
Citation: Pereira, D.; Reis, P.R.; Borges,

F. Secure Aggregation Protocol Based

on DC-Nets and Secret Sharing for

Decentralized Federated Learning.

Sensors 2024, 24, 1299. https://

doi.org/10.3390/s24041299

Academic Editors: Stefano Giordano,

Periklis Chatzimisios and Mike

Oluwatayo Ojo

Received: 10 January 2024

Revised: 2 February 2024

Accepted: 13 February 2024

Published: 17 February 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Secure Aggregation Protocol Based on DC-Nets and Secret
Sharing for Decentralized Federated Learning
Diogo Pereira * , Paulo Ricardo Reis and Fábio Borges

National Laboratory for Scientific Computing, Petrópolis 25651-075, RJ, Brazil; paulorbr@posgrad.lncc.br (P.R.R.);
borges@lncc.br (F.B.)
* Correspondence: dpereira@posgrad.lncc.br

Abstract: In the era of big data, millions and millions of data are generated every second by different
types of devices. Training machine-learning models with these data has become increasingly common.
However, the data used for training are often sensitive and may contain information such as medical,
banking, or consumer records, for example. These data can cause problems in people’s lives if they
are leaked and also incur sanctions for companies that leak personal information for any reason. In
this context, Federated Learning emerges as a solution to the privacy of personal data. However,
even when only the gradients of the local models are shared with the central server, some attacks can
reconstruct user data, allowing a malicious server to violate the FL principle, which is to ensure the
privacy of local data. We propose a secure aggregation protocol for Decentralized Federated Learning,
which does not require a central server to orchestrate the aggregation process. To achieve this, we
combined a Multi-Secret-Sharing scheme with a Dining Cryptographers Network. We validate the
proposed protocol in simulations using the MNIST handwritten digits dataset. This protocol achieves
results comparable to Federated Learning with the FedAvg protocol while adding a layer of privacy
to the models. Furthermore, it obtains a timing performance that does not significantly affect the total
training time, unlike protocols that use Homomorphic Encryption.

Keywords: decentralized federated learning; secure aggregation; DC-nets; secret sharing; privacy

1. Introduction

Today’s common life is surrounded by a variety of Artificial Intelligence (AI) uses,
such as financial systems, social networks, transportation, and search engines. This is
pushed forward by the growing computational power of computers and even smartphones.
A significant part of the population now has devices in their pocket capable of collecting
and processing an enormous and diverse amount of data, which continues to increase as
even more precise and sophisticated tools are demanded. The concern is that these data
may be personal or sensitive, thus making the development of strategies to ensure the
security and privacy of users’ data urgent.

In this context, Federated Learning poses an essential role as an emerging technique to
mitigate the mentioned issues. Federated Learning (FL) [1] is a form of distributed machine
learning that aims to ensure data privacy, where a set—called a federation—of devices train
a global machine-learning model in a collaborative and distributed way.

This processing can be done in both centralized and decentralized versions of FL. In
Centralized Federated Learning (CFL), a central server coordinates the training process,
receiving model updates from participating devices, aggregating them, and distributing
the global model to devices. On the other hand, in Decentralized Federated Learning (DFL),
there is no central server. Instead, the devices communicate directly with each other in a
peer-to-peer network, receiving model updates from their neighbors.

Federated Learning and the Internet of Things (IoT) have great synergy, as they
can leverage the benefits of both concepts to develop intelligent, efficient, and secure

Sensors 2024, 24, 1299. https://doi.org/10.3390/s24041299 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s24041299
https://doi.org/10.3390/s24041299
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-1884-0994
https://orcid.org/0000-0003-2050-6984
https://orcid.org/0000-0001-5159-9517
https://doi.org/10.3390/s24041299
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s24041299?type=check_update&version=1

Sensors 2024, 24, 1299 2 of 18

applications. For example, FL can allow IoT devices to cooperate to learn models for
anomaly detection, activity recognition, or image classification without sending their data
to the cloud or a central server. This synergy can improve the performance, privacy, and
scalability of IoT applications. Some IoT applications that can benefit from using DFL are:

• Anomaly detection in sensor networks: Sensors can cooperate to learn an anomaly
detection model from their local data without revealing their locations or measured
values. This can be useful for monitoring events like fires, floods, and earthquakes.

• Health: Wearable devices can collaborate to learn an activity recognition model from
their sensor data without exposing personal or health information. This can be useful
in providing users with personalized feedback, recommendations, or alerts.

• Image Classification in smart cameras: Smart cameras can cooperate to learn an image
classification model from their visual data without sharing the captured images. This
can be useful for applications like surveillance, facial recognition, and object detection.

One of the most positive aspects of FL is that participants do not have to share their
raw data with other participants or the central server. Instead, each participant only shares
their locally trained model. However, recent work has shown that from the gradients of
the model, it is possible to conduct attacks that break the privacy of participants, such as
the membership inference attack [2], attribute inference attack [3] and reconstruction of the
data of the participants [4,5].

Secure aggregation in Federated Learning is a problem that aims to aggregate local
models trained by different devices so that the attacks described in the previous paragraph
are not carried out, i.e., no participant can access or infer information about the data or
models of other participants.

Secret Sharing is a kind of cryptographic technique that can be used in multiparty
computing, enabling a user to share a secret by dividing it into n parts and sharing it with n
other users in a particular way that only by gathering the knowledge of a minimal number
of users, could reconstruct the secret. Multi-secret sharing is a generalization of Secret
Sharing, allowing users to share more than one secret at a time.

Dining Cryptographers Networks (DC-Nets) [6] is a communication technique that
allows network participants to broadcast a message to the other participants while maintain-
ing anonymity. DC-Nets also allows participants to aggregate their messages anonymously
and securely.

Using DC-Nets in FL can be computationally expensive, as it allows the aggregation
of only one message at a time, whereas in FL, the message is the whole machine-learning
model. By using Secret Sharing and Multi-Secret Sharing directly in FL, it is not guaranteed
that the participants will not access or infer information about the data or the models of the
other participants since they will have access to the individual models.

However, by combining Multi-Secret Sharing and DC-Nets, a decentralized, secure
aggregation protocol for FL can be built in a way that maintains the anonymity of the
participants and ensures that they will have access only to the aggregated model and not to
the individual models of the other participants.

