
Citation: Figueira, V.; Silva, S.; Costa,

I.; Campos, B.; Salgado, J.; Pinho, L.;

Freitas, M.; Carvalho, P.; Marques, J.;

Pinho, F. Wearables for Monitoring

and Postural Feedback in the Work

Context: A Scoping Review. Sensors

2024, 24, 1341. https://doi.org/

10.3390/s24041341

Academic Editor: Emiliano Schena

Received: 9 January 2024

Revised: 6 February 2024

Accepted: 12 February 2024

Published: 19 February 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Review

Wearables for Monitoring and Postural Feedback in the Work
Context: A Scoping Review
Vânia Figueira 1,2,3,* , Sandra Silva 1,2,4,5 , Inês Costa 1, Bruna Campos 1, João Salgado 1, Liliana Pinho 1,2,3,6 ,
Marta Freitas 1,2,3,6, Paulo Carvalho 7 , João Marques 1,2 and Francisco Pinho 1,2

1 Escola Superior de Saúde do Vale do Ave, Cooperativa de Ensino Superior Politécnico e Universitário,
Rua José António Vidal, 81, 4760-409 Vila Nova de Famalicão, Portugal; sandra.silva@ipsn.cespu.pt (S.S.);
a28166@alunos.cespu.pt (I.C.); a28145@alunos.cespu.pt (B.C.); a28906@alunos.cespu.pt (J.S.);
liliana.pinho@ipsn.cespu.pt (L.P.); marta.goncalves@ipsn.cespu.pt (M.F.); jsantos.marques@cespu.pt (J.M.);
francisco.pinho@ipsn.cespu.pt (F.P.)

2 H2M—Health and Human Movement Unit, Polytechnic University of Health, Cooperativa de Ensino
Superior Politécnico e Universitário, CRL 4760-409 Vila Nova de Famalicão, Portugal

3 Research Centre in Physical Activity, Health and Leisure, Faculty of Sport, University of Porto,
Rua Dr. Plácido da Costa, 91, 4200-450 Porto, Portugal

4 School of Health Sciences, University of Aveiro, 3810-193 Aveiro, Portugal
5 Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal
6 Center for Rehabilitation Research (Cir), R. Dr. António Bernardino de Almeida 400, 4200-072 Porto, Portugal
7 Center for Translational Health and Medical Biotechnology Research, School of Health, Polytechnic Institute

of Porto, 4200-072 Porto, Portugal; paulocarvalho@ess.ipp.pt
* Correspondence: vania.figueira@ipsn.cespu.pt

Abstract: Wearables offer a promising solution for simultaneous posture monitoring and/or corrective
feedback. The main objective was to identify, synthesise, and characterise the wearables used in
the workplace to monitor and postural feedback to workers. The PRISMA-ScR guidelines were
followed. Studies were included between 1 January 2000 and 22 March 2023 in Spanish, French,
English, and Portuguese without geographical restriction. The databases selected for the research
were PubMed®, Web of Science®, Scopus®, and Google Scholar®. Qualitative studies, theses, reviews,
and meta-analyses were excluded. Twelve studies were included, involving a total of 304 workers,
mostly health professionals (n = 8). The remaining studies covered workers in the industry (n = 2), in the
construction (n = 1), and welders (n = 1). For assessment purposes, most studies used one (n = 5) or two
sensors (n = 5) characterised as accelerometers (n = 7), sixaxial (n = 2) or nonaxial inertial measurement units
(n = 3). The most common source of feedback was the sensor itself (n = 6) or smartphones (n = 4). Haptic
feedback was the most prevalent (n = 6), followed by auditory (n = 5) and visual (n = 3). Most studies
employed prototype wearables emphasising kinematic variables of human movement. Healthcare
professionals were the primary focus of the study along with haptic feedback that proved to be the
most common and effective method for correcting posture during work activities.

Keywords: wearables; feedback; posture; work-related musculoskeletal disorders; workstation

1. Introduction

Currently, work-related musculoskeletal disorders (WRMSDs) are the most preva-
lent occupational health problem worldwide [1], and they are also the most common in
the European Union (EU) [2,3], affecting three out of five workers [4]. Indeed, it is con-
sidered a public health problem [5] with multifactorial causes [6,7], resulting from the
complex interaction between individual, biomechanical, organisational and psychosocial
risk factors [6,8].

WRMSDs affect individuals in all aspects of their lives—as well as companies, society
and the economy [2,9,10]—as they result in higher healthcare costs, reduced productivity,
increased absenteeism, lower job satisfaction, and reduced physical, psychological, and
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social well-being of workers [7,11]. In fact, some disorders have a lasting impact on the
worker’s life, limiting them in their daily activities and preventing their return to work due
to permanent disability caused by pain and decreased functionality [5].

Recently, an increase in WRMSDs has been observed due mainly to mechanical over-
load [1]. Prolonged inappropriate working postures, tasks with high physical demands,
repetitive and meticulous work gestures, and an intense work pace with few breaks have
been reported as the main causes of WRMSDs [3,8,9]. Additionally, the demographic
change in the workforce [12] has led to an increase in the number of older workers, which
may have also contributed to the increase in WRMSDs [1,2].

Given the musculoskeletal system overload [1], real-time monitoring and postural
correction in the workplace [13] are urgent. This will minimise the harmful effects of some
postures, resulting from the misalignment of body segments with the line of gravity [14].
Posture is a highly complex, variable, and dynamic system that can respond to minimal
psychophysical and socioenvironmental perturbations [15]. Due to these features, wearable
technology has emerged as a viable alternative with high potential for real-world context
implementation [16–18]. The projection of wearables, also referred to in the literature
as wearable sensors and defined as electronic devices integrated into clothing and/or
other accessories that comfortably adapt to the human body [19] would seem to be a
valid proposal for improving working conditions, early identification of WRMSDs risks,
increased work efficiency, and promoting well-being [20].

Inertial measurement unit (IMU) is the common underlying technology for most
wearables [7,21,22]. It is possible to identify static and dynamic improper postures that
are maintained for long periods [23,24] through discrete and continuous monitoring of
body posture in real-world settings [21,25] in a shorter timeframe/in a shorter time [5].
Other advantages of wearables that make them robust for integration in monitoring work
activity include objective, reliable, and accurate results [26] which provide a trustworthy
and realistic assessment of work-related conditions [27]; low cost; lightweight design; small
size; portability; and energy efficiency [28].

