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Abstract: This study systematically developed a deep transfer network for near-infrared spectrum
detection using convolutional neural network modules as key components. Through meticulous
evaluation, specific modules and structures suitable for constructing the near-infrared spectrum
detection model were identified, ensuring its effectiveness. This study extensively analyzed the basic
network components and explored three unsupervised domain adaptation structures, highlighting
their applications in the nondestructive testing of wood. Additionally, five transfer networks were
strategically redesigned to substantially enhance their performance. The experimental results showed
that the Conditional Domain Adversarial Network and Globalized Loss Optimization Transfer net-
work outperformed the Direct Standardization, Piecewise Direct Standardization, and Spectral Space
Transformation models. The coefficients of determination for the Conditional Domain Adversarial
Network and Globalized Loss Optimization Transfer network are 82.11% and 83.59%, respectively,
with root mean square error prediction values of 12.237 and 11.582, respectively. These achievements
represent considerable advancements toward the practical implementation of an efficient and reliable
near-infrared spectrum detection system using a deep transfer network.

Keywords: CNN; domain adaptation; near-infrared detection; nondestructive testing; transfer
learning; wood material analysis

1. Introduction

Near-infrared spectroscopy (NIRS) stands out for its rapid and user-friendly operation,
high efficiency, and nondestructive measurement capabilities, which make it a versatile
tool for both qualitative and quantitative analyses of fundamental components in various
samples as well as for detecting adulteration in samples [1]. Using solid wood spectroscopy
as an illustration, the distinctive absorption bands of essential wood components, including
cellulose, lignin, and hemicellulose, align closely with the overtones or fundamental vibra-
tions in the near-infrared (NIR) spectrum. Moreover, organic substances exhibit notably
weaker absorption of NIR light [2]. Leveraging these characteristics, NIRS has become
instrumental in revealing the diverse features of wood samples.

In the realm of analytical techniques, researchers have commonly employed a com-
bination of statistical and computer-based methods, collectively known as chemometrics,
to build statistical models for extracting valuable substance information from NIR spectra.
Among these techniques, partial least squares (PLS) shows prominence for its widespread
application in classifying and modeling NIR spectra [3]. While methods such as backpropa-
gation (BP) neural networks have not shown marked advantages over PLS in classification
and prediction, recent years have witnessed a transformative shift. Deep learning models

Sensors 2024, 24, 1245. https://doi.org/10.3390/s24041245 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s24041245
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-8493-0464
https://orcid.org/0000-0001-7711-5744
https://doi.org/10.3390/s24041245
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s24041245?type=check_update&version=2


Sensors 2024, 24, 1245 2 of 22

based on NIRS, particularly convolutional neural networks (CNNs), have outperformed
traditional PLS models in nondestructive detection [4–8]. This marks a notable advance-
ment in the field, demonstrating the increasing efficacy of deep learning approaches in the
context of NIR spectroscopy.

The primary objective of researchers is establishing a model that eliminates the need for
repetitive chemical analyses and destructive experiments in the modeling with NIRS [9–11].
However, challenges arise when existing research equipment must be replaced or damaged
components in older instruments must be repaired, potentially requiring the repetition of
various previously conducted calibration experiments [12]. In response to this concern, some
researchers have developed calibration methods based on discerning differences between
new and old instruments to rectify the model [13–17]. This corrective process, known in the
field of chemometrics as calibration transfer (CT) [3], ensures the adaptability of existing
models to new instruments. In fact, the concept of calibration transfer extends beyond near-
infrared spectroscopy to other analytical chemistry techniques such as Raman spectroscopy
and nuclear magnetic resonance [15,18]. We focus solely on near-infrared spectroscopy as a
foundation, discussing how calibration transfer models can undergo further modifications.

In the domain of deep learning, transfer learning has found extensive application in
areas such as natural language processing and computer vision. However, for researchers
and model developers specializing in CT techniques, transfer learning is a relatively re-
cent and evolving area. Many deep learning architectures are not directly applicable to
chemometrics. Consequently, current research is predominantly focusing on leveraging
networks such as CNNs to establish transfer models through feature sharing [12]. Notably
absent from the current research landscape are in-depth explorations of the fundamental
concepts of deep transfer learning, including domain transfer, feature transfer, feature
representation, and their tailored implementation in chemometrics. Moreover, the ongoing
research also lacks a comprehensive analysis of deep neural networks to identify structures
that are unsuitable for chemometric applications. Addressing these gaps in understanding
is crucial for advancing the field of transfer learning in chemometrics, ensuring that deep
learning models are effectively adapted and optimized for the unique challenges posed by
NIRS and its calibration transfer requirements.

Among the deep learning scientists familiar with transfer learning techniques, transfer
learning is often referred to as domain adaptation technology. As the landscape of domain
adaptation evolves, deep transfer networks have taken on diverse and intricate structures.
This study focuses on the application of deep neural network models in chemometrics
and nondestructive testing. In chemometrics, obtaining labeled data through wet chemical
experiments poses challenges, despite the ready availability of nondestructive testing data
such as spectra and chromatography-mass spectrometry for samples. Consequently, this
study places particular emphasis on unsupervised domain adaptation (unsupervised DA).

The landscape of unsupervised DA has manifested in three primary neural network
structures: distance-based methods, optimal transport (OT), and adversarial machine learn-
ing. Common and effective unsupervised domain transfer networks often incorporate
combinations of these three primary structures along with specialized modules [19,20].
Within the distance-based methods, Gretton et al. proposed maximum mean discrepan-
cies (MMDs), which is a deep transfer network-friendly method that has become widely
adopted in various transfer networks for transfer loss [21]. Long et al. expanded on this
method by integrating kernel functions into MMD, introducing the MK-MMD method
and establishing an early deep transfer network known as the deep adaptation network
(DAN) [22]. Zhang et al. proposed MDD, a novel measurement method with rigorous
generalization bounds, specifically designed for distribution comparison using asymmetric
margin loss and minimax optimization for enhanced training [23]. Within the OT struc-
tures, Phan et al. introduced a novel regularization technique within the Wasserstein-based
distributional robustness framework, which is termed globalized loss optimization transfer
(GLOT) [24]. Li et al. proposed enhanced transport distance (ETD) for unsupervised
DA, developing an attention-aware transport distance as the prediction feedback of an
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iteratively learned classifier to measure domain discrepancy [25]. Within the adversarial
machine learning structures, Chen et al. developed the batch spectral penalization (BSP)
structure, integrating it with an adversarial layer to form a novel neural network named
conditional domain adversarial network (CDAN) [26]. However, similar to deep learning,
the fundamental structures in domain adaptation methods have not been systematically an-
alyzed from the perspective of near-infrared spectroscopy mechanisms and chemometrics.
To address this issue, this study proposes the following:

• An exploration of the applicability of the basic structures in deep networks, including
convolutional structures, fully connected structures, pooling structures, etc., and do-
main adaptation network techniques such as maximum mean discrepancies, optimal
transport, and adversarial machine learning from the standpoint of near-infrared
spectroscopy analysis.

• Based on the analysis presented in this paper, a modification of five mainstream
domain adaptation networks was conducted to enable these networks to meet the
requirements of near-infrared spectroscopy calibration transfer models, thereby facili-
tating their application in near-infrared spectroscopy analysis technology.

This study endeavors to offer a comprehensive exploration of the distinctive features
inherent in various neural network structures. We delve into the nuanced characteristics
of these structures, elucidating how they can be effectively implemented in the realm of
chemometric models. Our analysis extended to investigating the profound impact of NIRS
datasets on the architecture of these networks. Furthermore, we aimed to enhance existing
models, ensuring their practical applicability in the field of chemometrics. We meticulously
selected and scrutinized five transfer learning models. These models were developed
utilizing a NIRS dataset, with the mechanical properties of wood serving as the labels.
Our objective was to comprehensively assess the accuracy and efficacy of these models.
The experimental results unequivocally demonstrated the effectiveness of our approach
in the domain of CT, yielding superior performance on the NIRS dataset concerning
mechanical wood properties. This verified the viability and potential of our proposed
methodology for enhancing and optimizing chemometric models through the integration
of transfer learning techniques, particularly within the context of NIR spectroscopy datasets.

2. Theories and Methods
2.1. Fundamental Structure of Deep Neural Networks

Deep neural networks, encompassing recurrent neural networks (RNNs) and CNNs,
are pivotal in various applications [27,28]. RNNs excel in processing sequences, such as
in natural language tasks or stock market trend predictions. However, when analyzing
NIRS, the linear correlation between spectral bands and organic functional groups suggests
a different approach is required. Statistical and machine learning methods can directly
model specific spectral bands, yielding precise calibration models without the need to treat
NIRS data as inherently sequential. Consequently, employing RNNs for NIRS modeling
may be inappropriate. Instead, using CNNs by selecting spectral bands corresponding to
characteristic functional groups is deemed more suitable.

In this study, we adopted CNN modules, including convolutional layers, pooling
layers, fully connected layers, dropout layers, and activation functions, as the fundamental
building blocks for a deep transfer network tailored to NIR spectrum detection. Our evalu-
ation focused on their suitability for our study context. Notably, RNNs are not practically
used for modeling, and their accuracy is not comparable to that of fully connected network
models. The presented results are theoretical analyses, offering potential directions for
future research.

2.1.1. Convolution Layer in Chemometrics and NIRS

In textbooks and educational materials, deep networks often process input as an
infinite-length discrete signal, whether one- or two-dimensional. However, focusing on
chemometrics and metabolomics in this study, which involve techniques such spectroscopy
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and gas chromatography–mass spectrometry, reveals that signals from experiments are
finite-length, one-dimensional discrete signals. Recognizing this unique data characteristic,
we intentionally narrowed our focus to the domain of one-dimensional discrete signals.
Unlike the idealized infinite-length signals in theoretical contexts, practical experiment
signals have a defined limited length. Acknowledging this finite nature and aligning
research methodology with actual experimental data intricacies, we chose to center our
investigation on one-dimensional limited discrete signals y.

y = [y0, y1, y2, ..., yk] (1)

where yk represents the signal amplitude measured in k time, and, in chemometrics, it
signifies the kth spectral band. y is a signal with finite amplitudes, and it can be defined
as maxj |yj| < ∞, i.e., ∥y∥1 < ∞. Assuming the weight function is w = [w0, w1, w2, ..., wk],
the convolution result h of the one-dimensional discrete signal is given by

h(k) =
k

∑
i=1

yi × wk−i (2)

A digital image is an intricate arrangement of pixels seamlessly combined to create a
visual representation containing detailed information such as the contours and shapes of
objects. Convolution operations play a pivotal role in the realm of image processing, aiding
in tasks such as feature extraction and other critical areas. Prior to the advent of CNNs,
these convolution operations were fundamental in image processing, finding widespread
application in edge detection, filtering, and texture feature extraction.

Acquarelli et al. achieved a milestone in introducing CNNs to NIRS, constructing a
deep learning network with 1 × n convolutional layers [29]. Following their pioneering
work, a considerable number of studies have embraced similar approaches in combining
NIRS with deep learning since 2017–2018 [4,30–33].

Despite these advancements, notably, the modeling logic of NIRS substantially di-
verges from that of image processing. Historically, the impact of convolution on NIR
spectra has been a focal point of attention, as evident in early works such as P.B. Tooke’s
research [34,35]. In their articles, the authors express their perspective using Figure 1.

In Figure 1a, the original signal of the NIR/IR spectrum comprises multiple absorption
peaks denoted as x. The NIR/IR spectrum is viewed as a response s formed by the “inter-
weaving” of these original signals. The figure cited from Tooke’s article illustrates how the
interwoven NIR spectrum can be separated into multiple absorption peaks. The objective
of deconvolution is to deduce the original signal x from the response and impulse response
s. Figure 1b,c describe this process. In Figure 1c, a single absorption peak represents a
characteristic functional group of the tested substance. For this study, this may correspond
to the C–H or O–H groups associated with cellulose.

While Fourier transform has traditionally been a primary algorithm for deconvolution,
the past decade has seen a shift with the emergence of the wavelet transform. Despite this,
the fundamental idea of decoupling signals through deconvolution operations has gained
widespread acceptance in the optics field.