This work aims to propose and implement a secure aggregation protocol based on DC-
Nets and Multi-Secret Sharing in DFL. Furthermore, this work evaluates the performance,
quality, and privacy of the protocol. It compares it with other methods of secure aggregation,
such as Homomorphic Encryption and secret sum protocols, analyzing the advantages
and disadvantages of each method in terms of communication, computation, security,
and privacy.

The remainder of the work is organized as follows. Section 2 presents a non-extensive
literature review, while Section 3 explains the background of the techniques used. Section 4
shows the proposed secure aggregation protocol and Section 5 the computational results.
Section 6 discusses the results and main findings. Finally, Section 7 presents the conclusions
and future work.

Sensors 2024, 24, 1299 3 of 18

2. Related Work

There are several works that propose aggregation protocols for DFL. This section
presents some of the existing works in the literature. Furthermore, we present some of the
main works related to DC-Nets.

2.1. DFL without Privacy

In [7], a novel decentralized federated learning framework named BrainTorrent is
introduced. BrainTorrent provides a peer-to-peer environment where different medical
centers can collaborate and reap mutual advantages without the need to share their data.
However, it should be noted that in this framework, the models are shared without encryp-
tion, making them vulnerable to the attacks discussed in the introduction.

The work [8] presents a general framework for DFL that performs local updates and
inter-node communications periodically. The purpose of the work is to balance these
elements, enhancing the efficiency of FL while working within the constraints of limited
communication and computing resources. To improve communication efficiency, the
authors employ the gossip compression scheme introduced in [9].

In [10], a segmented gossip approach protocol is proposed for DFL. In their protocol,
participants divide the models into segments after training the local model and exchange
them with other participants. At the same time, they also receive segments from other
participants. The aggregation of local models is carried out only when all pull requests for
the exchange of segments are fulfilled.

The authors in [11] propose a protocol that takes into account the layer-wise model
discrepancy to adjust the aggregation interval. Relaxing the model aggregation frequency
decreases the communication cost while maintaining good model performance.

2.2. DFL with Privacy

In their work [12], the authors utilize the Alternating Direction Method of Multiplier
(ADMM) technique to achieve decentralized aggregation. This approach involves creating
separate groups and restricting communication within each group. By controlling the
communication between participants during each aggregation round, the authors aim to
minimize the potential privacy leakage. To strike a balance between privacy and accuracy,
the authors introduce a measure called a “gap”, which represents the number of iterations
required for two devices to be in the same group. The authors demonstrate that the groups
formed using these gap constraints are equivalent to a specific category of solvable balanced
incomplete block design problems in combinatorial design theory [13].

In [14], a protocol is proposed based on proxy models and Differential Privacy. The
proxy model has a common architecture for all participants and is updated from the local
model using differential privacy. This allows efficient information exchange between
participants while maintaining local models and data privacy. The referred work shows
superior results when compared to existing methods.

Through Homomorphic Encryption, digital signatures can be used to provide a DFL
scheme that guarantees the confidentiality, integrity, and correctness of models in the
training process [15]. All training done is based on the proposed algorithm, Efficient and
Verifiable Cipher-based Matrix Multiplication.

In [16], a decentralized coordinate descent algorithm is proposed that allows partici-
pants to learn local models completely decentralized and asynchronously. A Non-Private
version with no privacy guarantee is proposed, and a private version that uses Differential
Privacy to guarantee the privacy of participants’ data.

In [17], the authors introduce a hierarchical ring topology as a solution to address the
centralization issues in the traditional training framework. They approach the construction
of the ring as an optimization problem and propose an efficient heuristic algorithm to solve
it. Additionally, they incorporate Differential Privacy techniques to ensure data privacy.

The works [18–20] use blockchain technology to guarantee the integrity and correct-
ness of the data and models used in the training. In [18], participants conduct online

Sensors 2024, 24, 1299 4 of 18

training and release only partial models and metadata in unencrypted format. Refs [19,20]
use Differential Privacy to protect gradients and models; however, in [19], a participant
must solve a mathematical puzzle to perform the aggregation of the other participants’
local models, while in [20] the perturbed models go through a verification and signature
scheme to prevent Poisoning Attacks, and at the end, the unperturbed models are split
with Shamir’s Secret-Sharing method [21] and shared with some participants who finally
aggregate and recover the global models.

Therefore, related works use Differential Privacy to guarantee the privacy of partici-
pants’ data, except for [20], which also uses Secret Sharing.

2.3. DC-Nets

David Chaum introduced a solution to the dining cryptographers problem in his
work [6]. This solution, known as the Dining Cryptographers Network or DC-Net, enables
a participant in a network to send a message to other participants while maintaining
anonymity. In other words, if an attacker attempts to identify the sender of a message, it
will be impossible to determine which participant sent it, as all participants have an equal
probability of being the sender.

Later, several works sought to improve some aspects of DC-Net. In [22], the authors
examine the effectiveness of the DC-Net protocol and introduce novel constructs that
can detect and identify dishonest participants without requiring interaction. The article
also addresses the limitations of the DC-Net protocol, including collision and interrup-
tion issues, and proposes potential solutions to these challenges. Refs [23,24] suggest the
utilization of an Abelian finite group (F,+) in place of the XOR operation to present a
multi-round approach to address the disruption problem. In their study, Ref [25] sug-
gest a three-step method for integrating the DC-Net protocol into peer-to-peer networks,
commonly used in blockchain applications to distribute transactions and blocks among par-
ticipants. The initial phase involves a DC-Net with a group size of k, ensuring k-anonymity.
Subsequent phases handle the transmission process within the peer-to-peer network. In
addition, the researchers analyze the privacy and security aspects of the extension of the
DC-Net protocol [26], which enables the fair delivery of messages of various lengths from
multiple senders.

This work proposes the use of DC-Nets combined with a Multi-Secret-Sharing scheme.
With these two primitives, we can obtain anonymity of the participants, efficiency in
communication, and computational cost since the shared data will be, at most, the size of
the model, while maintaining the privacy of the local models since each participant will
only have access to the aggregated model.