Furthermore, some wearables have the feature to provide real-time corrective sensory
feedback when adopting inadequate postures [3]. This feedback can be auditory (typically
conveyed through diverse auditory channels), visual (usually displayed by screens or
projectors), haptic (application of vibratory stimulus), or a combination of these, providing
information based on performance or outcome [29,30]. Haptic feedback stands out as the
most common choice [9,31,32] and also as the most advantageous option given its discreet
nature [29]. It contrasts with auditory and visual feedback, which can be perceived by
other workers, affecting their concentration [9]. Regarding the feedback signal, it can be
provided at the end of the task, referred to as terminal feedback, or in real-time, known as
concurrent feedback [29]. The latter has the advantage of promoting immediate changes
in work postures [33]. However, regardless of the type of corrective feedback, it promotes
greater postural self-awareness, allowing for the minimisation of inadequate postures
and, consequently, reducing the musculoskeletal overload [13]. This factor emphasises the
potential for the urgent implementation of wearables in different work contexts to reduce
the incidence of WRMSDs and the associated healthcare costs [9,32]. Nevertheless, still in
their early stages, wearables present disadvantages and/or challenges such as accuracy,
technical functionality, and usability [30]. Factors such as battery life, long-term comfort,
preparation time (donning and doffing; changing or recharging batteries) and the stability of
wireless communication contribute to workers’ reluctance to use such devices [2,30,34,35].
Recent studies have tried to address the challenges of wearables by improving the usability
and effective monitorization of human movement, as well as the autonomy of wearables,
which are crucial for practicality and commercial viability, with the aim of establishing
wearables as common tools in workplace settings [36]. The potential of wearables in
preventing and minimising WRMSDs is supported by growing scientific evidence on
postural monitoring wearables in various contexts [20,36–39]. Despite advances, challenges
remain in wearables for simultaneous postural monitoring and feedback in real-world
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scenarios, emphasising the need for continued research. Furthermore, the importance of
wearables in minimising WRMSDs positions them as an emerging field of research. It
is important to understand and summarise all the current evidence to contribute to the
development of new methods to promote the worker’s health and quality of life.

Therefore, the objectives of this study were established to comprehensively identify,
synthesise, and characterise the wearables used in the workplace to monitor and provide
postural feedback to workers. Specifically, the study aimed to identify and summarise
the variables used to detect postural changes, the location of the sensors, the attachment
methods, and the number of sensors employed. It also aimed to analyse the type and
source of corrective feedback used, the professions/occupations, and the contexts in which
these wearables have been applied to contribute to the reduction of WRMSDs.

Review questions
The main review question of this study was: “What wearables have been used for

postural monitoring and correction in the workplace?”
The review sub-questions are listed as follows:

i. What variables have been considered in the identification of postural changes?
ii. What location, type of fixation, and number of sensors have been used to monitor

and provide postural feedback in the work context?
iii. Which occupations or work tasks have been analysed using wearables to monitor

and provide postural feedback in the work context?
iv. Among the identified wearables, what type and source of feedback is being used

for postural correction?
v. What results have been reported following the application of postural feedback in a

work context?

2. Materials and Methods

In this scoping review, the Preferred Reporting Items for Systematic Reviews and
Meta-Analyses extension for Scoping Reviews (PRISMA-ScR) guidelines [40] and the
methodology proposed by the Joanna Briggs Institute (JBI) manual for evidence synthesis
were followed [41]. The protocol was registered on the Open Science Framework, which
the review questions and the methodology were specified, Supplementary Materials.

2.1. Eligibility Criteria

The Population, Concept, Context (PCC) strategy JBI [41], as reported in Table 1,
was used to develop the search strategy and to the define the eligibility criteria for study
inclusion (Table 1).

Table 1. Eligibility criteria according to PCC.

Criteria

Population Active adults assessed in the context of work tasks

Concept Use of wearables to monitor and correct work-related postural
changes through sensory biofeedback

Context Workstation

The potentially eligible studies were identified in the databases on 22 March 2023, with-
out geographical restrictions, in Spanish, French, English, and Portuguese. Unpublished
grey literature was also searched.

Studies in humans published between 1 January 2000 and 22 March 2023 were in-
cluded, while qualitative studies, literature reviews, systematic reviews, meta-analyses,
and theses were excluded.
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2.2. Information Source

Three databases, PubMed®, Web of Science™ (WOS), Scopus® (non-grey literature)
and a scholarly literature web search engine (Google Scholar®) were used. A manual search
was also conducted based on the relevant bibliography consulted to identify other eligible
studies. The strategies used in the different databases are described in Table 2. Due to
the specificities and their filters, the term “humans” and the language were specified in
advance for PubMed®.

Table 2. Search Strategies in different databases.

Database Search Strategies

PubMed®

(posture OR “postural assessment” OR “body posture” OR “Postural Analysis”
OR “posture monitoring” OR “postural correction”) AND (“Wearable Devices”
OR Wearables OR “wearable systems” OR “commercial wearable” OR textiles
OR sensor* OR “inertial sensor” OR “sensor system” OR “sensor network” OR
“smart sensor” OR “pressure sensor” OR “plantar sensor” OR IMU OR
gyroscope OR magnetometer OR electromyography OR *feedback) AND
(Workplace OR “work-related musculoskeletal disorder” OR “real-time
measurement” OR Industry OR “work-station” OR “real-context”) NOT (stress
OR exoskeleton OR “Physical activity” OR Physiological)

Web of
Science®

(WOS)

AK = ((wearable OR postural wearable OR commercial wearable OR textiles OR
sensor*) AND (workplace OR workstation OR office WORK OR work-related
musculoskeletal disorder) AND postur*) OR AB = ((wearable OR postural
wearable OR commercial wearable OR textiles OR sensor*) AND (workplace OR
workstation OR office WORK OR work-related musculoskeletal disorder) AND
postur*) OR AB = (Wearable AND sensor* AND workplace) OR TI = (Wearable
AND sensor* AND workplace) AB= ((posture OR “postural assessment” OR
“body posture” OR “Postural Analysis” OR “posture monitoring” OR “postural
correction”) AND (‘Wearable Electronic Devices’ OR ‘Wearables’ OR “wearable
systems” OR “postural wearable” OR “ commercial wearable” OR textiles OR
sensors OR sensor OR “inertial sensor” OR “ sensor system” OR “sensor
network” OR “smart sensor” OR “pressure sensor” OR “plantar sensor” OR
IMU OR gyroscope OR magnetometer OR electromyography OR feedback)
AND (Workplace OR “work-related musculoskeletal disorder” OR “real-time
measurement” OR Industry OR “work-station” OR “real-
context”))

Scopus® Posture AND Wearable AND Workplace

Google
Scholar®

(“Postural Analysis” OR “Postural Correction”) AND (Wearable* OR
*feedback) AND Workplace

2.3. Selection of Evidence Sources

Each of the three investigators (JS, IC, BC) performed the search simultaneously in
the same databases, following the defined strategies. No discrepancies were found during
the data extraction process, which was imported into Mendeley® software, version 1.19.8,
(Elsevier), and duplicates were removed. After this step, to facilitate the screening process
and to confirm the presence of any duplicates not identified by the software, all extracted
articles were imported into Microsoft® Excel®, version 2304. All reviewers conducted a
pilot study until a minimum consensus of 75% was reached in the selection of 25 units
of analysis for title and abstract screening, based on a priori eligibility criteria. After
concluding this process, the screening by title and abstract was performed, identifying the
studies as “included” or “excluded”.

