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Abstract: Human activity recognition (HAR) in wearable and ubiquitous computing typically in-
volves translating sensor readings into feature representations, either derived through dedicated
pre-processing procedures or integrated into end-to-end learning approaches. Independent of their
origin, for the vast majority of contemporary HAR methods and applications, those feature represen-
tations are typically continuous in nature. That has not always been the case. In the early days of
HAR, discretization approaches had been explored—primarily motivated by the desire to minimize
computational requirements on HAR, but also with a view on applications beyond mere activity
classification, such as, for example, activity discovery, fingerprinting, or large-scale search. Those
traditional discretization approaches, however, suffer from substantial loss in precision and resolution
in the resulting data representations with detrimental effects on downstream analysis tasks. Times
have changed, and in this paper, we propose a return to discretized representations. We adopt and
apply recent advancements in vector quantization (VQ) to wearables applications, which enables us
to directly learn a mapping between short spans of sensor data and a codebook of vectors, where
the index comprises the discrete representation, resulting in recognition performance that is at least
on par with their contemporary, continuous counterparts—often surpassing them. Therefore, this
work presents a proof of concept for demonstrating how effective discrete representations can be
derived, enabling applications beyond mere activity classification but also opening up the field to
advanced tools for the analysis of symbolic sequences, as they are known, for example, from domains
such as natural language processing. Based on an extensive experimental evaluation of a suite of
wearable-based benchmark HAR tasks, we demonstrate the potential of our learned discretization
scheme and discuss how discretized sensor data analysis can lead to substantial changes in HAR.

Keywords: human activity recognition; wearables; self-supervised learning; discrete representations

1. Introduction

The widespread availability of commodity wearables such as smartphones and smart-
watches, has resulted in increased interest in their utilization for applications such as sports
and fitness tracking [1–5]. These devices benefit from onboard sensors, including Inertial
Measurement Units (IMUs), which can track and measure human movements that are
subsequently analyzed for understanding activities. The ubiquitous nature of the devices,
coupled with their form factor, enables the collection of large-scale movement data without
substantial impact on user experience, albeit without annotations.

Human activity recognition (HAR) is one such application of wearable sensing,
wherein features are extracted for segmented windows of sensor data, for classification
into specific activities (or the null class). The de facto approach for obtaining features
is to compute them via statistical metrics [6,7] and the empirical cumulative distribution
function [8], or to learn them directly from the data itself (e.g., via end-to-end training [9–13]
or unsupervised learning [14–16]). Either approach results in continuous-valued (or dense)
features summarizing the movement present in the windows.
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Alternatively, activity recognition has occasionally also been performed on discrete
sensor data representations (e.g., [17]). In those cases, short windows of sensor data are
converted into discrete symbols, where each symbol typically covers ranges of sensor values
and a span of time. The motivation for such discretization efforts was to convert complex
movements into a smaller, finite alphabet of discrete (symbolic) representations, thereby
simplifying tasks such as spotting gestures [17], and recognizing activities [18,19] via the
use of efficient algorithms from string matching and bioinformatics, or even simple nearest
neighbors in conjunction with Dynamic Time Warping (DTW). Some approaches for deriv-
ing the small collection of symbols include symbolic aggregate approximation (SAX) [20]
and the Sliding Window and BottomUp (SWAB) algorithm [21,22]. SAX in particular, is
especially effective at discretizing even a long-duration time series efficiently [17,20].

Existing discretization methods are rather limited with regard to their expressive
power—resulting in substantial loss of resolution, as movements and activities can only
be expressed by a small alphabet of symbols, which often negatively impacts downstream
recognition performance. It is also observed especially acutely in tasks where minute
differences in movements are important for discriminating between activities, e.g., in fine-
grained gesture recognition. Moreover, the discretization methods are more difficult to
apply to multi-channel sensor data, requiring specialized handling and containing explod-
ing alphabet sizes [23]. The low recognition accuracy coupled with difficulty in handling
multi-sensor setups especially has resulted in discretization methods falling behind their
continuous representation counterparts and, thus, have been somewhat abandoned.