3. Background
3.1. Federated Learning
3.1.1. Centralized Federated Learning

Centralized Federated Learning (CFL) refers to an approach to machine learning
where individual participants or devices maintain the privacy of their training data while
collaboratively training a global model. In the context of FL implementation, two main
entities exist: Participants and the Central Server. Furthermore, the FL process can be
broken down into three distinct steps.

1. The server initializes the global model and sends it to each participant who updates
his local model with the global model;

2. Each participant trains their model without the need to share their local data;
3. The server receives the models from each participant, adds them to the global model,

and goes back to step 1.

The third step mentioned above involves the execution of an aggregation algorithm
on the server, a crucial component of FL. This aggregation algorithm is responsible for
combining the individual models from the clients into a single model known as the global
model. The most well-known algorithm for this purpose is FedAvg [1], which achieves

Sensors 2024, 24, 1299 5 of 18

aggregation by computing a weighted average of the local models. Subsequently, other
algorithms have been developed based on FedAvg, aiming to improve the privacy of
participants’ data and reduce communication costs. In this work, we also utilize FedAvg to
ensure participants’ privacy through encryption. Figure 1 illustrates a basic aggregation
round in FL using the FedAvg algorithm.

Figure 1. Centralized Federated Learning with FedAvg.

3.1.2. Decentralized Federated Learning

Decentralized Federated Learning (DFL) is a variant of Federated Learning (FL) that
removes the requirement for a central server to supervise the training process of an AI
model. Instead, participating devices or organizations directly communicate with each
other, creating a peer-to-peer network in which each node can independently initiate, join,
or opt out of a training round. This approach improves the effectiveness, expandability,
and resilience of FL, while also mitigating the potential risks associated with attacks or
failures targeting the central server.

The DFL process can be outlined in the subsequent stages:

1. A training round is initiated by a node, which selects a subset of neighboring nodes at
random to form a collaboration group.

2. Every node within the group individually trains its local model by utilizing its own
private data.

3. The nodes within the group engage in the exchange of their local models with one
another, employing a communication protocol that is both secure and efficient.

4. Every node combines the received models by employing a suitable aggregation
algorithm and modifies its local model accordingly.

5. The initiator node terminates the training round and transmits a signal to the remain-
ing nodes in the group.

Similar to CFL, DFL can be utilized in a range of contexts where FL is advantageous,
including healthcare, finance, smart cities, the Internet of Things, and more. Nevertheless,
DFL also introduces certain obstacles and constraints, such as the presence of diverse
data and devices, the need for model synchronization and convergence, the selection and
trustworthiness of nodes, and concerns regarding data and model privacy and security. To
provide a visual representation of the process, Figure 2 depicts a simple aggregation round
in FL employing the FedAvg algorithm.

Sensors 2024, 24, 1299 6 of 18

Figure 2. Decentralized Federated Learning.

When comparing DFL and CFL, several distinctions, advantages, and disadvantages
can be identified.

• DFL is characterized by a higher level of decentralization compared to CFL, as it does
not depend on a central server for training coordination. This feature enhances the
autonomy and flexibility of participants while also mitigating the risks associated with
potential bottlenecks or the failure of a single server.

• In terms of communication, DFL outperforms CFL by minimizing the quantity and
size of messages transmitted between nodes. This can result in time, energy, and
network resource savings, particularly in scenarios involving large amounts of data or
multiple devices.

• In terms of fault tolerance, DFL outperforms CFL by allowing nodes to recover from
errors or interruptions without compromising the training process. This capability en-
hances model quality and reliability, particularly in situations involving heterogeneous
or non-IID data.

• Synchronization and convergence present greater challenges in DFL compared to
CFL. In DFL, nodes must coordinate with each other to initiate and conclude train-
ing rounds. This aspect can complicate the management and assessment of the
model’s advancement, particularly in situations involving devices that are dynamic or
intermittent.

• In terms of selection and trust, DFL is more intricate than CFL because it necessitates
nodes to form cooperative connections with other nodes. This process may encompass
reputation, incentive, security, and privacy criteria, particularly in situations involving
malicious or rogue organizations or devices.

3.2. Shamir’s Secret Sharing

This Section introduces Shamir’s Secret-Sharing protocol [21]. Figure 3 shows the basic
structure of a Secret-Sharing protocol. The secret is divided into n parts and shared among
participants. With k parts of the secret, 1 ≤ k ≤ n, the secret can be reconstructed. The
protocol is as follows: One randomly samples numbers ai with i = 1, ..., k − 1 and ak−1 ̸= 0.
Each ai will serve as a coefficient for the construction of the polynomial of degree k − 1,

f (x) = m +
k−1

∑
i−1

aixi. (1)

Sensors 2024, 24, 1299 7 of 18

It is easy to see that f (0) = m, where m is the secret to be shared. The distribution
phase runs as follows: n distinct points are selected from f (x), i.e.,

{(x1, f (x1)), (x2, f (x2)), . . . , (xn, f (xn))}, (2)

with xi ̸= 0. Anyone with a set of at least k points can reconstruct f (x) using Lagrange
polynomial interpolation in the recovery phase and thus recover the secret f (0) = m. This
protocol is usually called Shamir’s Secret Sharing (n, k).

Figure 3. A (n, k) Secret-Sharing Protocol.

3.3. Multi-Secret Sharing

Shamir’s Secret Sharing can be extended to a Multi-Secret Sharing protocol. Instead
of randomly sampling the coefficients, they are set as the secrets, and a polynomial is
constructed as

f (x) =
k−1

∑
i=0

sixi. (3)

The distribution phase is executed in a similar manner to Shamir’s Secret Sharing,
while the recovery phase is different. During the secrets recovery phase, instead of obtaining
only the constant term (i.e., P(0)) of the polynomial as in the standard Shamir Secret Sharing,
we need to interpolate a polynomial to retrieve all its coefficients, which are the secrets.
To accomplish this, we use Vandermonde interpolation, which involves solving a linear
system where the coefficient matrix is a Vandermonde matrix. See Equation (4)

1 x0 x2
0 · · · xn

0
1 x1 x2

1 · · · xn
1

1 x2 x2
2 · · · xn

2

1
...

...
. . .