NIR spectra result from the coupling of multiple bands, each corresponding to specific
chemical bonds of the measured substance. The objectives of chemometrics, wavelet
transforms, and multivariate statistical regression are the establishment of a one-to-one
correspondence between feature bands and labels. For feature bands requiring decoupling,
the importance of deconvolution methods, particularly inverse convolution, cannot be
overstated. Continuing convolution on spectra would only complicate feature bands,
increasing their intricacy and overlap.

Specifically, the main absorption bands correspond one-to-one with the chemical bonds
in the spectrum in NIR. The convolution operation, however, disrupts this correspondence
unless the convolution kernel adheres to a specific form, such as w(a) = [0, ..., 0, 1, 0, ..., 0].
Without this specific form, drawing conclusions such as the following—the “application of
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CNNVS to data which was not preprocessed as well as to preprocessed data yielded supe-
rior accuracy performance compared to PLS-LDA and Logistic Regression”—as suggested
by Acquarelli and others, requires more rigorous demonstration.

Figure 1. Analysis of the bond of C–Cl stretching region of poly: (a) original data (b) components
by Fourier band isolation, and (c) components by curve-fitting (adapted from Figures 7 and 9 in P.B.
Tooke’s research [34]).

According to Acquarelli et al., the convolutional layers in NIR spectra address issues
such as noise and baseline drift. In the nearly nonexistent landscape of NIR-spectrum-
preprocessing algorithms in the 1990s, one-dimensional convolutional networks were
considered innovative and capable of addressing some noise and baseline drift issues. Now,
the S-G smoothing algorithm and first-order derivative methods offer tailored solutions
for specific challenges in spectral modeling, effectively mitigating the effects of noise and
drift in spectral data. In contrast, researchers have opted for CNN as a black-box model,
achieving preprocessing through model training and data fitting. This approach seems
less convincing.

To elaborate further, let us consider an example in the field of partial differential equa-
tions. In this field, some equations lack analytical solutions, and scholars have obtained
numerical solutions using various approximation and fitting algorithms, comparing com-
putational speed and accuracy. However, once scholars obtain a numerical solution to the
partial differential equation, related work in the field typically concludes. Similarly, if schol-
ars in the field of near-infrared analysis have not proposed the Savitzky–Golay smoothing
algorithm or first-order derivative methods, using convolutional networks to model and
suppress noise and baseline drift in spectra would be considered a remarkable achievement.
but in the presence of the Savitzky–Golay smoothing algorithm and first-order derivative
methods, avoiding the use of convolutional neural networks for preprocessing spectral
data might be a better choice.

Regarding preprocessing techniques such as the S-G convolutional algorithm that
deviate from the established logic of near-infrared spectroscopy analysis, it is advisable
to exercise caution in incorporating similar concepts into expansive models, which may
result in opaque, black-box solutions. Instead, a prudent approach involves the selective
application of such methods. Relying on the expertise of scientists, an evaluation should be
conducted to determine whether the spectrum exhibits any discernible enhancement after



Sensors 2024, 24, 1245 6 of 22

preprocessing. If distortions are identified in the spectrum arising from the S-G method, it
is prudent to abandon it in favor of alternative denoising strategies.

Moreover, although improvements in performance have been acheivced for many
CNN models, this advancement is plausibly linked to the “No Free Lunch” effect. Never-
theless, we must consciously choose methodologies that are more grounded and rational.

In summary, drawing from my limited knowledge of NIRS and deep learning, I
provide a concise overview:

• A straightforward multivariate linear connection exists between the concentrations
of the components and the group characteristics observed in NIR spectra. In such
a situation, indiscriminate convolution operations only disrupt the identification of
characteristic spectral bands.

• The NIR spectrum results from the amalgamation of absorption peaks, and the de-
convolution method, employing Fourier transform, can effectively disentangle the
spectrum into individual absorption peaks. Conversely, the convolution operation
lacks both physical and practical meaning within this particular context.

2.1.2. Fully Connected Layer in Chemometrics and NIRS

The fully connected layer is a foundational element within diverse neural network
architectures, spanning from simpler feedforward neural networks and BP neural networks
to more intricate deep learning structures. In the realm of the fully connected layer, each
layer acts as the input for the subsequent one. Assuming the input vector of the preceding
layer is denoted as ydense, the output is mathematically represented as

h = g(W · ydense + b) (3)

As shown in Equation (3), the fully connected layer embodies a distinctive form of
the generalized linear model (GLM). In statistical terms, a GLM is a remarkably adaptable
statistical model. This model posits the distribution function of random variables measured
using chemical instruments, which is modeled by a link function and is correlated with
experimental results and labels. Delving into the pertinent literature on NIRS calibration
modeling techniques unveils that each wavelength point in the NIR spectra encapsulates
information from multiple components. The integration of modern mathematical multi-
variate statistical algorithms can establish a robust relationship model between sample NIR
spectra and sample labels. The generalized linear model has emerged as an exceptionally
effective multivariate statistical algorithm. Reflecting on the developmental trajectory of
NIRS modeling techniques over the past two decades, neural networks have emerged as
pivotal contributors.

For instance, Zhao et al. used NIR spectra and BP neural network algorithms, along
with ANN algorithms, to monitor the content of free fatty acids in fried oil samples [36].
Zeng et al., in a review, proposed that the BP-ANN model can be used to establish an NIRS
identification model for apple varieties [37]. Notably, in 2016, Chen et al. achieved CT using
extreme learning machines (ELM) with three spectral datasets of corn and tobacco [38].
The authors briefly analyzed the rationale behind the success of the ELM autoencoder in
achieving model transfer for NIR spectra.

In essence, for the integration of deep network technology into NIRS and the attain-
ment of transfer learning, the fully connected layer is indispensable. This study aimed to
construct a transfer network grounded in the fully connected layer. However, in light of the
earlier study by Chen et al. [38], which did not leverage mainstream deep learning libraries
such as PyTorch 1.2.0 or TensorFlow 1.9.0, this study aimed to overcome this limitation by
employing the PyTorch library to establish a NIRS transfer model.