The full text of the included articles was read to exclude those that did not meet the
eligibility criteria. In case of disagreement, a fourth reviewer (VF) was consulted. This
process is detailed in the form of a PRISMA-ScR flowchart (Figure 1).
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Figure 1. Flowchart of included studies, adapted from PRISMA ScR statement [42].

2.4. Data Extraction

Data were extracted for inclusion in the evidence table with the general characteristics
of the eligible studies (Table 3): authors/year, study design, sample characterization,
context/setting, occupation/work task, and region and anatomical plane under analysis.
Additional data were also extracted to provide a better characterisation of the wearables
considered in the included studies, which are explained in Table 4: type, number of sensors
(wearables) and signal or variable under study, sensor placement and fixation, and feedback
source and type. The results after feedback application are in Table 5.

2.5. Data Presentation

A narrative report and a tabular form were produced to summarise the data around
the main research question.

3. Results

A total of 1215 units of analysis were identified, out of which 22 were deemed ineligible
by the automated tools during the transfer to Mendeley®. Of these, 155 duplicate units
were removed. After title and abstract screening, 973 articles were excluded because they
did not meet the predefined eligibility criteria. As a result, 65 articles were read in full, and
55 of these were excluded. The reasons for study exclusion were as follows: population
(n = 7), concept (n = 3), context (n = 40), study type (n = 3), and language (n = 2). The
remaining 10 studies were included with 2 additional manual searches, resulting in a total
of 12 studies (Figure 1).

A total of 304 workers were included in this scoping review [43–54] (Table 3). Eight
of the 12 studies included participants of both sexes [43–46,50,52–54], two studies in-
cluded only female participants [49,51], and the other two did not specify the participants’
sex [47,48] (Table 3).
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Table 3. Study design, characteristics of the participants, setting, occupation/work task, and region
and anatomical plane under analysis.

Author, Year Study Design Sample Context/
Setting

Occupation/
Work Task

Region and
Anatomical Plane
Under Analysis

Ribeiro et al.,
2014 [43]

Randomized
controlled trial

n = 62 (F = 57 e M = 5)
x = 49.6 ± 12.4 years
Eligibility: with and/or without
low back pain

Healthcare
institution

Healthcare and
administrative
professionals

Lumbopelvic
region;
Sagittal and
frontal plane

Thanathornwong
et al., 2014 [44]

2 × 2 crossover
randomized trial

n = 16 (F = 14 e M = 2)
x = N/S (Min: 25 and
Max: 30 years)
Eligibility: dentists working at
least 6 h daily.

Hospital Dentists during molar
surgery

Cervical and upper
trunk;
Sagittal and
frontal plane

Thanathornwong
et al., 2014 [45]

2 × 2 crossover
randomized trial

n = 16 (F = 14 e M = 2)
x = N/S (Min: 21 and
Max: 23 years)
Eligibility: minimum practice of
6 h daily as a dentist and
scoring over 70% on the applied
questionnaire.

Real N/S Dental students

Cervical and upper
trunk;
Sagittal and
frontal plane

Thanathornwong
and
Suebnukarn,
2015 [46]

2 × 2 crossover
randomized trial

n = 16 (F = 8 e M = 8)
x = N/S (Min: 21 and
Max: 23 years)
Eligibility: minimum practice of
6 h daily in dental work tasks.

Dental clinic Dental students
Upper trunk;
Sagittal and
frontal planes

Zhao et al., 2015
[47]

Observational
descriptive study

Healthcare caregivers
n = N/S
x = N/S

Real N/S Healthcare caregivers Spine (++ lumbar);
Sagittal plane.

Yan et al., 2017
[48] Validation study n = N/S

x = N/S

Laboratory
context and real
construction
context

Construction workers
during brick lifting and
steel rod handling tasks

Head, Cervical,
and thoracic region;
Sagittal plane.

Doss et al., 2018
[49]

Analytical
cross-sectional
observational study

n = 10 (F = 10)
x = 26.1 ± 9.1 years
Eligibility: nursing students
without a history of back pain.

Clinical
experience in a
N/S context

Nursing
students/patient
transfer

Trunk;
Sagittal plane.

Lins et al., 2018
[50]

Pilot study
(experimental)

n = 11 (M = 8 e F = 3)
x = N/S
Eligibility: N/S

Real N/S Welders

Cervical, thoracic,
lumbar, scapular
waist, elbows,
wrists, and
knees regions.
N/S Plane

Bootsman et al.,
2019 [51]

Analytical
cross-sectional
observational study

n = 13 (F = 13)
x = 39.77 ± 13.6 years
Eligibility: healthy nurses
(without low back pain) who do
not engage in sedentary
work tasks.

Hospital
Nurses (9 nurses from
the Neonatal Intensive
Care Unit and 4 home
care nurses)

Lumbar spine;
Sagittal plane.

Lind et al., 2020
[52] Observational study

n = 15 (F = 3 e M = 12)
x = 23.33 ± 2.9 years
Eligibility: workers without
discomfort and/or
work-related musculoskeletal
injuries that could hinder
order-picking tasks.

Multinational
vehicle
construction
company

2 employees in logistics
applications and 13
employees in order
picking and assembly
tasks

Dominant upper
limb and trunk;
Sagittal plane.

Ribeiro et al.,
2020 [53]

Randomized
controlled trial

n = 130 (F = 84.6 M = 15.4)
x = 45.3 ± 13.2 years
Eligibility: adult healthcare
professionals, with or without
current presence (or history) of
low back pain, currently
performing their work
tasks normally.

Continuing care
institutions and
hospitals

Healthcare
professionals

Lumbopelvic
region;
Sagittal and
frontal planes.