...
1 xn x2

n · · · xn
n

 ·

a0
a1
a2
...

an

 =

p(x0)
p(x1)
p(x2)

...
p(xn)

 (4)

3.4. DC-Nets

This Section presents symmetric and asymmetric DC-Nets. In addition, it presents
DC-Nets with Secret Sharing, which can be used in symmetric as well as asymmetric
DC-Nets.

Sensors 2024, 24, 1299 8 of 18

3.4.1. Symmetric DC-Nets

In [6], David Chaum proposed a protocol to solve what he called the dining cryptog-
raphers problem. This protocol became known as the Dining Cryptographers Network,
or DC-Net for short. DC-Net allows a network participant to broadcast a message to
the other participants while keeping their anonymity, i.e., if a network attacker tries to
identify the sender of a message, it will be concluded that all participants have an equal
probability of being the sender. Suppose there is collusion between the attacker and some
participants in the network. In that case, they will still conclude that all other participants
(non-colluding participants) are equally likely to be the sender. Therefore, to identify a
sender on a DC-Net, one would need N − 1 participants to form a collusion, where N is
the number of participants in the network.

There are some forms of topology in which a DC-Net can be constructed. Algorithm 1
presents a fully connected version, i.e., each participant needs to agree on a secret key with
everyone else. This key is symmetric, changing only its sign. If participants A and B agree
on the key K, they also need to agree on the sign of the key. For example, A will use K,
hence B will use the switch −K. After the key agreement phase, each participant adds their
keys to the message and sends the encrypted message to every participant. Finally, each
participant adds their encrypted message with those of the other participants; the result will
be the sum of all messages. Figures 4 and 5 depict the key and message exchange phases.

As stated in [27], we have unconditional security if the keys are chosen truly at
random; however, the keys can only be used once. In this work, we call it Symmetric
DC-Net (SDC-Net) because in [27], the authors proposed an asymmetric version.

Algorithm 1 SDC-net executed by user uk.
Input: Users ui for i = 1, ..., n with i ̸= k, message mk.
Output: Message mout, which is the sum of all the messages of the participants.

1: Establish shared random secrets sk,i for each user ui, with i ̸= k and sk,i + si,k = 0.
2: Calculate Mk = mk + ∑n

j=1,j ̸=k sk,j.
3: Send Mk to ui, ∀i ∈ {1, ..., n}\{k}.
4: Receive Mi from ui, ∀i ∈ {1, ..., n}\{k}.
5: Calculate mout = ∑n

j=1 Mi = ∑n
j=1 mi.

Figure 4. DC-Net Key Exchange.

Sensors 2024, 24, 1299 9 of 18

Figure 5. DC-Net Message Exchange.

3.4.2. Symmetric DC-Nets with Secret Sharing

Mödinger et al. [28] proposed a modified version of SDC-Net using Shamir’s Secret-
Sharing protocol. Instead of a user sending the same encrypted message to all other
users, he divides his message using (n, k) Shamir’s Secret Sharing (SSS) and sends a
different share to each other user, as shown in Figure 6. In this way, to recover the
message or the sum of all messages, it is enough for k of the users to send their part
of the encrypted message to the server. Algorithm 2 presents the modified version of
SDC-Net.

Algorithm 2 Symmetric DC-Nets with Shamir’s Secret Sharing executed by user uk.
Input : Users ui for i = 1, ..., n with i ̸= k, message mk.
Output: Message mk,out, the message share transmitted for this user.

1: Split mk into n parts mk,i for i = 1, ..., n with i ̸= k using a Secret-Sharing scheme.
2: Establish shared random secrets sk,i for each user ui, with i ̸= k like the original DC-Net.

3: Calculate Mk,i = mk,i + ∑n
j=1,j ̸=k sk,j for i = 1, ..., n.

4: Send Mk,i for ui, ∀i ∈ {1, ..., n}\{k}.
5: Receive Mi,k from ui, ∀i ∈ {1, ..., n}\{k}.
6: Calculate mk,out = ∑n

j=1 Mi,k.
7: Send mk,out to all participants in the network.
8: Reconstruct mout after receiving k − 1 other shares.

Sensors 2024, 24, 1299 10 of 18

Figure 6. SDC-Net with Secret-Sharing Message Exchange.

4. Proposed Protocol

Figure 7 shows how it works. Each participant uses the Multi-Secret-Sharing scheme
shown in Section 3.3 to generate the shares of the other participants. Suppose the number
of participants is smaller than the batch size. In that case, participants will have to generate
additional shares that they must share with other participants so that at the end of the
communication round, they have sufficient shares to recover the polynomial. In the
setup phase, users must agree on a prime q and an integer t that are the modulus for the
coefficients and the degree of the polynomial, respectively. The users must also agree on a
pairwise symmetric key changed only by its sign. For example, if user A uses K for user B,
then B will use the key −K for user A. It is important to note that if the keys are chosen
truly at random, we have unconditional security; however, the keys can only be used once.
Therefore, for practical purposes, users can use a secure hash function H in conjunction
with the key. Finally, each user ui must have a unique IDi. It is assumed that the users are
honest but curious, which is a standard threat model used in the FL literature [29].

Figure 7. Proposed Protocol.

Sensors 2024, 24, 1299 11 of 18

4.1. Batch Division

Using an idea similar to [30], in the proposed protocol, the model weights are di-
vided into batches. This approach can reduce computational and communication over-
head, thus leading to fewer costs. Figure 8 illustrates the batch division technique. With
#d f l_batch_size defined, each model layer is divided into batches. If #layer_size is not a
multiple of the #d f l_batch_size, the necessary amount of random numbers are sampled
and added to the last batch. The number of random numbers sampled is given by:(⌈

#layer_size
#d f l_batch_size

⌉
· #d f l_batch_size

)
− #layer_size (5)

Figure 8. Batch Division with #layer_size = 11 and #d f l_batch_size = 3.