2.1.3. Maxpool Layer in Chemometrics and NIRS

Pooling is a vital technique in both machine learning and image processing, offering a
condensed representation of input data via selecting crucial local features such as maxima,
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minima, or averages. The primary functions of pooling are twofold: first, it provides feature
invariance, allowing the objects in an image to be recognized even after pooling. Techniques
such as local maxima and minima pooling facilitate the capture of essential edge features
by neural networks. Second, pooling contributes to feature dimensionality reduction,
aiming to eliminate redundant information, extract relevant image features, reduce model
complexity, enhance operational speed, and decrease the likelihood of overfitting.

However, in the context of nondestructive testing using NIRS, the length of one-
dimensional nondestructive testing signals is typically within 1000. When employing
fully connected layers to extract signal features, assuming the feature layer is also 1000,
the floating-point operations per second (FLOPS) would be 106, differing by at least 1000 or-
ders of magnitude from the computational intensity of mainstream deep networks [39,40].
Consequently, chemometrics models do not require increased model operational speed.
Moreover, the data length collected by NIR spectrometers remains consistent, obviating the
necessity of pooling operations to standardize data dimensions.

Furthermore, in image processing, the edges and textures of data images can be
extracted through neighborhood max–min sampling (early developments in pooling tech-
nology). However, NIR spectra often feature overlapping absorption peaks, presenting a
challenge in determining the crucial band in a given neighborhood. Nevertheless, consider-
ing the concern with model overfitting, mechanisms akin to pooling layers should still be
incorporated into deep networks.

In conclusion, this study opted for a dropout layer as a viable substitute for the
pooling layer, constructing a feature extraction module with the following structure: “fully
connected layer—dropout layer—fully connected layer—dropout layer”. This approach
aims to strike a balance between feature extraction and mitigating overfitting in the context
of NIRS analysis.

2.1.4. Activation Function in Chemometrics and NIRS

Concerning the activation function, the deep networks built upon NIR spectra do not
necessitate an intricate model structure with numerous layers. Consequently, they are no-
tably less complex than image processing algorithms, thereby mitigating the issues known
as vanishing and exploding gradients in our designed network. Within this context, the im-
pact of different activation functions on network accuracy is nearly negligible. Following a
meticulous comparison of three activation functions—ReLU, sigmoid, and tanh—this study
opted for a combination of ReLU and sigmoid as the activation functions for constructing
our foundational network.

2.1.5. Summary

With these decisions in mind, we provisionally determined the specific modules
and structures to be employed in constructing the NIR spectrum detection model. This
determination stemmed from a comprehensive analysis and the careful consideration
of fundamental structures such as fully connected, pooling, and convolutional layers.
Such a thorough examination provided clear guidance, ensuring the effectiveness and
performance of the model. Building upon these foundational choices, our next steps
involved delving deeper into research and optimization within the domain adaptation
branch. This ensured the ultimate development of an efficient and reliable NIR spectrum
detection system that seamlessly aligns with practical application requirements. This
iterative process underscores our commitment to refining and enhancing the model to meet
the specific demands of NIR spectrum analysis.

2.2. Unsupervised Transfer Learning

In this section of the study, we singled out five classical transfer networks and provided
concise descriptions of their transfer architectures. Building upon our previous insights
into fundamental structures such as fully connected, pooling, and convolutional layers,
we modified these networks to better align them with the specific demands of modeling
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NIR spectra. This strategic step was geared toward refining the networks and optimizing
their architecture to enhance adaptability to the unique characteristics of NIR spectra.
By redesigning these classical transfer networks to fit the nuances of the NIR calibration
model, we aimed to fortify the model’s performance and applicability and bolster the
model’s generalizability, ensuring it excels in accuracy and stability across diverse practical
applications, thereby fostering outstanding outcomes in real-world scenarios.

2.2.1. Multiple Kernel Variant of MMD

The MMD algorithm, introduced by Gretton et al., is a robust measure for assessing
whether two samples originate from distinct distributions, making it an algorithm choice
in domain adaptation [21]. Its versatility and effectiveness in chemometrics are particularly
noteworthy, addressing crucial questions such as the compatibility of data collected in
different laboratories or the comparability of microarray data from diverse tissue types.
As highlighted by Gretton et al., MMD finds application in scenarios with interest in
comparing microarray data from identical tissue types measured at different laboratories,
aiming to discern whether the data can be jointly analyzed or if differences in experimental
procedures introduced systematic variations in data distributions [21].

Whereas MMD has found widespread use in subsequent image feature processing, it
has also achieved substantial inroads into the domain of deep learning networks. The fun-
damental premise of the MMD method lies in the notion that if all moments of two random
variables are equal, the two distributions are deemed identical. Conversely, if the distribu-
tions differ, the objective is to identify the moment that maximizes the difference between
them, serving as a metric for measuring dissimilarity. This loss function proves invaluable
in quantifying the distance between two distinct yet related random variable distributions.
Its application extends beyond traditional statistical measures, making it a powerful tool in
the realm of deep learning, especially in scenarios where understanding and mitigating
distributional differences are paramount [21].

MMD(s, t) =
∥∥Es[ϕ(ys)]− Et

[
ϕ
(
yt)]∥∥2 (4)

ϕ(y) represents a mapping function that maps data features into a high-dimensional
space; s and t denote the distributions of the source domain and target domain, respectively.

This study found inspiration in the DAN architecture proposed by scholars such as
Mingsheng Long, which is rooted in the MMD distance algorithm. To tailor the DAN
network to our specific needs, we implemented personalized and customized adjustments.
In the final iteration of the deep network architecture, we departed from the conventional
convolutional layer structure, opting instead for three fully connected layers to directly
extract features from the spectra.

In these three fully connected layers, the first and third layers represent the private
components of the neural network for the source and target domains, respectively. This
design ensures the independence of each domain. The second layer functions as the shared
component, facilitating the learning of features shared between the domains. During the
training process, we initially fixed the first and third fully connected layers corresponding
to the source domain (target domain) and trained using target domain (source domain)
data. Subsequently, we jointly trained the shared part, using both source and target domain
data to fine-tune the model. The final process structure is depicted in Figure 2.