Lind et al., 2023
[54]

Analytical
observational study

n = 15 (M = 14 e F = 1)
x = 30.8 ± 11.5 years
Eligibility: healthy workers
without a history of pain that
would hinder their W.T

Warehouse Warehouse workers Trunk;
Sagittal plane.

n—sample; F—female; M—male; x—mean age; Min—minimum; Max—maximum; W.T.—work tasks;
N/S—nt specified.
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3.1. Context/Setting, Occupation/Work Task and Region and Anatomical Plane under Analysis

With regard to occupation, most of the tasks involved healthcare professionals, namely
nurses [49,51], dentists or dental students [44–46], healthcare caregivers [47], and unspeci-
fied healthcare professionals [43,53]. Additionally, the tasks of welders [50], construction
workers [48] and warehouse workers [52,54] were also assessed (Table 3) (Figure 2).

Sensors 2024, 24, x FOR PEER REVIEW  8  of  23 
 

 

currently performing 

their work tasks 

normally. 

Lind et al., 2023a 

[54] 

Analytical 

observational 

study 

n = 15 (M = 14 e F = 1) 

�̅�  = 30.8 ± 11.5 years 

Eligibility: healthy 

workers without a 

history of pain that 

would hinder their 

W.T 

Warehouse  Warehouse workers 
Trunk;   

Sagittal plane. 

n—sample;  F—female; M—male;  �̅� —mean  age; Min—minimum; Max—maximum; W.T.—work 

tasks; N/S—nt specified. 

3.1. Context/Setting, Occupation/Work Task and Region and Anatomical Plane under Analysis 

With  regard  to  occupation, most  of  the  tasks  involved  healthcare  professionals, 

namely nurses [49,51], dentists or dental students [44-46], healthcare caregivers [47], and 

unspecified  healthcare  professionals  [43,53]. Additionally,  the  tasks  of  welders  [50], 

construction workers  [48] and warehouse workers  [52,54] were also assessed  (Table 3) 

(Figure 2). 

 

Figure 2. Characterisation of the context/work task. 

The main area for assessment was the trunk, with the thoracic region being the most 

favoured [44-46,48,54]. This was assessed  in  isolation  [46,49,54] or  in combination with 

different  regions  of  the  trunk  [44,45,48]  or upper  limb  [52]. On  the  other hand,  other 

studies  focused more on  the  analysis of  the  lumbar  [47,51] or  lumbopelvic  region).  It 

should be noted that only the study by Lins et al. [50] assessed all regions of the trunk, 

upper limbs (elbow and wrist), and lower limbs (knee) (Table 3) (Figure 3). Except Lins et 

al. [34], who did not specify the  level of analysis, all studies assessed movement  in the 

sagittal plane, and in some cases, this analysis was combined with the assessment of move-

ment in the frontal plane [43-46,53]. 

Figure 2. Characterisation of the context/work task.

The main area for assessment was the trunk, with the thoracic region being the most
favoured [44–46,48,54]. This was assessed in isolation [46,49,54] or in combination with
different regions of the trunk [44,45,48] or upper limb [52]. On the other hand, other studies
focused more on the analysis of the lumbar [47,51] or lumbopelvic region). It should be
noted that only the study by Lins et al. [50] assessed all regions of the trunk, upper limbs
(elbow and wrist), and lower limbs (knee) (Table 3) (Figure 3). Except Lins et al. [34], who
did not specify the level of analysis, all studies assessed movement in the sagittal plane,
and in some cases, this analysis was combined with the assessment of movement in the
frontal plane [43–46,53].
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3.2. Type, Number of Sensors (Wearables), and Signal or Variable under Study

The majority of the studies used IMUs with accelerometers only [43–47,49,53], and
mostly sensors in the form of prototypes (n = 8) [44–46,49–52,54] (Figure 4). Relating to
the number of sensors, 5 studies used 1 sensor [43,46,47,53], 5 other studies used 2 sen-
sors [44,45,48,49,51,54], 1 study used 3 sensors [52] and another study used 15 sensors [50].
These were placed along various body segments, specifically the cervical, thoracic, lumbar,
scapular-waist, elbows, wrists, and knees regions (Table 4).
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Table 4. Characterization of posture analysis and feedback wearables from the included studies.

Authors (Year) Type, Number of Sensors (Wearables),
and Signal or Variable under Study Sensor Placement and Fixation Feedback Source and Type

Ribeiro et al., 2014 [43]
Triaxial IMU (Accelerometer)
1 sensor (Commercial) Acceleration and
linear position.

Laterally fixed on the participant’s belt
at the level of the lumbopelvic region.

Integrated feedback in the
sensor itself.
Simultaneous intermittent
auditory feedback.

Thanathornwong et al.,
2014 [44]

Triaxial IMU (Accelerometer)
2 sensors (Prototype)
Linear position.

Fixed on the PPE (visor) and posteriorly
fixed on the worker’s uniform at the
thoracic region (T4).

N/S Feedback.
Visual feedback at the end.

Thanathornwong et al.,
2014 [45]

Triaxial IMU (Accelerometer)
2 sensors (Prototype)
Linear position.

Fixed on the PPE (visor) and posteriorly
fixed on the worker’s uniform at the
thoracic region.

N/S Feedback.
Visual feedback at the end.

Thanathornwong and
Suebnukarn, 2015 [46]

Triaxial IMU (Accelerometer)
1 sensor (Prototype)
Trunk flexion, extension, and inclination
linear position.

Fixed on the worker’s uniform,
posteriorly at the thoracic region.

Integrated feedback in the
sensor itself.
Haptic feedback.

Zhao et al., 2015 [47]
Triaxial IMU (Accelerometer)
1 sensor (Commercial) Acceleration and
linear position.

Smartwatch worn on the wrist (side
determined by the participant).

Integrated feedback in the
sensor itself.
Haptic feedback.

Yan et al., 2017 [48]

Nonaxial IMU (triaxial Accelerometer,
triaxial Gyroscope, and triaxial
Magnetometer)
2 sensors (Commercial) Angular and
linear acceleration.

Posteriorly fixed on the protective
helmet and safety harness and vest at
the thoracic region (between T1 and T2).

Smartphone-based feedback.
Auditory feedback.

Doss et al., 2018 [49]
Triaxial IMU (Accelerometer)
2 sensors (Prototype)
Trunk acceleration and linear position.

Tape-fixed at the thoracic (vest) and
lumbar (belt) regions.

Smartphone-based feedback.
Auditory feedback.

Lins et al., 2018 [50]

Sixaxial IMU (triaxial Accelerometer
and triaxial Gyroscope)
15 sensors (Prototype)
Linear and angular acceleration.

Tape-fixed on the worker’s uniform,
specifically at the cervical, thoracic,
lumbar, scapular waist, elbows, wrists,
and knees regions.

Integrated feedback in the
sensor itself.
Haptic feedback.

Bootsman et al., 2019
[51]

Nonaxial IMU (triaxial Accelerometer,
triaxial Gyroscope, and triaxial
Magnetometer)
2 sensors (Prototype) Displacement,
angular velocity, and linear acceleration.

