greater accuracy and instantaneous readings compared to gas sensors.

The blender proposed by [23] consists of a microcontroller system that automatically
adjusts the electronic valves that regulate the mixture of gases. All of this is based on
readings from flow and gas sensors, supplying the patient according to needs. Despite
all this, the use of flow and gas sensors can be a limiting factor in the development of
the equipment. Thus, the implementation of the model presented in this article using
pressure sensors would significantly improve the process of development and evolution of
this system.

Privitera et al. [13] aimed to evaluate the impact of filters on the delivered fresh gas
flow, FiO2 levels, and noise levels during helmet-CPAP administered by three different flow
generators. Authors conducted bench experiments using an air–oxygen blender, turbine
ventilator, and Venturi system to deliver CPAP at varying gas flow rates and fixed FiO2
levels, with different PEEP settings. Results showed significant differences in flow variation
among the generators after filter application, with the Venturi system exhibiting the highest
flow reduction and a significant FiO2 variation post-filter application.

Another interesting bench study was conducted by Capsoni et al. [14]. They assess
the performance of four Venturi devices in delivering helmet-CPAP with clinically relevant
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gas flow, FiO2, and PEEP values using a single oxygen cylinder. Three double-inlet Venturi
systems and one direct attachment system were evaluated, with results showing that
EasyVent, Ventuplus, and O2-MAX successfully delivered helmet-CPAP setups, whereas
Compact-HAR did not. The study concludes that portable Venturi systems can be used to
provide helmet-CPAP, but not all are suitable.

The use of automated controllers also showed great promise when applied to the
air–O2 blenders. Techniques such as PID and Fuzzy are considered the best options for
this type of adjustment. Speaking of percentages, closed-loop controllers improve by
approximately 63% over manually tuned devices. This reflects a better quality of life
for the patient, less chance of error by the health team, and greater optimization of the
resources used in the treatment. In order for the control algorithms to operate effectively, it
is necessary to have accurate information about the oxygen saturation levels in the mixed
gas. Typically, it is very common to use gas flow sensors, but this brings high costs and
difficulty in finding such devices, mainly due to the COVID-19 pandemic [24–26]. However,
the proposed methodology in this study is based on pressure sensors, which offers a cost-
effective alternative. By utilizing pressure sensors instead of gas sensors, implementing
control algorithms becomes more feasible, leading to cost reduction and overcoming the
challenges posed by sensor availability.

To further demonstrate this paper’s approach, the materials and methods used in
developing the mathematical model for calculating oxygen saturation are presented below
in detail.

3. Materials and Methods
3.1. Mathematical Model Proposal

Based on the presented problem and the state of the art, this section presents the
developed equation for calculating oxygen saturation using the Bernoulli equations.

Firstly, the study of gases in motion is governed by the Bernoulli equation under ideal
conditions, as stated below:

P = P0 + ρgh +
1
2

ρv2
0 = const (1)

Considering the problem described by Figure 1, there is a representation that supports
the methodology of a blender built from three pressure sensors. The diagram represents a
container with two controlled gas inputs, oxygen and air (Points A and B), and a controlled
mixing output (Point C).

The main interest lies in deriving a saturation function (SO) from real-time measure-
ments of the inlet pressures of air and oxygen:

SO = S(PA, PO) (2)

To begin the derivation of Equation (2), which will regulate the model, the following
conditions must be considered:

• A—Both gases will be submitted to a regime of low pressures compared to the ambient
pressure;

• B—The difference in pressure resulting from the difference in heights between points
A, B, and C will be negligible;

• C—The sum of the amount of volume that enters the bulge is the same that leaves the
bulge in time; that is:

QG = QA + QO (3)

where Qn is the flow, defined by:

Qn = ρnvn A (4)
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and ρn is the gas density, vn the gas velocity, and A is the cross-sectional area of the
free valves (one-way release valves).

• D—Within the output pressure regime (General Pressure-PG or Working Pressure),
it is possible to assume that due to item B, the gas flow velocity (vn) is the same for
all gases.

Figure 1. Flowchart of a blender from three pressure sensors. (Air Source in blue (PA), Oxygen source
in green (PO) and a general pressure sensor in yellow (PG)).

To delve into the development of the mathematical model, it is necessary to justify
certain approximations. The initial consideration is that the gases employed in the system
are oxygen and ambient air. Key points to address include the definition of the function SO,
which is determined by the oxygen flow within the mixture in relation to the total gas flow
exiting the blender:

SO =
(QO + κQA)

QG
(5)

Here, QO represents the oxygen flow, QA represents the flow of ambient air, and QG
represents the total gas flow. By considering that even ambient air contains a fraction κ of
oxygen contributing to the total saturation, this equation appropriately captures the oxygen
content within the mixture.

Furthermore, it is observed that even air contains a κ fraction of oxygen that also con-
tributes to the total saturation. So, by applying the proposed conditions to Equation (1), we
derive the following equation, which further refines the definition of oxygen saturation SO.