4.2. Speeding up Polynomial Interpolation

In the proposed protocol, we use the Multi-Secret-Sharing scheme shown in Section 3.3.
Recall that, for the secrets to be recovered, it is necessary to solve a system of linear equations
(of size #d f l_batch_size in our case) whose coefficient matrix is a Vandermond matrix. For
example, solving a linear system using an LU Decomposition has a time complexity of
O(n3). However, as the #d f l_batch_size is fixed for each round of communication, as
well as the abscissa of the points shared in the protocol, the decomposition is calculated
only once, leaving only the resolution of upper and lower linear systems, which have a
complexity of O(n2). If #d f l_batch_size is fixed for all federated training and the abscissa
of the points is also fixed, then each participant must compute the decomposition only once
in the entire training. This drastically speeds up the secret recovery phase and, therefore,
the whole protocol.

4.3. Protocol Phases
4.3.1. Phase 1

1. After training the local model, users encode the local model weights as the polynomial
coefficients in

f (x) =
k−1

∑
i=0

wixi, (6)

with k = #d f l_batch_size. For further improvement, the SIMD paradigm can be used
to encode more than one weight in a single coefficient.

2. Users calculate (IDi, f (IDi)) for each user who participates in the network.

Sensors 2024, 24, 1299 12 of 18

3. For all calculated pairs (IDi, f (IDi)) encrypt as follows

Mi = f (IDi) +
n

∑
j=1,j ̸=k

H(Ki||j) f or i = 1, ..., n, (7)

where j is a counter for the aggregation round, a||b represents a concatenation of a
and b, and H is a secure hash function.
If the number of users is less than #d f l_batch_size, each user must generate extra
points (eI Dk, f (eI Dk)) for k = 1, ..., #users − #d f l_batch_size, and ensure that {eI Dk} ∩
{IDi} = ∅.

4. Finally, send Mi to the respective user ui and broadcast all (eI Dk, f (eI Dk)), if it applies.

4.3.2. Phase 2

1. After receiving Mi from all users, calculate its share

mi =
n

∑
j=1,j ̸=k

Mi f or i = 1, ..., n. (8)

2. Broadcast the share mi to all users.
3. After receiving at least k shares mi from users, reconstruct the polynomial (aggregated

global model) using polynomial interpolation.

5. Results

This section presents the results obtained from the experiments to evaluate the pro-
posed protocol. First, we ran experiments on the main modules of the protocol, i.e., batch
division and encoding of model weights into polynomials, generation of shares, and
recovery of the polynomial (polynomial interpolation). Subsequently, to compare our
aggregation protocol with FedAvg, we performed experiments for two MLP scenarios, both
using the MNIST handwritten digits dataset.

5.1. Execution Environment

The simulations were executed on a Dell computer with Ubuntu 22.04.3 LTS operating
system, 12 GB of RAM, a 1.0 GHz Intel Core i5-1035G1 processor with eight cores, and
256 GB of solid-state drive (SSD).

5.2. Protocol Metrics

We evaluated the main parts of the proposed protocol, namely the generation of
shares and recovery of the polynomial. Table 1 shows the computational complexity and
Table 2 shows the average execution time of three main parts of the DFL protocol for
different dl f _batch_sizes. As our protocol makes use of Honer’s method for polynomial
evaluation in the Share Generation module and LU Decomposition for the Polynomial
Recovery With LU module, the computational complexity of these modules is governed
by the computational complexity of the methods used, i.e., O(n) for Honer method and
O(n3) for LU Decomposition. For the Polynomial Recovery with Precomputed LU module,
we solve two triangular linear systems whose resolutions have complexity O(n2). Share
generation is the fastest part, taking less than 0.02 s for any dl f _batch_sizes. Polynomial
recovery with LU is the slowest part, taking more than 2 s for a dl f _batch_sizes of 100.
Polynomial Recovery with Precomputed LU is much faster than with LU.

Sensors 2024, 24, 1299 13 of 18

Table 1. Computational Complexity for Main Protocol Modules Per Batch.

Protocol Parts Computational Complexity

Share Generation O(n)
Polynomial Recovery With LU O(n3)

Polynomial Recovery Precomputed LU O(n2)

Table 2. Time Metrics for Main Protocol Modules Per Batch.

Protocol Parts DFL Batch Size 25 (s) DFL Batch Size 50 (s) DFL Batch Size 100 (s)

Share Generation 0.0007 0.0028 0.0130
Polynomial Recovery

With LU 0.0409 0.2860 2.3229

Polynomial Recovery
Precomputed LU 0.0028 0.0112 0.0517

Share Generation refers to the evaluation of a polynomial where the coefficients are the model weights in all IDs
and extras points; Polynomial Recovery With LU and Precomputed LU refers to the resolution of linear systems
with LU factorization and with precomputed LU factorization, respectively.

5.3. Dataset

The MNIST dataset is a collection of handwritten digits widely used to train and
test image processing systems. It contains 60,000 images in the training dataset and
10,000 images in the test dataset, each with 28 × 28 pixels in grayscale labeled with the
corresponding digit from 0 to 9.

5.4. Scenarios Architectures

This section presents the architectures used in the experiments. The first scenario with
architecture, as shown by Figure 9 and Table 3 was taken from [1]. The second scenario
with architecture, as shown by Figure 10 and Table 4, is based on the first with the addition
of a hidden layer. With these scenarios, we intend to compare the performance of a model
trained using our aggregation protocol with a model trained using FedAvg.

Input
(784)

Hidden
(200)

Hidden
(200)

Output
(10)

Figure 9. Image Representation of Scenario 1.

Sensors 2024, 24, 1299 14 of 18

Table 3. Layers and Number of Neurons for Scenario 1.

Layer Shape (Input, Output)

Linear (784, 200)
Linear (200, 200)
Linear (200, 200)
Linear (200, 10)

Input
(784)

Hidden
(200)

Hidden
(200)

Hidden
(100)

Output
(10)

Figure 10. Image Representation of Scenario 2.

Table 4. Layers and Number of Neurons for Scenario 2.

Layer Shape (Input, Output)

Linear (784, 200)
Linear (200, 200)
Linear (200, 200)
Linear (200, 100)
Linear (100, 10)

The hyperparameters used in both scenarios are presented in Table 5:

Table 5. Scenario Hyperparameters.