Posteriorly fixed on the work uniform
(in a built-in pocket) at the lumbar
region, specifically between L1 and L5.

Smartphone-based feedback.
Visual, auditory, and
haptic feedback.
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Table 4. Cont.

Authors (Year) Type, Number of Sensors (Wearables),
and Signal or Variable under Study Sensor Placement and Fixation Feedback Source and Type

Lind et al., 2020 [52]

Nonaxial IMU (triaxial Accelerometer,
triaxial Gyroscope, and triaxial
Magnetometer)
3 sensors (Prototype)
Angular and linear displacement of the
trunk and dominant upper limb.

The IMU is bilaterally fixed on the
worker’s arm (built-in pockets) at the
deltoid muscle insertion.
The haptic sensors are anteriorly fixed
through a belt at the thoracic region
(between T1–T2) and on the arm
through an armband.

Smartphone-based feedback
via Bluetooth.
Haptic feedback.

Ribeiro et al., 2020 [53]
Triaxial IMU (Accelerometer)
1 sensor (Commercial).
Acceleration and linear position.

Fixed on the belt at the
lumbopelvic region.

Integrated feedback in the
sensor itself.
Auditory feedback.

Lind et al., 2023 [54]

Sixaxial IMU (triaxial Accelerometer
and triaxial Gyroscope).
1 sensor (Prototype) Acceleration and
linear position.

The IMU is fixed in a built-in pocket at
the thoracic region (between T1 and T2).
The haptic sensor is embedded in a
pocket on the T-shirt at the
sternum level.

Integrated feedback in the
sensor itself.
Haptic feedback.

PPE—personal protective equipment; N/S—not specified; IMU—inertial measurement unit.

3.3. Sensor Placement and Fixation

These sensors were attached to accessories or personal protective equipment (PPE),
including vests, helmet, thoracic and lumbopelvic belts, uniforms (e.g., pockets) and face
protectors (visors) [43–46,48,49,51,53,54]. In the upper limb (n = 3), sensors were placed on
armbands and smartwatches [47,50,52] (Figure 5).
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3.4. Feedback Source and Type

Regarding the source of feedback, the most common was the sensor itself (n = 6)
[43,46,47,50,53,54], followed by smartphones (n = 4) [48,49,51,52]. In addition to the sensor
itself, Lins et al. [50] also used a decision support system. Two studies did not specify the
source of feedback [44,45].

The type of haptic feedback was the most identified [46,47,50,52,54], and it is high-
lighted that the study by Bootsman et al. [51] was the only one that combined all three
types of feedback (Figure 6).
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3.5. Results after Feedback Application

Following feedback application, all included studies showed improvements. A better
lumbar posture was demonstrated in two studies [43,51], and reductions in trunk flexion
and inclination during work tasks were observed in seven studies [44–46,48,49,52,54]. It
should be noted that according to Bootsman et al. [51], there were no significant differences
between the three types of feedback (Table 5).

Table 5. Results of the included studies.

Authors (Year) Results after Feedback Application

Ribeiro et al., 2014 [43] In the constant feedback group, there was a reduction in lumbar flexion compared to the control and
intermittent feedback groups, with constant feedback being more effective.

Thanathornwong et al.,
2014 [44]

The group that received feedback significantly decreased cervical and upper thoracic extension, as well
as reduced the likelihood of WRMSDs in the post-test.

Thanathornwong et al.,
2014 [45] There were statistically significant differences in reducing cervical extension with posterior alignment.

Thanathornwong and
Suebnukarn, 2015 [46]

There was a decrease in trunk flexion and inclination in the upper body in the feedback group
compared to the group without feedback.

Zhao et al., 2015 [47] The system developed by the authors can be used to improve safe patient handling with the use of
discrete tactile feedback in real time.

Yan et al., 2017 [48] After an adaptation period of nearly a day to the proposed PPE, there was an improvement in tasks,
indicating the effectiveness of self-awareness and self-regulation strategy.

Doss et al., 2018 [49]
After using feedback, statistically significant differences were observed in the task of transferring from
bed to chair, including a decrease in the average time to complete the task, a reduction in peak trunk
flexion and rotation, and triaxial speed and acceleration.

Lins et al., 2018 [50] The results indicate that the ideal pulse length for haptic feedback application is about 150 ms,
repeated 2 or 3 times within the sequence for maximum attention.

Bootsman et al., 2019 [51] Improvement in lumbar posture compared to the group that did not receive any type of feedback, with
no significant differences between the different types of feedback.

Lind et al., 2020 [52] Decrease in elevation of the dominant upper limb and trunk flexion immediately after haptic feedback,
which was maintained after its removal.

Ribeiro et al., 2020 [53] There were no statistically significant differences between the groups with the application of auditory
feedback to limit the threshold of trunk flexion.

Lind et al., 2023 [54] Decrease in flexion and inclination of the upper trunk in the group with feedback compared to the
group that did not receive haptic feedback.

WRMSDs—work-related musculoskeletal disorders; PPE—personal protective equipment; ms—milliseconds.
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4. Discussion

This scoping review aimed to identify, synthesise, and characterise the wearables
used in the workplace to monitor and provide postural feedback in workers. Indeed,
taking into consideration the global increase in the prevalence of WRMSDs with an ageing
workforce [10], it seems justified to conduct studies in work environments that incorporate
devices aimed to reduce the effects of the work tasks’ physical demands and alerting
workers to adopt correct postures [5,55].

4.1. Wearables and Variables of Human Movement in the Workplace Settings

This review exclusively considered the integration of studies in real-world contexts
involving work tasks, whereas most wearable studies are typically conducted in laboratory
settings [2]. Certainly, it is important to highlight that the monitorisation and correction
of posture in real environments, which is currently feasible, is only possible due to the
exponential development of technology that allows the use of minimalist portable sen-
sors (in particular inertial sensors) which are commonly used in biomechanical studies
and integrated into wearables devices [28]. The gold standard for kinematic assessment,
particularly joint range assessment, which includes digital goniometers that are easy to
access and use, as well as optical motion capture systems, have some disadvantages when
it comes to being integrated into a workplace context. As far as goniometers are concerned,
they are usually used more for kinematic measurements of the wrist, especially twin-axis
electrical goniometers placed on the targeted body segment [54]. Their accuracy depends
on the expertise of the user, while optical capture systems are more limited to laboratory
settings [56]. Therefore, the use of IMUs seems to be more consistent with greater potential
for application in a workplace context, providing more reliable and trustworthy results [2].
It is widely recognised that real tasks, as opposed to simulated tasks, appear to involve a
greater variability and complexity of movement that is difficult to replicate in controlled
environments [57]. In this sense, wearables have emerged as a viable solution to address
these gaps due to their ability to provide objective measurements of human movement,
particularly posture [22].