SO =
(PO + κPA)

(PO + PA)
(6)

In Equation (6), PO and PA represent the partial pressures of oxygen and ambient air,
respectively, and κ represents the fraction of oxygen in ambient air. This equation provides
a more precise calculation of oxygen saturation based on the partial pressures of oxygen
and ambient air in the mixture.

One distinctive feature of the proposed methodology is the inclusion of a third pressure
sensor at the outlet, which can offer a controlled working pressure as an additional safety
measure to prevent damage, such as barotrauma. This way, once the working pressure (PG)
of the blender has been established, it can be correlated with the following equation:

PG = PA + PO (7)
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and, therefore, the air inlet pressure is defined from PO, allowing us to rewrite Equation (6)
in the form:

SO =
PO(1 − κ)

PG
+ κ (8)

An important aspect to consider is the decision to employ a baseline output pressure
of 70 cmH2O in constructing the model. This choice was made to ensure the model’s
capability to operate with pressures surpassing the blender’s safety limit, typically set at
35 cmH2O. Adopting this approach guarantees a sufficient supply of pressure beyond the
safety threshold, thereby enabling the model to accommodate a wider range of scenarios
and operational conditions.

3.2. Simulation Study

Furthermore, to validate the model and explore the dynamics of the blender, a simula-
tion study was conducted using the SimCenter AMESim software v2304, incorporating the
“gas mixture” library.

Three dynamic pressure sensors and three electro-controlled switches were used. The
blender model is based on Figure 1, and its didactic diagram is illustrated in Figure 2, featur-
ing the following properties: (I) Electrically controlled unidirectional valves, namely Va, Vo,
and Vg, which can be positioned anywhere between 100% open and 100% closed; (II) Valves
located at points A and B, receiving air and O2 from constant-pressure repositories, with no
pressure drops in relation to the system load; (III) Dynamic pressure sensors after valves Va
and Vo, capable of estimating pressure differences at each time step n during readings. Each
simulation step corresponds to a 30 s time interval. Post-sensors, unidirectional valves are
employed to prevent the backflow of gaseous flow; (IV) The equation governing saturation
is referenced by Equation (8); (V) Input parameters include PG (output pressure) and the
dimensions of components in the simulator; (VI) Reading parameters consist of PA and
PO; (VII) Control parameters involve the microcontroller-operated valves VA, VO, and VG;
(VIII) The mixing chamber is denoted by point C, and the mixture’s output to the fan is
represented by point D.

The algorithm developed to conduct the simulations initially involves determining the
maximum opening of Vo to ensure that the value of Pg remains within the defined reference,
with Va set at 100% closed. The same procedure is then repeated for Va, but this time with
Vo set at 100% closed. This iterative process is replicated for n arbitrary values of Pg.

In the subsequent steps, for each Pg, Vo is set to its maximum opening value deter-
mined at the beginning of the algorithm, whereas Va is kept completely closed. Following
this, a series of steps are executed to gradually close Vo while simultaneously opening
Va, where the maximum limit of Va is defined by the value found at the algorithm’s out-
set. It is noteworthy that Vg is maintained at 50% opening throughout this process. This
methodology allowed the capture of the dynamics of the system for various PG values.

In conclusion, additional rounds of simulation were conducted, but this time incor-
porated Equation (8) to determine oxygen saturation and a gas concentration sensor to
validate the proposed mathematical model. The outcomes of this simulation study are
detailed in the following section.
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Figure 2. Model simulation diagram.

4. Results

From the mathematical model in Equation (8), it was possible to obtain the esti-
mated response graph, demonstrating a linear relationship within the working pressure
regimes, as illustrated in Figure 3. However, for pressures exceeding 500 cmH2O, it is antic-
ipated that the linear relationship may be impacted due to the effects of gas confinement
and compression.

Figure 3. Application of the (8) as a function of the oxygen inlet pressure.

After the mathematical modeling and the execution of the simulations, some results
could be obtained. For the low-pressure regime, as shown in Figure 4, a linear regime
between the oxygen pressure (PO) and the oxygen saturation (SO) of the mixture leaving
the blender was expected.

After completing the mathematical modeling and conducting simulations, certain
results were obtained. In the low-pressure regime, as depicted in Figure 4, a linear relation-
ship between oxygen pressure (PO) and oxygen saturation (SO) in the mixture exiting the
blender was expected.

According to simulation results illustrated in Figure 5, the linear regime demonstrated
a robust response for a working pressure of PG = 500 cmH2O and that for values from PG
up to 3.000 cmH2O, there was a slightly curved behavior, which can be explained by the
effects of confinement and compression of gases at high pressures. The graph shows that,
as the working pressure increased, the relationship between pressures ranging from [0, PG]
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for oxygen POn and air PAn , n being the various working pressures PG, constitutes a new
working regime.