In Figure 2, “input_t” and “output_t” represent the target domain data, and “input_s” and
“output_s” represent the source domain data. “Squeeze”, “Unsqueeze”, “slice”, and “concat”
correspond to the PyTorch API instructions used for slicing and concatenation when handling
torch data. Typically designed for classification tasks, DANs underwent crucial modifications
in this study to adapt them for regression prediction. These alterations included replacing the
original softmax activation function with a sigmoid activation function and substituting the
cross-entropy loss function with mean squared error (MSE). These adjustments were applied to
better align the network with the requirements of regression prediction tasks. This personalized
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customization not only increases the adaptability of the model but also provides a more robust
tool for the regression analysis of spectral data.

4×512 4×117

4×14×1

input_t input_s

Gemm

B〈20×512〉
C〈20〉

Unsqueeze

BatchNormalization

scale〈20〉
B〈20〉
mean〈20〉
var〈20〉

Squeeze

Relu

Gemm

B〈20×20〉
C〈20〉

Unsqueeze

BatchNormalization

scale〈20〉
B〈20〉
mean〈20〉
var〈20〉

Squeeze

Gemm

B〈20×117〉
C〈20〉

Unsqueeze

BatchNormalization

scale〈20〉
B〈20〉
mean〈20〉
var〈20〉

Squeeze

Relu

Gemm

B〈20×20〉
C〈20〉

Unsqueeze

BatchNormalization

scale〈20〉
B〈20〉
mean〈20〉
var〈20〉

Squeeze

Unsqueeze Unsqueeze

Concat

Slice

Squeeze

Gemm

B〈20×20〉
C〈20〉

Slice

Squeeze

Gemm

B〈20×20〉
C〈20〉

Gemm

B〈20×20〉
C〈20〉

Gemm

B〈20×20〉
C〈20〉

Gemm

B〈1×20〉
C〈1〉

Gemm

B〈20×20〉
C〈20〉

Gemm

B〈20×20〉
C〈20〉

Gemm

B〈1×20〉
C〈1〉

output_t output_s

Figure 2. Diagram of the DAN structure.
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2.2.2. Conditional Domain Adversarial Network

The authors of the CDAN develoepd a principled framework that conditions the
adversarial adaptation models on the discriminative information conveyed in the classifier
predictions [26,41]. They leverage this characteristic by using the discriminator of a GAN
as a domain adaptation component to extract common features from the source and target
domain data. When the discriminator fails to distinguish the origin domain of the input
data, the extracted features are shared between the source and target domain data. Based
on this, they proposed a transfer strategy based on conditional domain adversarial learning.
These researchers improved adversarial domain adaptation methods, defining the CDAN
as a minimax optimization problem with two competing error terms:

1. Let G be the classifier of the source domain deep network and L(·, ·) be the cross-
entropy loss. To ensure a lower source domain error risk, we seek the deep network
solution that minimizes the expected E(G).

2. Let D be the discriminator for the cross-source and target domains. Set f = F(y) and
g = G(y), corresponding to the classifier result and network feature representation,
respectively; and D( f ; g) is the discriminator result for g and f . Then, E(D, G) can be
represented as a joint distribution across the source and target domains [41].

E(G) = E(xs
i ,ys

i ∼Ds)L(G(ys
i ), labels

i ) (5)

E(D, G) = −Exs
i ∼Ds log[D( f s

i , gs
i )]− Ext

j∼Dt
log[D( f t

j , gt
j)] (6)

Organizing Formulas (5) and (6), the minimax optimization of the CDAN is [41]:

min
G

E(G)− λE(D, G) (7)

min
D

E(D, G) (8)

Finally, the CDAN network divides samples based on the difficulty of classification,
which are measured using the sample’s entropy [41]:

H(g) = −
C

∑
c=1

gc log gc (9)

The larger the entropy, the closer to the boundary point, the more challenging the
sample classification, and the smaller the weight. CDAN is only suitable for classifier model
discrimination. CDAN measures the difficulty of sample classification based on the sample’s
entropy, whereas we modeled regression prediction problems. Entropy cannot be used
to measure the difficulty of sample regression prediction problems. Therefore, this study
assumed that two sets of labels for NIR spectra that are close are similar in specific bands
related to the labels. Based on this assumption, we made some adjustments to the CDAN:

1. Use MSE instead of cross-entropy loss.
2. Propose a new weight assignment formula based on the histogram distribution func-

tion constructed from the labeled data in the dataset.

Assuming that the label range of the wood spectral dataset is label ∈ [Rn, Rm], this
range is uniformly divided into N segments, and rk represents the kth segment, which can
be expressed as

rk ∈
[

Rn +
k(Rm − Rn)

N
, Rn +

(k + 1)(Rm − Rn)

N

]
(10)

The probability distribution function can be represented as
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p(rk) =
nk

numlabel
(11)

Here, nk is the number of labels in rk, and numlabel represents the total number of
labels in the spectral dataset.

Based on the assumption, if the amount of labeled data is larger in a certain interval,
there are more NIR spectral data in this label interval, and the relationship between spectral
bands and labels is easier to determine by the network. Therefore, the labels corresponding
to the spectra in this interval have a higher weight. Assuming g is the output of the CDAN,
the weight function is represented as

w(g) =
p(rk)− pmin

pmax − pmin
g ∈ rk (12)

The weighted discriminator can be represented as

E ′(D, G) = −Exs
i ∼Ds w(g) log[D( f s

i , gs
i )]− Ext

j∼Dt
w(g) log[D( f t

j , gt
j)] (13)

In terms of the dataset source and target domain feature extraction process, the five
network structures are basically the same. We also abandoned the convolutional layer
structure and adopted a three-layer fully connected layer structure to directly extract
features from the spectrum. The first and third layers within this structure symbolize
the private components of the source and target domains within the neural network,
respectively, emphasizing the independence of each domain. The second layer functions
as a common layer for learning shared features between the domains. The first layer’s
outcome serves as the feature representation f , whereas the third layer’s output represents
the discriminator result g, collectively constituting the CDAN branch network.