Hyperparameter Value

Federation Participants 5
Aggregation Rounds 60

Number of Local Epochs 10
Batch Size 10

Learning Rate 0.01
Optimizer SGD

Loss Criterion Cross Entropy Loss
Initialization Xavier

For each scenario, two experiments were carried out. In the first experiment, Cen-
tralized Federated Learning was implemented using the FedAvg aggregation protocol [1].
In the second, Decentralized Federated Learning was carried out using the proposed ag-
gregation protocol. It is known that distributed training, such as Federated Learning,
can be affected by the heterogeneity, quality, and distribution of data among participants.
However, the proposed protocol only adds a security layer to the aggregation phase. Theo-
retically, the outcome should be equivalent to an aggregation protocol that does not include

Sensors 2024, 24, 1299 15 of 18

the security layer. Furthermore, for the experiments, we used the MNIST Database of
Handwritten Digits [31], which represents a simple, well-defined classification problem
that is widely used as a benchmark.

Scenarios Results

Table 6 presents the metrics obtained for the two scenarios shown in this section for
the standard Federated Learning aggregation with FedAvg [1] protocol and a Decentralized
Federated Learning aggregation with the proposed protocol. Furthermore, the training
dataset was split in a non-IID manner.

Table 6. Metrics for Each Scenario.

Scenario Recall Precision Accuracy Loss

Scenario 1 FedAvg 98.59% 98.60% 98.60% 0.0815
Scenario 1 Our Protocol 98.56% 98.57% 98.57% 0.0793

Scenario 2 FedAvg 98.44% 98.42% 98.47% 0.1057
Scenario 2 Our Protocol 98.44% 98.49% 98.50% 0.0866

The results shown in Table 6 show that the proposed protocol does not significantly
affect the performance of the model. This is a significant result because we only add a layer
of security in the aggregation, and this layer, in theory, should have the same result as the
aggregation without security. However, using the numerical method (LU Decomposition)
in Polynomial Recovery phase may result in minor approximation errors, which may
explain the slight variations in performance. In scenario 1, the proposed protocol achieved
a lower loss than the same scenario with FedAvg. In scenario 2, the proposed protocol
achieved a higher accuracy and precision than scenario 2 with FedAvg. The recall is the
same for both scenarios. Scenario 1 performs better than scenario 2, with FedAvg and
the proposed protocol. The difference of one hidden layer of 100 neurons does not affect
the performance of the models significantly but may influence the complexity and the
training time.

6. Discussion

Decentralized Federated Learning (DFL) is a machine-learning technique that allows
multiple devices or users to train a model without sending the data to a central server.
Despite its promise of data privacy, recent work shows that breaking the privacy of a given
user’s data is possible using shared gradients. In this scenario, it is necessary to ensure that
the aggregation of local models is conducted securely.

The main contribution of this work is a secure aggregation protocol for DFL. This
protocol lets users share their local gradients securely and privately without revealing
sensitive data. It has a minimal impact on the performance of the models compared to the
FedAvg protocol. However, adding a security layer, which involves complex calculations,
also increases computational cost. The proposed protocol is based on polynomial Secret
Sharing and DC-Nets; thus, its main computational bottleneck is a polynomial interpolation.
Fortunately, due to the protocol’s design, this step can be drastically sped up, making it
computationally feasible. Although the #d f l_batch_size − 1 is fixed, it depends directly on
the number of model weights.

The proposed secure aggregation protocol for DFL based on Multi-Secret Sharing
and DC-Nets is a relevant contribution to the field of FL, as it offers an efficient and
reliable solution to the problem of gradient aggregation and can be applied in different
scenarios and applications that involve distributed and sensitive data, such as health,
finance, education, among others.

Two main lines of improvement of the proposed protocol can be highlighted. DC-Nets,
and Polynomial Interpolation. DC-Nets provides sender anonymity and unconditional
unobservability. However, when there are many participants, the system experiences slow
data processing and increased computational time, resulting in higher delays. Therefore,

Sensors 2024, 24, 1299 16 of 18

using the k-anonymous group technique as presented in [25] can drastically reduce the
communication cost. Furthermore, it is necessary to use techniques to prevent collision,
disruption, and churn. Regarding polynomial interpolation, one can use fast solutions
for Linear Systems with Vandermond Matrix [32–34] to improve the Polynomial Recov-
ery phase.

Table 7 compares the proposed protocol with other protocols for DFL.

Table 7. Protocol Comparison.

Protocol Communication Security Technique

Our protocol Broadcast to All Neighbors DC-Net and Secret-Sharing
[14] Broadcast to All Neighbors DP
[15] Broadcast to All Neighbors SHE
[16] Broadcast to All Neighbors DP
[18] Send To One Neighbors DP and Blockchain
[19] Broadcast to All Neighbors DP and Blockchain

[20] Broadcast to an Aggregation
Committee Nodes DP and Secret-Sharing

From a privacy perspective, users do not share their data directly with other users;
only the encrypted shares (generated with the Multi-Secret-Sharing scheme) from each
encrypted batch are sent using a DC-Net protocol. Therefore, an attacker would need the
collusion of #d f l_batch_size − 1 users to recover a batch from a user, which is inherent
in the Multi-Secret-Sharing scheme. Furthermore, the collusion of #d f l_batch_size − 1
is required to identify the share sender, which is inherent in the DC-Net protocol with
multiple Secret Sharing.

7. Conclusions

This proposed work is a secure aggregation protocol for DFL based on Multi-Secret
Sharing and DC-Nets. As far as we know, it is the first work that uses these two crypto-
graphic primitives together to aid secure aggregation for DFL. We tested the efficiency
of the model on the MNIST handwritten digits dataset. It was shown that the proposed
protocol has minimal impact on the performance of the trained Deep Learning model while
adding a layer of privacy to local models.

The proposed protocol ensures that clients do not share their data or gradients directly
with other clients or the server. However, only the encrypted shares (generated with the
Multi-Secret-Sharing scheme) of each encrypted batch are sent using DC-Nets. Therefore,
an attacker would need collusion of #d f l_batch_size − 1 clients to retrieve a batch from
a client and to identify the sender of the share due to the Secret-Sharing scheme and the
DC-Nets protocol. Thus, the protocol ensures theoretical security by information theory.
Our protocol offers a high level of customer data privacy, similar to other protocols that
use different secure aggregation techniques for DFL.