Figure 4. Distribution of O2 saturation curves in relation to changes in O2 pressure. Note that S∗ is
the theoretical result from Equation (8).

However, for values ranging from PG up to 3.000 cmH2O, a slightly curved behavior
was observed. This deviation can be attributed to the effects of confinement and compres-
sion of gases under high pressures. The graph indicates that, with increasing working
pressure, a new operating regime emerges, portraying the relationship between pressures
in the range [0, PG] for oxygen POn and air PAn , where n represents various working pres-
sures PG.

Figure 5. Distribution of dynamic inlet pressures for oxygen and air obeying the relation
PG = PA + PO.

The curvature observed in Figure 5 does not negate the linear behavior results, espe-
cially considering that the optimal working pressure in modern respirators corresponds to
PG = 500 cmH2O. The identification of this corrective curvature stands as a novel discovery
for non-electrically controlled classic regime mixers equipped with valves and sensors.

5. Discussion

Advancing into the discussion regarding the results obtained in the preceding section,
it is important to note that the curves underwent an audit by a simulator, aiming to
approximate real-world scenarios. The intention is to conduct further experiments in
future works to validate these findings in a laboratory setting and efficiently address the
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anticipated curvature due to the effects of gases under high pressure. This curvature effect
can be recalibrated by up to 100% through the algorithm governing the reading dynamics.
Once technical specifications are defined, the device will be calibrated to obtain a correction
curve, ensuring the construction of a blender with controlled valves and pressure sensors
that offer high precision for oxygen saturation and barometric protection for patients while
controlling the working pressure PG.

From the conducted study, we can substantiate the mathematical foundation derived
from the proposed Bernoulli equation. It demonstrates that the curves correlating pressures
undergo only slight deformation when the saturation O2 is exposed to pressures much
higher than PG = 70 cmH2O. The non-linearity observed for working pressures exceeding
500 cmH2O can be attributed to the potential effects of confinement and interactions
resulting from the simulation’s dynamic pressures of oxygen and air. This effect can be
entirely absorbed through mathematical modeling during the factory calibration of the
blender.

This work has yielded significant results for the development of an air–oxygen blender:
the determination of oxygen saturation solely from dynamic pressure sensors; whereas
previous studies such as [19,21,23] have made valuable contributions to the field, they
are not without limitations. For instance, ref. [19] is constrained by low-flow limitations
and manual adjustment, whereas [21] faces challenges in handling high pressures and
manual FiO2 adjustments. Similarly, ref. [23] relies solely on readings from flow and gas
sensors to supply the patient according to their needs. In contrast, the model proposed
in this paper introduces electronic valves and a methodology based on pressure sensors,
enhancing safety and durability by precisely adjusting moving parts. By implementing
this methodology, precision can be improved, and more electronic data can be obtained for
enhanced performance.

Furthermore, several advantages emerged throughout the research, including: (i) faster
and more effective pressure measurements due to the intensive and time-efficient nature of
pressure as a quantity; (ii) the implementation of the VG valve, a crucial safety measure in
the patient’s intubation process, serving as an additional safeguard within the procedure;
(iii) the utilization of electronically controlled valves offering enhanced automation and
precision in adjustments, optimizing cylinder usage and functioning even at low pressures;
(iv) as it is a parameter derived from pressure sensors, real-time monitoring platforms
capable of seamless integration with embedded valve actuation and control systems can be
easily employed.

6. Conclusions

This paper introduced a micro-controlled air–O2 blender set to transform oxygen de-
livery in mechanical ventilation, promising significant improvements in patient outcomes,
cost reduction, and resource efficiency in healthcare systems worldwide. The blender’s
key innovations include the use of three pressure sensors to determine oxygen saturation
quickly and accurately, replacing costly flow sensors. Additionally, its integrated mathe-
matical model optimizes gas cylinder utilization, potentially contributing to substantial
cost savings across healthcare systems. Moreover, its effectiveness at low pressures ad-
dresses a critical limitation of existing models, benefiting patients globally who require
specialized care.

During this investigation, numerous opportunities for further research on the subject
have been uncovered. Firstly, the next step is to develop a tangible prototype, enabling
practical experiments to validate and refine theoretical findings, providing comprehensive
insights into the blender’s performance under various conditions. Secondly, the integration
of artificial intelligence (AI) in the blender presents an exciting direction, potentially opti-
mizing precision, automation, and adaptability to dynamic medical environments through
machine learning algorithms. Lastly, incorporating an Internet of things (IoT)-based moni-
toring and tuning platform can enhance healthcare efficiency by allowing remote oversight,
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adjustments, and proactive maintenance. Together, these directions aim to advance the air–
oxygen blender’s efficiency and adaptability and introduce intelligent healthcare solutions.

In conclusion, the impact of this subject of study extends beyond technical specifica-
tions, reaching toward a future where advanced technology enables us to provide fair and
life-saving care to all, regardless of resource constraints.
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