During the training process, first, the CDAN branch network is trained with source and
target domain data. Subsequently, the first and third fully connected layers, corresponding
to the source domain (target domain), are fixed and trained with target domain (source
domain) data. Finally, the common layer is trained using both source and target domain
data, fine tuning the model for enhanced performance. For clarity on the improvements we
applied to the CDAN, Figure 3 illustrates the CDAN adversarial layer network structure
only. In this figure, “gemm” denotes the matrix multiplication between spectral features
and weights, while “relu” and “sigmoid” represent activation functions. This figure depicts
the branch network.

We adjusted and optimized the CDAN, making the CDAN network more suitable for
the establishment and application of the NIR spectral CT model. These adjustments included
several steps. First, the loss function L(·, ·) of the CDAN was reconstructed, replacing
the traditional cross-entropy loss with MSE. Based on this, the weighted discriminator of
the network was reconstructed according to our designed weight assignment shown in
Formula (12). Through this series of improvements, we achieved the application of the
CDAN in the field of NIR spectral CT, substantially progressing the research in the field of
NIR spectral calibration.
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Figure 3. Diagram of the CDAN adversarial layer structure.

2.2.3. Margin Disparity Discrepancy Method

The MDD method improves the marginal loss function in the transfer network, which
is essentially viewed as a variant of the MMD. This model constructs a distance function
between the source and the target domain feature representations. The model formulation
can be expressed as [23]:

min
f
E
(

P̂
)
+ ηDγ

(
P̂, Q̂

)
(14)

min
f ′

Dγ

(
P̂, Q̂

)
(15)

where P̂ represents the source domain, Q̂ represents the target domain, and D is the distance
from the source domain to the target domain. The MDD method is built on the min–max
problem paradigm of GAN-generated networks, confusing the feature representations of
the source and target domains to test whether the discriminative network can recognize
the differences between the source and target domain features. The generative and dis-
criminative networks engage in mutual adversarial training, making it challenging for the
discriminative network to determine differences in the feature representations between the
source and target domains.

The MDD network’s training process structure is similar to that of the DAN. To high-
light the improvements we achieved with the MDD network, only the structure diagram of
the minimax optimization adversarial layer is shown in Figure 4. In this diagram, “sub”
represents matrix subtraction.
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Figure 4. Diagram of the minimax optimization adversarial layer structure.

In summary, this study adopted a strategy similar for the first two networks, which
involved discarding convolutional and pooling layers and directly using fully connected
layers to extract features from the spectra, constructing both the source and target domains.
Additionally, to facilitate effective feature transfer between the source and target domains,
we introduced the MDD method. This method optimizes feature distributions during
network training, achieving the goal of sharing knowledge between different domains.
Through the design and adjustment of the MDD network, we not only accomplished
feature learning and transfer between the source and target domains but also simplified the
network structure, increasing computational efficiency. This method is an effective solution
for cross-domain tasks involving spectral data.

2.2.4. Enhanced Transport Distance for Unsupervised DA

In the Introduction, we mentioned another branch of domain adaptation algorithms
based on the OT distance in transfer learning [42]. OT is a mathematical problem that
was proposed by Gaspard Monge in 1781, aiming to analyze the similarity between two
distributions [43]. The Wasserstein distance or Kantorovich–Rubinstein metric is a distance
function defined between probability distributions on a given metric space. It was named
after Leonid Vaseršteı̆n. The Wasserstein distance can be used to achieve a transformative
distance from the source to the target domain distribution function. In transfer learning
based on OT, the goal is to find the optimal solution for this transformative distance and
use it for backpropagation to optimize neural network weights.

The transfer network constructed based on ETD consists of three parts: a feature
extractor network f (·), a classification network η(·), and the Kantorovich potential network
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g(·). An attention module, constructed with a fully connected network, is introduced to
balance the computation of the transport distance.

For most modules in this network, including the feature extraction module and
whether the attention module is suitable for NIR spectral modeling techniques, detailed
judgments were outlined in the previous sections. The Kantorovich potential network
is also composed of fully connected layers, to which we made some adjustments to the
optimization goals of this module. Therefore, in this study, the classification network was
replaced with a regression network, and the predictive accuracy of the ETD network was
modeled and tested. The training process of the ETD network is similar to that of the
CDAN, so is not reiterated here. Figure 5 shows the network structure of the Kantorovich
potential layer in the ETD. In this diagram, “matmul” represents the matrix multiplication
between the spectral feature tensor and the weight tensor, while “transpose” denotes matrix
transposition.

4×20

4×20

4×4

input_s

input_t

Gemm

B〈20×20〉
C〈20〉

Gemm

B〈20×20〉
C〈20〉

Transpose

MatMul

Sigmoid

Output

Figure 5. Diagram of the enhanced transport distance structure.

2.2.5. Global–Local Regularization via Distributional Robustness

Similar to the ETD network, the GLOT network also adopts the Wasserstein distance:
researchers introduced the Stein variational gradient descent algorithm, constructed an
OT distance structure, and proposed a new regularization method. The GLOT algorithm
includes a semisupervised learning module, a domain adaptation module, and an ad-
versarial machine learning module. Detailed judgments were outlined in the previous
sections for modules other than semisupervised learning. For semisupervised learning,
the GLOT algorithm constructs decision boundaries in high-dimensional space for spectral
data corresponding to different labels and establishes a semisupervised learning model.
This method of constructing decision boundaries and continuously optimizing them can
be directly applied to NIR spectral modeling. The training process of the GLOT network
is similar to that of CDAN and ETD and is thus not reiterated here. Figure 6 shows the
network structure of the Kantorovich potential layer in the GLOT.
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Figure 6. Diagram of the enhanced transport distance structure.

3. Results and Discussion
3.1. Experimental Analysis of NIRS Datasets

In this study, we employed a dataset of NIR spectra collected from a series of solid
wood boards to assess the performance of the five transfer network models we developed:
DAN, CDAN, MDD, ETD, and GLOT. The aim was to evaluate whether these transfer
models could surpass the accuracy of traditional models such as PDS and DS. The spectral
curves of the NIRS dataset are depicted in Table 1. The spectral bandwidth and shape of the
spectra of the same type of solid wood boards collected using different spectrometers exhibit
substantial variations. This poses a considerable challenge for spectral CT algorithms.