Yet, discrete representations—that are on par with contemporary continuous
representations—can be crucial for tasks such as activity/routine discovery via character-
istic actions [24], discovering multi-variate motifs from sensor data [25], dimensionality
reduction [20], and performing interpretable time-series classification [26], since these
techniques require time-series simplification as they would be produced by discretization.
In recent years, the study and application of vector quantization (VQ) techniques to, for ex-
ample, automatic speech recognition has resulted in the ability to learn mappings between
the–continuous–audio and–discrete–codebooks of vectors, i.e., to map short durations of
raw audio to discrete symbols [27,28]. In this paper, we propose to adopt and adapt such
recent advancements of discrete representation learning for the HAR community, so that the
symbolic representations of movement data can be derived in an unsupervised, data-driven
manner, and be used for effective sensor-based human activity recognition tasks.

To this end, we apply learned vector quantization (VQ) [27,29] to wearables applica-
tions, which enables us to directly learn the mapping between short spans of sensor data
and a codebook of vectors, where the index of the closest codebook vector comprises the
discrete representation. In addition, we utilize self-supervised learning as a base (via the
Enhanced CPC framework [30]), thereby deriving the representations without the need
for annotations. Sensor data are first encoded using convolutional blocks, which can han-
dle multiple data channels (e.g., x-y-z axes of triaxial accelerometry) in a straightforward
manner. This is followed by the vector quantization module which replaces the encoding
with the nearest codebook vector. They are subsequently summarized using a causal con-
volutional encoder, which utilizes vectors from the previous timesteps in order to predict
multiple future timesteps of data in a contrastive learning setup.

We present our method as a proof of concept for discrete representation learning, and,
as such, as a proposal for a return to discretized representations in HAR. We focus on
recognizing human activities in order to demonstrate the efficacy of the representations
using a standard classification backend, yet we also outline the potential the proposed
return to discretized processing has for the field of sensor-based HAR. The representations
are derived using wrist-based accelerometer data from Capture-24 [31–33]—a large-scale
dataset that was collected in-the-wild and, as such, is representative for real-world Ubicomp
applications of HAR. The performance of our discrete representation learning is contrasted
against other representations, including end-to-end training (where the features are learned
for accurate prediction) and self-supervised learning (where unlabeled data are first used
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for representation learning), the latter recently having seen a substantial boost in the field.
The evaluation is performed on six diverse benchmarks, containing a variety of activities
including locomotion, daily living, and gym exercises, and comprising different numbers
of participants and three sensor locations (as detailed in [16]).

The conversion of continuous-valued sensor data to discrete representations often
results in comparable activity recognition accuracy, which we show in our extensive ex-
perimental evaluation. In fact, in some cases, the change in representation actually leads
to improved recognition accuracy. In addition to standard activity recognition, the return
to now much-improved discretization of sensor data also bears great potential for a range
of additional applications such as activity discovery, activity summarization and finger-
printing, which could be used for large-scale behavior assessments both longitudinally or
population-wide (or both). Effective discretization also opens up the field to the potential of
entirely different categories of subsequent processing techniques, for example, NLP-based
pre-training such as RoBERTa [34]—an optimized version of BERT [35]—so as to further
learn effective embeddings, improving the recognition accuracy.

The contributions of our work can be summarized as follows:

• We combine learned vector quantization (VQ)—based on state-of-the-art self-supervised
learning methods—with wearable-based human activity recognition in order to learn
discrete representations of human movements.

• We establish the utility of learned discrete representations towards recognizing activi-
ties, where they perform comparably or better than state-of-the-art learned representa-
tions on three datasets, across sensor locations.

• We also demonstrate the applicability of highly effective NLP-based pre-training
(based on RoBERTa [34]) on the discrete representations, which results in further
performance improvements for all target scenarios.

2. Background

As our goal is to evaluate the effectiveness of learning discrete representations of
sensor data, we first discuss previous methods for deriving the symbols, followed by
techniques from other domains that learn discrete representations. Finally, we summarize
self-supervised methods for wearables, which can be used in conjunction with vector
quantization for learning discrete representations.