Furthermore, Buisseret et al. [25] stated that wearables add significant value to the anal-
ysis of human movement in real and dynamic situations, which justifies their application in
posture monitoring and correction. Paloschi et al. [21] argued that wearables are valid for
quantitative measurement of daily occupational posture, with inertial measurement units
(9 axis IMUs) being a robust instrument commonly used for this purpose. This statement
is supported by Cerqueira et al. [5], who noted that IMUs are an increasingly valid and
recognised option for wearable integration due to their many advantages, including three-
dimensional motion capture, size and weight, and portability. Choi et al. [58] also argue
that IMUs are important tools for managing the health and safety of workers, allowing
continuous monitorisation and identification of incorrect postures, with feedback provided
when a risky posture is detected. Based on this evidence, it seems reasonable to integrate
IMUs into posture monitoring and feedback wearables in the workplace context. It is worth
noting that IMUs, which allow for a more comprehensive assessment [7], are the most
used type of sensor according to Ciccarelli et al. [2]; Conforti et al. [14]; Donisi et al. [59],
and Patel et al. [18]. In contrast, this scoping review found that IMUs with accelerometers
only (three-axis IMU-accelerometer) were the most frequently used resource for analysis
and corrective feedback in the workplace. These findings are supported by the study by
Lee et al. [7] and contradicted by the study by Wang et al. [32], which found an equal use
of both types of sensors (three vs. nine axis IMUs). However, these authors emphasised
that the choice between different IMUs will always depend on the objective of the study
considering the complexity of the assessed task. Therefore, considering that the objective
of the different studies included in this scoping review was to identify postural changes
based on the defined assumptions, these choices seem to have been appropriate. Using
different IMUs, whether triaxial or nonaxial, it is possible to identify body position with
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different degrees of accuracy. The triaxial IMUs offer a simpler approach and the nonaxial
a more complex analysis.

It is widely known that these tools allow the analysis of kinematic parameters of hu-
man movement [27,60]. In this study, only kinematic variables—specifically displacement
and angular velocity, linear and angular acceleration, and linear position—were analysed
individually or in a combined and complementary manner. The analysis of these parame-
ters, although valid and appropriate, could be even more robust and complex if it were
possible to associate simultaneous analysis of kinetics. Based on the assumption that muscle
fatigue is one of the risks associated with WRMSDs, it is known that Median Frequency
(MDF) and Root Mean Square (RMS) analysis in electromyography (EMG) makes it possible
to characterise the spectral distribution of power and measure amplitude, respectively,
characterising muscle condition, namely fatigue [61]. Thus, integrating EMG on top of
triaxial or sixaxial IMUs would provide a more comprehensive analysis and enable early
detection and correction of muscle fatigue, minimising the risk of WRMSDs [62]. Studies
involving portable EMG sensors in the workplace context have already been developed,
tested, and evaluated, suggesting that monitoring human movement in real contexts will
soon become increasingly simpler and robust [63,64]. In the absence of this combination,
nonaxial IMUs are the most commonly used, as they integrate a triaxial accelerometer,
triaxial magnetometer, and a triaxial gyroscope, providing greater robustness and reliability
in the analysis of human movement kinematics [2,24]. This type of IMU was used in three
studies included in this scoping review, while the other studies relied on six axial or triaxial
IMUs. These choices also appear to be valid, as bi-, tri- and six-axial IMUs all have high
validities in measuring joint position—particularly flexion/extension movement—and are
viable alternatives (probably the only alternative) to the gold standard in occupational
contexts [65]. Given that most studies only assessed movement in the sagittal plane, both
bi- and triaxial IMUs are appropriate and valid choices. Even those that used triaxial IMUs
to analyse joint position in the frontal plane, in addition to the sagittal plane, seem to be a
possible choice, although less robust.

However, this simplified information could be more accurate and robust if comple-
mented by the use of a triaxial gyroscope and magnetometer [21,66]. This raises the question
of whether the results of the studies by Ribeiro et al. [43,53], Thanathornwong et al. [45],
Thanathornwong et al. [44], Thanathornwong and Suebnukarn [46], Zhao et al. [47], and
Doss et al. [49] could have been more complete or led to different conclusions due to the
instrument used.

4.2. Analysis and Feedback in the Workplace: Type, Location, Attachment, and Quantity of Sensors

Photogrammetric methods, which are the gold standard for posture analysis, con-
sist of approaches that are more geared towards laboratory use and are not suitable for
monitoring and correcting workers’ postures in their daily lives [22]. On the other hand,
indirect methods such as questionnaires or observational methods like REBA or RULA are,
according to the available literature, the most used in the workplace context to assess pos-
tures and related factors [63,67]. Consequently, the need to develop alternative methods for
real-time objective assessment of work tasks and the subsequent adoption of appropriate
postures was created [67]. However, based on existing evidence, it is known that workers
are often unaware of their posture and frequently adopt incorrect behaviours due to time
constraints, task demands, and the need to meet productivity goals [22]. Truly, there is
a lack of consensus on correct posture [13], which is generally described as considering
the alignment of different body segments about the line of gravity with minimal energy
expenditure [13,68]. However, in this scoping review, all included studies started from the
assumption that the neutral position, with the head and trunk aligned at 0◦ relative to the
rest of the body, would be considered correct posture. To measure this posture, all studies
relied on wearable devices, with heterogeneity in the attachment methods, number and
location of sensors used for that purpose.
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Most sensors used in the included studies were at the prototype stage despite the
growing trend towards commercialisation of wearable devices [22]. In fact, although there
is already a wide range of commercially available wearable devices today, most are aimed
at physical activity monitoring, posture and physiological parameters, in contrast to the
apparent lack of commercial wearable systems that combine postural monitoring and
feedback [22]. This seems to be a gap for their integration in the workplace context [2].
This may be due to difficulties not only in accessing such devices but also to the fact that,
in most cases, they do not meet usability parameters, which can consequently hinder the
acceptance of these instruments by workers and companies, and actually provide data
incongruent with reality [2,34]. Furthermore, Jacobs et al. [69] argued that the workers’
acceptance of wearables may be influenced by factors related to the organizational envi-
ronment as well as individual characteristics and beliefs, although these factors were not
mentioned in any of the studies included in this review. Recent studies emphasise the
careful design of wearables, using flexible materials such as polybutylene terephthalate and
polydimethylsiloxane to provide flexibility, durability and comfort, which provides greater
resistance to repetitive movements and could therefore ensure greater practical acceptance
of the sensors by workers [36]. Continued research to develop more wearable, practical,
portable and autonomous sensors is essential to make their commercialisation feasible and
expand their application in the workplace context, helping to minimise WRMSDs) [20,36].