As future work, we intend to accelerate polynomial interpolation and evaluation using
the techniques mentioned in the discussion section to use larger batches and increase the
number of users in possible collusion. It is possible to speed up the entire protocol using
SIMD techniques on the polynomial coefficients of the Secret-Sharing method. We can
encode more than one weight in a single coefficient. This would reduce the number of
batches required to transmit the entire model, thus reducing the communication cost. It
is important to analyze the proposed protocol’s energy efficiency, especially to verify its
performance and feasibility in IOT scenarios. It is also necessary to study ways to mitigate
common attacks on FL, such as data and model Poisoning Attacks. Finally, we intend to
simulate and analyze the behavior of our protocol in a more real network environment, i.e.,
one subject to delay and packet losses, for example.

Sensors 2024, 24, 1299 17 of 18

Author Contributions: Conceptualization, D.P.; methodology D.P.; software, D.P.; validation, D.P.;
formal analysis, D.P. and P.R.R.; investigation, D.P.; resources, D.P.; data curation, D.P.; writing—
original draft preparation, D.P. and P.R.R.; writing—review and editing, D.P. and P.R.R.; visualization,
D.P.; supervision, F.B.; project administration, F.B.; funding acquisition, D.P. and F.B. All authors have
read and agreed to the published version of the manuscript.

Funding: This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de
Nível Superior—Brasil (CAPES)—Finance Code 001 and The APC was funded by National Laboratory
for Scientific Computing—Brasil (LNCC).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The dataset used was the MNIST Database of Handwritten Digits [31].

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

AI Artificial Intelligence
CFL Centralized Federated Learning
DFL Decentralized Federated Learning
DP Differential Privacy
DC-Net Dining Cryptographers Network
FedAvg Federated Averaging
FL Federated Learning
IID Independent and Identically Distributed
LU Lower and Upper Factorization
MLP Multilayer Perceptron
MSS Multi-Secret Sharing
SIMD Single Instruction, Multiple Data
SDC-Net Symmetric Dining Cryptographers Network
SHE Symmetric Homomorphic Encryption

References
1. McMahan, B.; Moore, E.; Ramage, D.; Hampson, S.; y Arcas, B.A. Communication-efficient learning of deep networks from

decentralized data. In Proceedings of the 20th International Conference on Artificial Intelligence and Statistics, Fort Lauderdale,
FL, USA, 20–22 April 2017 ; pp. 1273–1282.

2. Shokri, R.; Stronati, M.; Song, C.; Shmatikov, V. Membership inference attacks against machine learning models. In Proceedings
of the 2017 IEEE Symposium on Security and Privacy (SP), San Jose, CA, USA, 22–26 May 2017; IEEE: Piscataway, NJ, USA, 2017;
pp. 3–18.

3. Melis, L.; Song, C.; De Cristofaro, E.; Shmatikov, V. Exploiting unintended feature leakage in collaborative learning. In Proceedings
of the 2019 IEEE Symposium on Security and Privacy (SP), San Francisco, CA, USA, 20–22 May 2019; IEEE: Piscataway, NJ, USA,
2019; pp. 691–706.

4. Hitaj, B.; Ateniese, G.; Perez-Cruz, F. Deep models under the GAN: Information leakage from collaborative deep learning. In
Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, Dallas, TX, USA, 30 October–3
November 2017; pp. 603–618.

5. Zhu, L.; Liu, Z.; Han, S. Deep leakage from gradients. In Proceedings of the Adv. Neural Inf. Process. Syst. 32 of the Annual
Conference on Neural Information Processing Systems, Vancouver, BC, Canada, 8–14 December 2019; pp. 14747–14756.

6. Chaum, D. The dining cryptographers problem: Unconditional sender and recipient untraceability. J. Cryptol. 1988, 1, 65–75.
[CrossRef]

7. Roy, A.G.; Siddiqui, S.; Pölsterl, S.; Navab, N.; Wachinger, C. Braintorrent: A peer-to-peer environment for decentralized federated
learning. arXiv 2019, arXiv:1905.06731.

8. Liu, W.; Chen, L.; Zhang, W. Decentralized federated learning: Balancing communication and computing costs. IEEE Trans.
Signal Inf. Process. Over Netw. 2022, 8, 131–143. [CrossRef]

9. Koloskova, A.; Stich, S.; Jaggi, M. Decentralized stochastic optimization and gossip algorithms with compressed communication.
In Proceedings of the International Conference on Machine Learning, PMLR, Long Beach, CA, USA, 9–15 June 2019; pp. 3478–3487.

10. Hu, C.; Jiang, J.; Wang, Z. Decentralized federated learning: A segmented gossip approach. arXiv 2019, arXiv:1908.07782.

http://doi.org/10.1007/BF00206326
http://dx.doi.org/10.1109/TSIPN.2022.3151242

Sensors 2024, 24, 1299 18 of 18

11. Lee, S.; Zhang, T.; Avestimehr, A.S. Layer-wise adaptive model aggregation for scalable federated learning. In Proceedings of the
AAAI Conference on Artificial Intelligence, Washington, DC, USA, 7–14 February 2023; Volume 37, pp. 8491–8499.

12. Jeon, B.; Ferdous, S.; Rahman, M.R.; Walid, A. Privacy-preserving decentralized aggregation for federated learning. In
Proceedings of the IEEE INFOCOM 2021-IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS),
Vancouver, BC, Canada, 10–13 May 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 1–6.

13. Stinson, D.R. Combinatorial Designs: Constructions and Analysis; Springer: New York, NY, USA, 2004; Volume 480.
14. Kalra, S.; Wen, J.; Cresswell, J.C.; Volkovs, M.; Tizhoosh, H. Decentralized federated learning through proxy model sharing. Nat.