2.1. Discretizing Sensor Data and Deriving Primitives

Discretization of time-series data has traditionally been performed using computa-
tional methods such as symbolic aggregate approximation (SAX) [20,36]. In this technique,
Piecewise Aggregate Approximation (PAA) is first utilized to obtain representations cov-
ering spans of time, which are subsequently symbolized using the alphabet size (which
is a parameter to be tuned). This process is simple, yet highly effective and fast, even for
long-duration time-series data. While originally proposed for a single time series, it has
been extended to multi-channel data as well, by applying SAX separately to each channel
and combining the tuples or first applying Principal Component Analysis (PCA) to reduce
to a single channel [37]. Other variations include applying Tf-idf weighting of the SAX
features, as explored in SAX-VSM [38]. Such computational discretization methods have
also been applied for HAR applications, using SAX [18] and its variants [19].

Other approaches for discretization include: (i)Multivariate Bag-Of-SFA Symbols
(MBOSS), [23] which learns symbolic representations but via Symbolic Fourier Approxima-
tion (SFA) [39,40]; (ii) Word extraction for time series classification (WEASEL) [41], which
is an extension for SFA, and applies the ANOVA f-test to determine the most informative
Fourier coefficients and subsequently applies information gain binning for determining the
boundaries; (iii) the Sliding Window and BottomUp (SWAB) algorithm, [21,22] which has
been used for detecting leisure activities using dense motif discovery. Suffix trees are used
to extract motifs from Piecewise Linear Approximation (PLA), which first produces linear
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segments from sensor data, following which the slope between consecutive segments is
binned to obtain the discrete representations.

Discretization is particularly useful for applications such as activity discovery [24],
involving the identification of activities from sensor streams via motif discovery. This
is because discovering motifs for the time series is challenging as they can be sparsely
distributed, vary in duration, and exhibit some level of time warping. Online gesture
spotting has also been performed with discretized movements using string matching al-
gorithms [17]. Motion is represented by a string of symbols, and efficient string matching
methods (incl. approximate matches) are employed to recognize gestures. Similarly, prim-
itives of motion have been derived via shapelets [42] for time series classification [43],
wherein each shapelet is a local pattern highly indicative of a class. Another technique
for discovering primitives includes utilizing the matrix profile (and its extensions) [44,45],
which also facilitates motif discovery. As mentioned previously, the computational methods
detailed above have lower performance relative to deep learning in general and do not
handle multi-channel data well. Due to these issues, they have not been studied extensively
in recent years.

2.2. Discrete Representations Learning in Other Domains

Learning discrete representations with deep networks were first introduced in an
autoencoder setting (so-called Vector Quantized Variational AutoEncoder (VQ-VAE)) [29],
where the encoder outputs discrete codes instead of continuous latents. This was achieved
with the use of an online K-means loss, which allowed for a differentiable mapping of data
to a codebook of vectors. It was shown to be capable of modeling long-term dependen-
cies through the compressed discrete latent space, and performance was demonstrated
for generating images, audio modeling, and sampling conditional video sequences. The
generation of high-fidelity images was shown in [46], which proposed improvements to
the autoencoder setup from [29].

More recently, discrete representations have shown great promise in speech recog-
nition by enabling a differentiable mapping of spans of audio waveforms to a codebook.
Unsupervised speech representations were learned using Wavenet autoencoders in [47],
which also demonstrated the correspondence between phonemes and the learned symbols.
VQ-Wav2vec [27] pairs a future timestep prediction task with vector quantization, and
studies the effectiveness of both the K-means approach from [29] as well as the gumbel
softmax operation [48,49]. Subsequently, the discrete symbols are used for RoBERTa [34]
pre-training, and the resulting embeddings are utilized by an acoustic model for improved
speech recognition. Using these discrete representation models now represents the state-
of-the-art, with the introduction of extensions to VQ-Wav2vec, including Wav2vec2.0 [28],
unsupervised speech recognition [50], and VQ-APC [51]. Other works using vector quan-
tization include w2v-BERT [52], which sets up a masked language modeling task, and
HuBERT, which also carries out masked prediction of hidden units [53]. However, these
methods typically require large amounts of unlabeled data for pre-training (e.g., 960 h
of audio for a base model and 60k hours for a large model). Further, a language model
is utilized with beam search to decode the outputs of the acoustic model. Interestingly,
the discrete representations enable the unsupervised discovery of acoustic units where
phonemes are automatically mapped to a small set of discrete representations, enabling
phoneme discovery and segmentation [54–57]. This resulting property of automatic discov-
ery of ground truth phonemes is of particular interest, as we hypothesize that it allows us
to derive the atomic units of human movements from wearable sensor data by learning
a mapping of discrete representations to spans of sensor data. We hypothesize that these
movement units enable a more accurate classification of activities, even with the loss of
resolution due to discretization.
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2.3. Self-Supervised Representation Learning for Human Activity Recognition