According to Donisi et al. [59], it is observed that the most common and frequent
approach to monitor postural changes is the placement of sensors throughout the body.
However, this contradicts the findings of this scoping review, where the authors predomi-
nantly placed the sensors on the upper trunk, cervical and thoracic spine, and upper limbs,
alongside some studies that focused on the lumbar region or the entire body. In truth, these
regions have been the target for sensor placement, possibly due to the increased incidence
of WRMSDs in this region [70,71]. These results are consistent with the study by Lorenzini
et al. [72], which states that the upper limbs and the spine are the most frequently affected
body regions, supporting the placement of sensors in these specific regions.

Despite the device placement, also the usability, the comfort and accuracy are key
factors in worker acceptance, and current evidence reinforces its importance [5,7,73,74].
Indeed, the sensors attachment is a fundamental role in its usability. Therefore, to meet
this requirement, the sensor attachment must fulfil three essential conditions, namely
being imperceptible to the worker; having intuitive use; and providing quick, reliable, and
easily interpretable information [21]. These criteria are crucial to ensure the effectiveness
of wearables, alongside worker acceptance, and can be integrated into accessories or
clothing [25]. This approach, which is currently the greatest consensus [75] regarding
sensor integration, was found in the studies of Bootsman et al. [51], Lind et al. [52,54],
Lins et al. [50], Ribeiro et al. [43,53], and Thanathornwong and Suebnukarn [46].

Other sensor attachment methods can include direct placement on the skin using
electrodes that incorporate EMG [76], adhesive tape or elastic straps [33,67], integration
into smartwatches, or even integration into personal protective equipment (PPE) such
as helmets and visors [60,77,78]. The latter form of attachment is consistent with Yang
et al.’s [65] study on construction workers, who used sensors attached to PPE, specifically
helmets and safety harnesses or vests. In fact, Choi et al. [58] argue that this is the most
suitable location for sensor placement in this occupational activity, as it does not appear to
interfere with the work, which can increase usability.

On the other hand, two studies combined sensor placement on the uniform and visor,
while one study opted for sensor attachment with adhesive tape on clothing and belt.
This heterogeneity in sensor attachment was also confirmed in the study by Lee et al. [7],
highlighting the lack of consensus on sensor placement [30]. Indeed, most of the studies
included in this scoping review only superficially described the parameters of location and
attachment, raising the question of whether this heterogeneity and discrepancy between
methods could bias the results obtained. This leaves an open question remaining for future
studies: Is there a need to develop a universal protocol for sensor application in common
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anatomical regions—considering the imprecision in location description, diversity of at-
tachment methods, and material types—to allow for greater robustness in comparability
between studies?

One problem that arises when implementing the wearable devices in real-world
settings is the resistance of workers and companies to their use. This resistance may be due
not only to the inherent slowness of their application but also to the large number of sensors
that some of these systems require [30]. This may be a reason why most of the studies
included in this scoping focused on the assessment of a single region, with a particular
emphasis on the spine, predominantly using one or two sensors, which is consistent with
the literature [38,39].

4.3. Occupation and Work Tasks

Healthcare professionals such as nurses, dentists, healthcare assistants, and unspeci-
fied healthcare professionals were the most studied populations on posture monitorisation
and feedback using wearables. The inclusion of these professions in the studies included
in this review seems to reveal the existing evidence of high prevalence of musculoskeletal
disorders related to occupational activities in the healthcare settings, indicating the need
to intervene in this area to minimise their occurrence [70]. Indeed, healthcare professions
typically involve demanding work schedules and precise, meticulous, and repetitive tasks,
often requiring prolonged static postures that contribute to neuro-musculoskeletal strain
and fatigue, particularly among dentists [79–81]. This fact is also supported by studies
that have found a high prevalence of musculoskeletal disorders in this group [70,82,83],
particularly among those with more than 10 years’ clinical practice and working more
than 40 h per week [83]. Jacquier-Bret and Gorce [70] also found that dentists are among
the professionals most exposed to musculoskeletal disorders, with a higher prevalence
of symptoms in the spine, particularly in the cervical and lumbar regions, which is also
supported by Blume et al. [82]. In addition, dental students are also susceptible to develop
musculoskeletal disorders, and there are studies that support this evidence by linking
this susceptibility to the adoption of more sedentary behaviours due to the use of new
technologies that decrease their mobility [83,84]. On the other hand, Blume et al. [82]
describe an association between musculoskeletal disorders and poor posture adopted by
these students during dental procedures, particularly when these involve static postures,
especially in the cervical region, due to the limited visibility of the patient’s mouth, which
leads to the maintenance of an extended and protracted cervical posture.

Hence, there is an urgent need to bring visibility to wearables that incorporate correc-
tive feedback, as they can aware changes in the daily work routines and, consequently, in
the quality of life and work of healthcare professionals. This could result in fewer injuries,
lower absenteeism rates, reduced healthcare costs, and increased productivity [79].

In addition to healthcare professionals, there are other fields, particularly in the con-
struction industry, who have a high prevalence of WRMSDs due to daily exposure to
excessive effort, sustained and incorrect postures, handling and carrying heavy loads,
repetitive tasks, and vibration from work tools [13,14,81]. Based on scientific evidence,
it is widely recognised that the construction industry is one of the most dangerous and
physically demanding occupations in terms of ergonomics, with a high rate of early re-
tirement and a significant proportion of ageing workers, which increases susceptibility to
WRMSDs [20,85]. Choi et al. [58] also support these statements, emphasising that this sector
is a promising area for the application of wearables in real-world settings, highlighting the
need for research.

With regard to the other included studies, warehouse that involve manual handling
of loads is another task that evidences more investigation. It is also worth noting that
the study by Lind et al. [52]was carried out in a specific area within the company, which
may have minimised the conditions of stress, fatigue, and inherent noise in the workplace,
potentially biasing the results as certain variables were under control, thus limiting the
generalisability of the findings.
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4.4. Feedback Source and Type

Wearables have emerged as a solution for the prevention of WRMSDs due to their
versatility, particularly because of the real-time feedback they can provide [59]. This feed-
back should provide personalised information, and it is important to ensure that workers
understand and adjust their posture based on the stimulus received [86]. Currently, there
are different types of sensory feedback, including haptic, visual, and auditory feedback [9],
with haptic feedback being considered the most suitable and common approach [9,31,32,72].
This is consistent with the results of the present study, in which half of the authors used
haptic feedback by generating vibratory stimuli. On the other hand, Lee et al. [7] found
different results, with sound being the preferred variable. However, considering that sound
feedback has a greater potential to distract the worker, the choice of haptic feedback seems
to be more appropriate [72]. Indeed, this modality has the added advantage of being
intuitive and safe, allowing the worker to maintain concentration on the task at hand, as it
only acts in a specific area [31].