Table 1. Characteristics of NIRS datasets.

NIRS Analyzer Wavelength Dataset Size

NIRquest512 512 196
NIR–NT–spectrometer–OEM system 118 270

The dataset consisted of the NIR spectroscopy data and reference values for tensile
strength in solid wood panels samples. The NIR spectroscopy data comprised spectral data
from 466 samples of solid wood boards, which were measured using different NIR spec-
trometers. The NIRquest512 spectrometer, produced by Ocean Optics in the United States,
covers a wavelength range from 900 to 1700 nm with a resolution of 1.56 nm (512 channels
in total). Meanwhile, the NIR-NT-spectrometer-OEM system, manufactured by INSION
GmbH in Germany, also captures spectra within the same wavelength range but with a
wider interval of 6.83 nm (117 channels in total). reference values for the tensile strength in
solid wood panels samples were determined using official analysis methods. On solid wood
panel samples, the tensile strength parallel to the grain of the wood (GB/T 1938-2009) [44]
was used to determine tensile strength, which was proposed by the Standardization Ad-
ministration of China. The data and the entire set of programs can be accessed on the Data
Availability section.

These calibration models used for data processing were implemented in the Python
programming language, using the third-party library PyTorch. The samples were divided
into calibration and test sets. The calibration set was used to train the transfer network
models, whereas the test set was employed to assess the performance of the CT methods.
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The sample was split using the random_split function from the torch.utils.data library,
where 70% of the samples were allocated to the training set and 30% of the samples were
allocated to the test set according to the results in Table 2. For the NIRS dataset used in this
study, the basic parameter settings for the five transfer network models were as follows:

• Optimizer:

– RMSProp and Adam optimizers were chosen for the deep networks.
– RMSProp optimizer parameter momentum was set to 0.9.
– Learning rate was set to 0.001 for both optimizers.
– Adam optimizer parameter momentum was set to 0.9.
– Weight decay for Adam optimizer was set to 0.01.

• Activation Function:

– The activation function selected was sigmoid.

• Transfer Loss Weight:

– The weight for the transfer loss was set to 0.1.

Table 2. Model performance (R-squared, R) of different transfer networks in the target domain.

Training Dataset
Split Ratio CDAN ETD GLOT MDD DAN

0.7 92.33 ± 1.32 90.16 ± 1.81 94.16 ± 1.37 88.19 ± 1.49 87.57 ± 2.85
0.65 86.81 ± 2.27 89.34 ± 1.49 92.12 ± 1.48 87.73 ± 1.48 86.82 ± 1.81
0.6 83.33 ± 2.31 85.17 ± 2.28 91.47 ± 1.85 85.39 ± 2.34 83.83 ± 3.36
0.55 80.73 ± 3.17 84.19 ± 2.79 89.12 ± 2.45 84.38 ± 2.48 88.28 ± 2.84
0.5 83.45 ± 1.32 82.97 ± 2.29 82.45 ± 2.79 85.19 ± 2.17 82.49 ± 1.47
0.45 81.29 ± 2.51 79.63 ± 2.28 81.80 ± 2.57 82.27 ± 2.21 81.84 ± 2.85
0.4 77.28 ± 2.49 71.27 ± 2.01 75.23 ± 2.95 78.23 ± 2.39 80.19 ± 2.34
0.35 75.82 ± 4.92 72.72 ± 2.93 72.45 ± 2.71 76.90 ± 3.87 77.92 ± 2.48
0.3 73.19 ± 4.83 70.34 ± 3.34 68.27 ± 2.49 74.18 ± 3.41 74.82 ± 2.60
0.25 72.10 ± 4.31 72.23 ± 1.89 67.56 ± 2.45 75.54 ± 3.23 72.65 ± 2.77

3.2. Comparison and Discussion for Transfer Network Model

In evaluating model quality, a fundamental contradiction exists between deep learning
and chemometrics researchers. For the majority of chemometric researchers assessing model
quality, the commonly used parameters include confidence intervals, uncertainty measure-
ments, and variability measurements. These parameters, originating from statistics, mostly
rely on the assumption that random variables must follow a specific analyzable distribution
(independent and identically distributed (i.i.d.)). For instance, from the perspective of
random samples, a confidence interval is defined as follows: a random variable χ follows
a distribution F , assuming θ is the parameter of distribution F . Random variables are
independently sampled n times, resulting in a random sample {X1, ..., Xn}. If u(X1, ..., Xn)
and v(X1, ..., Xn) such that

P(θ ∈ (u(X1, ..., Xn), v(X1, ..., Xn))) = 1 − α (16)

then (u(X1, ..., Xn), v(X1, ..., Xn)) is considered a 1 − α confidence interval for estimating
the parameter θ.

Whereas the field of machine learning inherits some perspectives from statistics and
regression analysis, such as the generalized linear regression model based on statistics
and regression analysis, its models do not all assume random variables following analyz-
able specific distributions. The assumption of independent and identically distributed
variables is only present in a small subset of models. Machine learning models are more
influenced by optimization theory, such as the sequential minimal optimization algorithm
in support vector machine models and information entropy and information gain in ran-
dom forests. These models only require a set of d-dimensional random variables χ in an
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n-dimensional sample space. Due to the questionable analyzability of the distributions
in these models, calculating confidence intervals for machine learning models becomes
a complex and challenging task, requiring a combination of functional and approxima-
tion techniques. Kernel-based support vector machines still have a computable, complex
distribution function [45,46] where confidence intervals can be calculated using methods
such as Laplace approximation. Random forests lack an analyzable distribution, and the
confidence space [47] requires separate calculation through scientific research.

To address this issue, Leslie Valiant proposed probably approximately correct (PAC)
learning in 1984 [48,49]. This concept was introduced on the rigorous mathematical foun-
dation of regression models, and PAC theory is no longer confined to a specific analyzable
distribution. It provides a machine learning mathematical analysis framework with weaker
model assumptions and higher model uncertainty. PAC theory establishes the upper bound
of learning algorithm errors based on the generalization error output by the learning algo-
rithm. Additionally, PAC learnable problems have been studied with respect to the number
of training samples n, which has a theoretical boundary—if n satisfies certain conditions,
then machine learning can find the optimal solution under an expected generalization error
and significance level.