As mentioned previously, human activity recognition (HAR) involves automatically
recognizing activities from windows of sensor data. In recent years, the use of super-
vised deep learning [10,11] has resulted in great improvements in performance, relative to
more traditional methods involving heuristics [14]. These methods can sometimes require
regularization in order to prevent overfitting and improve generalization [58–60]. It has
also been explored for wearable-based HAR, particularly from continual learning [61] and
domain generalization [62,63] perspectives. Going beyond Restricted Boltzmann Machines
(RBMs) and Autoencoders [64,65], recent years have seen the rise of ‘self-supervised learn-
ing’, that also utilizes unlabeled data for representation learning. These methods form the
‘pretrain-then-finetune’ training paradigm and have resulted in significant performance
improvements over end-to-end training, especially when large-scale annotations are not
available [15,16].

Multi-task self-supervision introduced self-supervised learning to wearable-based ac-
tivity recognition by performing transformation discrimination in a multi-task setting [15].
Subsequently, SelfHAR combined self-training with transformation discrimination by ap-
plying knowledge distillation to train a teacher network with labeled data. The teacher
is then used to pseudo-label the unlabeled data, following which the confident samples
are combined with the labeled dataset for transformation discrimination. Transformers
were explored for self-supervision in [66], by training to reconstruct only randomly masked
timesteps of windows of sensor data from mobile phones. Extending this setup, spatio-
temporal masking was explored in [67]. Contrastive Predictive Coding (CPC) was adopted
and applied to wearable sensor data in [68], where future timestep prediction was per-
formed under contrastive learning settings.

Siamese contrastive learning using the SimCLR framework [69] was explored in [70].
The input windows are randomly augmented in two different ways and comprise the
positive pairs, whereas the remaining pairs are the negative pairs. After pre-training with
SimCLR, ref. [71] improves clustering performance by leveraging nearest neighbors. Sim-
Siam [72] and BYOL [73] also have a Siamese setup, albeit are not trained with contrastive
learning. Ref. [16] studies the aforementioned methods and performs an assessment of the
state-of-the-field of self-supervised human activity recognition by evaluating them on a col-
lection of tasks, in order to understand their strengths and shortcomings. Similarly, ref. [74]
explores these contrastive learning tasks and studies suitable augmentations and architec-
tures for effective performance. The contrastive setup has also been extended to multiple
sensors through approaches such as Learning from the best [75], ColloSSL [76], and CO-
COA [77]. Analyzing self-supervised methods, ref. [78] examines the pre-training data
efficiency, i.e., the minimal quantities of pre-training data required for effective wearable-
based self-supervised learning. Enhancements to wearable-based CPC were investigated
in [30], by considering three components: the encoder architecture, the autoregressive
network, and the future timestep prediction task. The resulting ‘Enhanced CPC’ demon-
strates substantial improvements over the original framework [68] as well as outperforms
state-of-the-art self-supervision on four of six target datasets. This superior performance,
coupled with the fully convolutional architecture (which improves the parallelizability),
motivates the use of Enhanced CPC as the base for discretization.

For all methods detailed above, self-supervision results in dense (continuous-valued),
high-dimensional representations of data. In contrast, we propose to perform discrete
representation learning, as it derives a collection of symbolic representations, aiding in the
lower-level analysis of human movements while also performing comparably to state-of-
the-art self-supervision.