On the other hand, Wang et al. [32] recommended the combined use of multiple types
of feedback to minimise potential disadvantages and fill gaps. This recommendation is in
line with the study by Bootsman et al. [51], which used all three types of sensory feedback.
Although this approach has its advantages, it is important to consider the suitability of the
region and context for monitoring and applying feedback.

Given that both auditory and haptic feedback do not require visual attention during
the task [32], they appear to be a valuable combination. However, in this specific case,
the auditory feedback may have been drowned out by the noise of other equipment
in the neonatal intensive care unit, which is typically loud. It is therefore important to
carefully assess the pertinence of the feedback used, taking into account the aforementioned
factors [20].

Doss et al. [49] and Ribeiro et al. [43,53] also used auditory feedback in healthcare
professionals, but considering that the transmitted sound can be annoying both for the
worker and for patients, it may have a negative impact and act as an inhibiting factor
for concentration when the worker is performing a complex task [9]. On the other hand,
these constraints resulting from auditory feedback can compromise its effectiveness due to
hearing difficulties or competition with other sounds present, especially in environments
with high noise levels [72], such as healthcare units or industrial facilities.

Consequently, the use of auditory feedback in the study by Yan et al. [48] may not
have been the most suitable choice, as it involved construction tasks where, in addition to
the existing noise, some hazardous tasks require full concentration. This may be the reason
why the studies by Lind et al. [52,54] opted for haptic feedback for industrial workers.

Visual feedback was also identified in this review. It allows the worker to visualise and
correct their movements/posture, and this stimulus is widely used for correcting upper
trunk posture [71].

Hence, it seems to be fundamental to have a consensus regarding the timing, quantity,
and distance between feedback sensors to minimise accommodation and enhance its
effectiveness and usability.

Regarding the application of feedback, an approach that has been widely used is
through the sensor itself [31]. Additionally, wearables accompanied by smartphone appli-
cations have emerged as a possibility for providing feedback to raise workers’ awareness of
their postural behaviours and induce correction [87]. This source of feedback was found in
four studies of this review, with the type of feedback provided by the smartphone varying
between visual, auditory, or haptic, which is consistent with the study by Wang et al. [88].
Thus, the choice of the source depending on the specific application objective, context, and
the better worker acceptance. It is important to note that the smartphone application seems
to be easier and more accessible. Therefore, the choice between the sensor or smartphone
should always be based on specific needs and worker preferences.
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4.5. Results after Feedback Application

The included studies demonstrated that there was generally an improvement in
posture after the application of haptic feedback in real-world settings, which is congruent
with the studies by Kuo et al. [89] and Lind et al. [78], although these were conducted in
laboratory settings. The studies by Ribeiro et al. [43], Yan et al. [48], and Doss et al. [49]
reported postural improvements following auditory feedback, which is supported by the
laboratory study by Boocock et al. [90]. On the other hand, Ribeiro et al. [53] concluded that
this type of feedback did not promote improvement during work, suggesting that haptic
feedback may have been more appropriate for this class of professionals.

The terminal visual feedback identified in the studies by Thanathornwong et al. [45]
and Thanathornwong et al. [44] also demonstrated significant postural improvements,
although the stimulus was presented to the worker only at the end of the task. Based on
these findings, it can be inferred that the choice of feedback depends on the tasks and the
work context being evaluated.

4.6. Limitations of the Study

In the time frame defined for this review, it is believed that the COVID-19 pandemic
may have contributed to few studies on this topic since 2020. Heterogeneity of the included
studies is also a limitation.

4.7. Suggestions for Future Studies

Although several studies have identified the non-dominant upper limb, in addition
to the cervical region, as having the highest ergonomic risk, and considering that it is
associated with a higher risk of developing musculoskeletal disorders, it may be important
in future studies to try to incorporate feedback sensors to correct the posture of different
segments of the upper limb (especially the wrist, as it is one of the most affected anatomical
regions). Furthermore, future research should focus on the integration of textile wearables,
improving usability, and wearability as well as clinical validation. The latter is considered
to be very important in leading the way for implementation in clinical practice. Future
studies should explore wearable solutions with more flexible materials that adapt to the
body, with greater power supply optimisation, with the aim of improving the ease and
precision of data collection and improving practicality and portability, respectively. Further
research should analyse the effectiveness of different types of feedback in work contexts,
assessing how these approaches can influence postural improvement, thus guiding the
development of personalised interventions.

The included studies in this review do not complete the knowledge storytelling, and
gaps that remain in the literature were identified. Currently, research into wearables for
postural monitoring and feedback in the workplace is predominantly in an exploratory
stage, with a variety of occupations evaluated but with significant emphasis on healthcare
professionals and industrial workers. Thus, greater diversification in the occupations study
could improve the applicability of wearables in a variety of work contexts.

Most of the integrated studies used prototypes, and there is still a need for more
comprehensive clinical validation to guarantee the effectiveness and reliability of wearables
for postural monitoring and feedback in a work context.

The duration of postural improvements after discontinuing use of the wearable is
still not fully understood, as it is the relative influence of different types of feedback that
promote effective postural changes.

Therefore, in order to fill these gaps, longitudinal studies to assess the durability of
postural changes after continuous use and after discontinuation of the wearable may be
pertinent. On the other hand, it will be important to carry out robust clinical trials to
validate the effectiveness of postural monitoring and feedback wearables in the workplace.
It will also be pertinent to explore methods for personalising the type of feedback based on
individual characteristics and occupational needs.
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In addition, it would be relevant to carry out studies with the aim of monitoring
through magnetic resonance imaging, the recommended time of use of monitoring wear-
ables and postural feedback to promote postural changes that reduce the impact of
WRMSDs. It is also crucial to investigate the durability of postural changes after dis-
continuing the use of the wearable, contributing to a more comprehensive understanding
of the long-term effects.

5. Conclusions

The studies predominantly relied on prototype wearables, mainly based on triaxial—but
also on six and nonaxial—IMUs, with a focus on kinematic variables of human movement.

The spine stands out as a location for sensor placement, in varying numbers, to
monitor and provide feedback on specific tasks performed by healthcare professionals, as
well as those in the industry and construction sectors. Personal protective equipment and
uniforms were the preferred location for sensor attachment.

Visual, auditory, and haptic feedback were identified in this review, with particular
emphasis on the latter for improving posture during work activities and with the most
common source being the sensor itself.
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