With the advance of deep learning, a problem emerges: the complex network structures
result in the majority of high-performance deep models being akin to black-box structures.
Researchers of deep networks understand only the inputs and outputs, lacking knowledge
as to why these structures exhibit superior performance, which are referred to by deep
learning researchers as the “black-box problem”. The PAC analysis framework also prevents
the comprehensive and in-depth analysis on networks with numerous layers. These deep
networks have thus been controversial in the field of machine learning. Due to the focus
of deep networks on inputs and outputs, researchers have predominantly used metrics
such as accuracy, F1 score, coefficient of determination (R-squared, R), root mean square
error (RMSE), root mean square error of cross-validation (RMSECV), root mean square
error of prediction (RMSEP), etc., to interpret model quality. For our purposes, we set aside
these controversies and chose R, RMSE, RMSECV, and RMSEP as metrics to measure the
performance of the five models.

The relationship curves between training iterations and model accuracy, obtained
via training the dataset using different transfer network models, are shown in Figure 7.
These figures show that as the number of iterations increases, the loss value decreases and
stabilizes. A substantial difference was noted between the loss values and the R and RMSE
values. The loss value was considered a reference, and the specific model performance was
still determined by the R and RMSE values.
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After completing model training, to evaluate the influence of the subset sample size
on different calibration methods, ten training sets were created based on the proportion of
training set samples to the total dataset. These proportions were 25%, 30%, 35%, 40%, 45%,
50%, 55%, 60%, 65%, and 70%. The findings revealed that the five deep network models
considered the influence of iteration time and training set size on the model. Notably,
GLOT demonstrated the best predictive performance.

The increase in performance for the transfer learning models was more evident (see Table 2).
This was primarily attributed to the fact that in the presence of limited training samples, deep
transfer network models encounter substantial challenges in learning spectral features through
the adversarial network layer. Consequently, the learning of adversarial network parameters
becomes more intricate, resulting in a decrease in accuracy for models such as CDAN, ETD,
and GLOT. As the proportion of the training set increases, the performance of domain adaptation
models with an adversarial layer structure, such as CDAN, ETD, and GLOT, surpasses that of
DAN, MDD, and other models. This is mainly due to the increase in accuracy of the adversarial
network layer weights with an increase in the number of training samples. In most cases, deep
network models such as ETD and GLOT outperformed DAN and MDD. When the proportion
of the training set was small, the DAN model performed better.

In this study, the primary focus was addressing the challenge of the low accuracy
and suboptimal model performance observed in model transfer methods, such as PDS
and PD. The domain adaptation theory within transfer learning introduces an innovative
perspective by considering the main spectrometer as the target domain and the spectrometer
as the source domain. The process of transferring the model from the spectrometer to the
main spectrometer mirrors the migration of a machine learning model from the source to
the target domain. Numerous researchers have proposed diverse architectures, including
distance-based methods, optimal transport, and adversarial machine learning techniques,
which were previously mentioned and applied in this study to near-infrared spectroscopy
technology. However, these architectures are still based on empirical and empirical evidence
rather than having a certain convergence in mathematical analysis. Our experimental
findings revealed that after a sufficient number of model iterations, the accuracy of transfer
models is significantly higher than that of PDS, PD, and other model transfer methods.
Notably, regression models have real analysis as their mathematical analysis foundation;
machine learning models rely on PAC theory as their mathematical analysis foundation;
whereas transfer learning lacks a comprehensive mathematical analysis framework.

Furthermore, the efficacy of classical CT methods for NIR spectra is influenced by
the size of the transfer sample. Taking DS, PDS, and SST methods as examples, overall,
the performance of these methods improved with an increase in the transfer sample size
(Figure 8). Limited data size, such as 30% transfer samples, markedly reduced the testing
accuracy for specific subordinate instruments. Among these methods, the SST method
achieved acceptable accuracy with 50.0% of all data and experienced a slight improvement
when using 70% of all data. Even with these enhancements, the SST method still falls
short of reaching the upper accuracy limit observed in models such as CDAN, ETD,
and GLOT (Table 3).

Compared to classical spectral CT methods, the GLOT method and the CDAN method
significantly improve transfer reliability under different data partitions of subordinate
instruments (Table 3). The GLOT method produces the highest average R with the smallest
interquartile range and extreme values (Figure 9). The CDAN method also outperforms
classical spectral CT methods, demonstrating superior algorithmic performance.

Table 3. Performance of different CT methods in the target domain.

DS PDS SST CDAN GLOT

R 79.29 83.46 85.91 92.33 94.16
RMSECV 15.169 13.756 12.809 7.359 10.692

R 70.23 72.8 76.53 82.11 83.59
RMSEP 23.967 19.395 21.798 12.237 11.582
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4. Conclusions

This study addressed the challenges in obtaining NIR spectral annotation data by
introducing five transfer learning methods to increase classification accuracy and reduce the
dependency on extensively labeled datasets. We also comprehensively analyzed different
layers within deep neural networks in the context of NIR spectral research, exploring
domain adaptation algorithms, including MMD, domain adversarial networks, and the
Kantorovich potential layer.

In contrast to prevalent CT methods in current NIR spectral technology (DS, PDS,
and SST algorithms), the proposed methods exhibit increased accuracy and scalability,
especially in large-scale NIR spectral experiments with various manufacturers.

However, the integration of deep learning into chemometrics poses a serious challenge
due to the lack of a stable mathematical analysis framework, which prevents researchers
from establishing a definite expectation for the stability of deep neural network models.
To address the low accuracy of traditional transfer calibration models, we implemented a
conscious trade-off by abandoning classical chemometrics model evaluation metrics such
as confidence intervals and adopting deep learning model evaluation metrics, achieving
substantial improvements in model performance. The hope is that future researchers will
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dedicate efforts to overcoming this predicament, establishing new mathematical analysis
frameworks to increase our understanding fo the stability and interpretability of deep
learning models, enabling their reliable application across various domains.
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