3. Methodology

In this paper, we introduce the discrete representation learning framework for wear-
able sensor data, with the ultimate goal of improved activity recognition performance and
better analysis of human movements. This paper represents the first step towards this
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goal, which effectively demonstrates the proof of concept for the effectiveness of learned
discretization, which warrants the aforementioned “return to discretized representations”.
Based on our framework, we explore the potential and next steps for discretized human
activity recognition. An overview of discretization is shown in Figure 1, which involves
mapping windows of time-series accelerometer data to a collection of discrete ‘symbols’
(which are represented by strings of numbers).

Input window Discretization

["0", "27", "32", ..., "64", "2"]

Discrete representations 

Figure 1. Discrete representation learning: given a window of accelerometer data as input, the output
is a collection of enumerated symbols. We map short spans of continuous-valued sensor data to a
list of ‘symbols’ (i.e., the numbers in the figure). Therefore, we obtain the “strings of motion”, as the
symbols are discrete.

Following the self-supervised learning paradigm, our approach contains two stages:
(i) pre-training, where the network learns to map unlabeled data to a codebook of vectors,
resulting in the discrete representations; and (ii) fine-tuning/classification, which utilizes
the discrete representations as input for recognizing activities. In order to enable the map-
ping, we apply vector quantization (VQ) to the Enhanced CPC framework [30]. Therefore,
the base of the discretization process is self-supervision, where the loss from the pretext
task is added to the loss from the VQ module in order to update the network parameters as
well as the codebook vectors.

To this end, we first detail the self-supervised pretext task, Enhanced CPC, and describe
how the VQ module can be added to it. With the aim of quantitatively measuring the
utility of the representations, we perform activity recognition using discrete representations
derived from target-labeled datasets. Therefore, we also discuss the classifier network
used for such evaluation, and clarify how the setup is different from state-of-the-art self-
supervision for wearables.

3.1. Discrete Representation Learning Setup

The setup for learning discrete representations of human movements contains two
parts: (i) the self-supervised pretext task; and (ii) the vector quantization (VQ) module.
We utilize the Enhanced Contrastive Predictive Coding (CPC) framework [30] as the
self-supervised base, which comprises the prediction of multiple future timesteps in a
contrastive learning setup. By predicting farther into the future, the network can capture
the slowly varying features, or the long-term signal present in the sensor data while
ignoring local noises, which is beneficial for representation learning [79]. We borrow
notation from [27] for the method description below.

The aim of the Enhanced CPC [30] framework is to investigate three modifications to
the original wearable-based CPC framework: (i) the convolutional encoder network; (ii) the
Aggregator (or autoregressive network); and (iii) the future timestep prediction task. First,
the encoder from [68] is replaced with a network with higher striding (details below), result-
ing in a reduction in the temporal resolution. In addition, a causal convolutional network
is used to summarize previous latent representations into a context vector instead of the
GRU-based autoregressive network. Finally, the future timestep prediction is performed at
every context vector instead of utilizing a random timestep to make the prediction. These
changes, put together, substantially improve the performance of the learned Enhanced CPC
representations, compared to state-of-the-art methods. In what follows, we provide the
architectural details and a detailed description of the technique.

As shown in Figure 2, we utilize a convolutional encoder to map windows of sensor
data to latent representations f : X 7→ Z (called z-vectors). It comprises four blocks, each
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containing a 1D convolutional network followed by the ReLU activation and dropout with
p = 0.2. The layers consist of (32, 64, 128, 256) channels, respectively, with a kernel size of (4,
1, 1, 1) and a stride of (2, 1, 1, 1). The encoder output frequency is 24.5 Hz, as we obtain 49
z-vectors for each window of 100 timesteps (i.e., two seconds of data at 50 Hz). Therefore,
we obtain one zt for approx. every two timesteps of data. By adjusting the convolutional
encoder architecture appropriately, the frequency can be adjusted to increase or reduce
relative to the base setup detailed above (see Section 5.4). In addition, the convolutional
encoder can also be modified for training on data recorded at higher sampling rates (i.e.,
>50 Hz) in order to maintain an output frequency of z-vectors at 24.5 Hz.