Commun. 2023, 14, 2899. [CrossRef] [PubMed]
15. Zhao, J.; Zhu, H.; Wang, F.; Lu, R.; Liu, Z.; Li, H. PVD-FL: A privacy-preserving and verifiable decentralized federated learning

framework. IEEE Trans. Inf. Forensics Secur. 2022, 17, 2059–2073. [CrossRef]
16. Bellet, A.; Guerraoui, R.; Taziki, M.; Tommasi, M. Personalized and private peer-to-peer machine learning. In Proceedings of the

International Conference on Artificial Intelligence and Statistics, PMLR, Boston, MA, USA, 16–20 July 2006; pp. 473–481.
17. Lian, Z.; Yang, Q.; Wang, W.; Zeng, Q.; Alazab, M.; Zhao, H.; Su, C. DEEP-FEL: Decentralized, efficient and privacy-enhanced

federated edge learning for healthcare cyber physical systems. IEEE Trans. Netw. Sci. Eng. 2022, 9, 3558–3569. [CrossRef]
18. Kuo, T.T.; Ohno-Machado, L. Modelchain: Decentralized privacy-preserving healthcare predictive modeling framework on

private blockchain networks. arXiv 2018, arXiv:1802.01746.
19. Chen, X.; Ji, J.; Luo, C.; Liao, W.; Li, P. When machine learning meets blockchain: A decentralized, privacy-preserving and secure

design. In Proceedings of the 2018 IEEE International Conference on Big Data (Big Data), Seattle, WA, USA, 10–13 December
2018; IEEE: Piscataway, NJ, USA, 2018; pp. 1178–1187.

20. Shayan, M.; Fung, C.; Yoon, C.J.; Beschastnikh, I. Biscotti: A blockchain system for private and secure federated learning. IEEE
Trans. Parallel Distrib. Syst. 2020, 32, 1513–1525. [CrossRef]

21. Shamir, A. How to share a secret. Commun. ACM 1979, 22, 612–613. [CrossRef]
22. Golle, P.; Juels, A. Dining cryptographers revisited. In Proceedings of the Advances in Cryptology-EUROCRYPT 2004:

International Conference on the Theory and Applications of Cryptographic Techniques, Proceedings 23, Interlaken, Switzerland,
2–6 May 2004; Springer: Berlin/Heidelberg, Germany, 2004; pp. 456–473.

23. Waidner, M.; Pfitzmann, B. The dining cryptographers in the disco: Unconditional sender and recipient untraceability with
computationally secure serviceability. In Advances in Cryptology—EUROCRYPT; Quisquater, J.-J., Vandewalle, J., Eds.; Springer:
Berlin/Heidelberg, Germany, 1989; Volume 89, p. 690.

24. Waidner, M. Unconditional sender and recipient untraceability in spite of active attacks. In Proceedings of the Advances in
Cryptology—EUROCRYPT’89: Workshop on the Theory and Application of Cryptographic Techniques, Proceedings 8, Houthalen,
Belgium, 10–13 April 1989; Springer: Berlin/Heidelberg, Germany, 1990; pp. 302–319.

25. Mödinger, D.; Heß, A.; Hauck, F.J. Arbitrary length K-anonymous dining-cryptographers communication. arXiv 2021,
arXiv:2103.17091.

26. Von Ahn, L.; Bortz, A.; Hopper, N.J. K-anonymous message transmission. In Proceedings of the 10th ACM conference on
Computer and Communications Security, Washington, DC, USA, 27–30 October 2003; pp. 122–130.

27. Borges, F.; Buchmann, J.; Mühlhäuser, M. Introducing asymmetric DC-nets. In Proceedings of the 2014 IEEE Conference
on Communications and Network Security, San Francisco, CA, USA, 29–31 October 2014; IEEE: Piscataway, NJ, USA, 2014;
pp. 508–509.

28. Mödinger, D.; Dispan, J.; Hauck, F.J. Shared-Dining: Broadcasting Secret Shares Using Dining-Cryptographers Groups. In
Proceedings of the IFIP International Conference on Distributed Applications and Interoperable Systems, Valletta, Malta, 14–18
June 2021; Springer: Berlin/Heidelberg, Germany, 2021; pp. 83–98.

29. Bonawitz, K.; Ivanov, V.; Kreuter, B.; Marcedone, A.; McMahan, H.B.; Patel, S.; Ramage, D.; Segal, A.; Seth, K. Practical secure
aggregation for federated learning on user-held data. arXiv 2016, arXiv:1611.04482.

30. Zhang, C.; Li, S.; Xia, J.; Wang, W.; Yan, F.; Liu, Y. BatchCrypt: Efficient Homomorphic Encryption for Cross-Silo Federated
Learning. In Proceedings of the 2020 USENIX Annual Technical Conference (USENIX ATC 20), Boston, MA, USA, 15–17 July
2020; USENIX Association: Berkeley, CA, USA, 2020; pp. 493–506.

31. LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 1998,
86, 2278–2324. [CrossRef]

32. Higham, N.J. Fast solution of Vandermonde-like systems involving orthogonal polynomials. IMA J. Numer. Anal. 1988, 8, 473–486.
[CrossRef]

33. Björck, A.; Pereyra, V. Solution of Vandermonde systems of equations. Math. Comput. 1970, 24, 893–903. [CrossRef]
34. Calvetti, D.; Reichel, L. Fast inversion of Vandermonde-like matrices involving orthogonal polynomials. BIT Numer. Math. 1993,

33, 473–484. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1038/s41467-023-38569-4
http://www.ncbi.nlm.nih.gov/pubmed/37217476
http://dx.doi.org/10.1109/TIFS.2022.3176191
http://dx.doi.org/10.1109/TNSE.2022.3175945
http://dx.doi.org/10.1109/TPDS.2020.3044223
http://dx.doi.org/10.1145/359168.359176
http://dx.doi.org/10.1109/5.726791
http://dx.doi.org/10.1093/imanum/8.4.473
http://dx.doi.org/10.1090/S0025-5718-1970-0290541-1
http://dx.doi.org/10.1007/BF01990529

	Introduction
	Related Work
	DFL without Privacy
	DFL with Privacy
	DC-Nets

	Background
	Federated Learning
	Centralized Federated Learning
	Decentralized Federated Learning

	Shamir's Secret Sharing
	Multi-Secret Sharing
	DC-Nets
	Symmetric DC-Nets
	Symmetric DC-Nets with Secret Sharing

	Proposed Protocol
	Batch Division
	Speeding up Polynomial Interpolation
	Protocol Phases
	Phase 1
	Phase 2

	Results
	Execution Environment
	Protocol Metrics
	Dataset
	Scenarios Architectures

	Discussion
	Conclusions
	References