Encoder

Input
window

Aggregator

context-
vectors

Figure 2. Overview of discrete representation learning for HAR using wearables: we combine a
contrastive future timestep prediction problem with vector quantization to map spans of sensor data
to a codebook of vectors. The index of the codebook vector closest to each zt functions as the discrete
representation.

The quantization module (q : Z 7→ Ẑ) replaces each zt with ẑ = ei, which is the
index of the closest codebook vector (also called the codeword), from a fixed size codebook
e ∈ RV×d, containing V representations of size d (details in Section 3.1.1). We utilize the
online K-means-based quantization from [28], which is similar to the vector quantized
autoencoder [29] detailed originally in [29].

Following Enhanced CPC [30], a causal convolutional network called the ‘Aggregator’
is used for summarizing previous timesteps of encoded representations ẑ≤t (g : Ẑ 7→ C)
into the context vectors ct, which are used to predict multiple future timesteps. This
enables improved parallelization due to the convolutions and results in faster training
times. Each block in the Aggregator has 256 filters with dropout p = 0.2, layer normalization,
and residual connections between layers, as utilized in [28]. For each causal convolution
layer in successive blocks, the stride is set to 1, whereas the kernel sizes are consecutively
increased from 2. The network is once again trained to identify the ground truth zt+k,
which is k steps in the future from a collection of negatives sampled randomly from the
batch for every ct in the window. Such a setup was first introduced in VQ-Wav2vec [28],
where two quantization approaches—Gumbel softmax [48] and K-means [28,29]—were
studied for their effectiveness towards better speech recognition. In our work, however,
preliminary explorations revealed the higher effectiveness of the online K-means-based
quantization, described below.
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3.1.1. K-Means Quantization

As detailed previously, the codebook has a size of V × d, where V is the number of
variables in the codebook, and d is their dimensionality. The vector quantization procedure
allows for a differentiable process to select codebook indices. As shown in Figure 3, the
nearest neighbor codebook vector to any z-vector in terms of the Euclidean distance is
chosen, yielding i = argminj∥z − ej∥2

2. The z-vector is replaced ẑ = ei, which is the
codebook vector at the index i. As mentioned in [29], this process can be considered a
non-linearity that maps latent representations to one of the codebook vectors.

0.85 0.1 ... 0.67

0 1 ... 0

...

One-hot

Distances
argmin

Codebook

Figure 3. Visualizing K-means-based quantization: for each z-vector, the l2 distance is computed
to the codebook of vectors ei. The index of the nearest codebook vector comprises the discrete
representation, whereas the nearest vector itself is passed as the output (i.e., ẑ-vector). This figure has
been adopted and adapted from [27].

As choosing the codebook indices does not have a gradient associated with it, the
straight-through estimator [80] is employed to simply copy gradients from the Aggregator
input q(z) to the encoder output f (x). Therefore, the forward pass comprises the selection
of the closest codebook vector, whereas during the backward pass, the gradient becomes
copied as-is to the encoder. The parameters are updated using the future timestep prediction
loss as well as two additional terms:

L =
K

∑
k=1

LCPC
k +

(
∥sg(z)− ẑ∥2 + γ∥z − sg(ẑ)∥2) (1)

where sg(x) ≡ x, d
dx sg(x) ≡ 0 is the stop gradient operator, k is the future timestep, and γ

is a hyperparameter. Due to the straight-through estimation, the codebook does not obtain
any gradients from LCPC. However, the second term ∥sg(z)− ẑ∥2 moves the codebook
vectors closer to the z-vectors, whereas the third term ∥z − sg(ẑ)∥2 ensures that z-vectors
are close to a codeword. Therefore, the Aggregator network is updated via the first loss
term, whereas the convolutional encoder is optimized by the first and third loss terms. The
codebook vectors are initialized randomly and updated using the second loss term. This
is visualized in Figure A3 in Appendix A. The weighting term γ is set to 0.25 as utilized
in [27,29], as we obtained good performance.

3.1.2. Preventing Mode Collapse

As discussed in [28], replacing z by a single entry ei from the codebook is prone to
mode collapse, where very few (or only one) codebook vectors are actually used. This leads
to very poor outcomes due to a lack of diversity in the discrete representations. To mitigate
this issue, ref. [28] suggests independent quantization of partitions, such that z ∈ Rd is
organized into multiple groups G using the form z ∈ RG×( d

G ). Each row is represented by
an integer index, and the discrete representation is given by indices i ∈ [V]G, where V is
the number of codebook variables for the particular group and each element ij is the index
of a codebook vector. For each of the groups, the vector quantization is applied and the
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codebook weights are not shared between them. During pre-training, we utilize G = 2
(as per [28]), and V = 100, resulting in a possible VG possible codewords. In practice, the
number of unique discrete representations is generally significantly smaller than 1002.

3.2. Classifier Network

As the obtained representations (or symbols) are discrete in nature, applying a clas-
sifier directly is not possible. Therefore, we utilize an established setup from the natural
language processing domain (which also deals with discrete sequences) to perform activity
recognition, shown in Figure 4.

[0, 27, 32, ..., 64, 2 ]

Discrete sequence Embedding
layer

RNN Classifier

Figure 4. Performing classification using the discrete representations: the sequences of symbolic
representations (indexed) are first passed through a learnable embedding layer. Subsequently, an
RNN network (GRU or LSTM) is utilized along with an MLP network for classifying the sequences
into the activities of interest.

First, the discrete representations are indexed, i.e., assigned a number based on the
total number of such symbols present in the data. For each window of symbols, we
append the ⟨START⟩ and ⟨END⟩ tokens to the beginning and end of the window. The
dictionary also contains the pad ⟨PAD⟩ and unknown ⟨UNK⟩ tokens, which represent
padding (sequences of differing lengths can be padded to a common length) and unknown
(symbols present during validation/test but not during training, for example). The indexed
sequences are used as input to a learnable embedding layer (shown in grey in Figure 4),
followed by an LSTM or GRU network of 128 nodes and two layers with dropout (p = 0.2).
Subsequently, a MLP network identical to the classifier network from [16] is applied. It
contains three linear layers of 256, 128, and num_classes units with batch normalization,
ReLU activation, and dropout in between.

4. Setup

In Section 3, we introduced an overview of our framework for deriving discrete
representations from sensor data and for performing a quantitative evaluation using activity
recognition. Here, we describe the setup utilized to learn such representations, including
the datasets utilized for pre-training and evaluation (Section 4.1), the data pre-processing
(Section 4.2), and the implementation details (Section 4.3). Put together, these provide an
overview of the practical details vital for learning and utilizing discrete representations for
sensor-based HAR.

4.1. Datasets

Both pre-training and classification are performed using data from a single accelerom-
eter, as we can reasonably expect a single wearable to be feasible in most scenarios. Pre-
training is performed using the Capture-24 dataset, which contains a single wrist-worn
accelerometer. We chose Capture-24 primarily due to its large scale and recording setup: it
contains around 2500 h of data from 151 participants in daily living conditions (i.e., in the
wild), thereby not limiting the types of movements and activities recorded. In addition,
prior works such as [16,30] have utilized it as the base for self-supervised pre-training,
allowing us to compare our results against those works. Based on the assessment frame-
work in [16], the performance of the discrete representations is evaluated on target datasets
collected at the wrist, waist, and leg, albeit we utilize two datasets per location (unlike [16],
which uses three). The source (Capture-24) and target datasets are described in detail in
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the Appendix (Appendix A.1) and summarized in Table 1. As in [16], we downsample all
datasets to 50 Hz.

Table 1. Summary of the datasets used in our study. Capture-24 is the source dataset (wrist) whereas
the others comprise the target, spread across three sensor locations—the wrist, waist, and leg/ankle
(adopted/adapted with permission from [16]).

Dataset Location # Users # Act. Activities

Capture-24 [31–33] Wrist 151 N/A Free living

HHAR [81] Wrist 9 6 Biking, sitting, going up and down the stairs, standing, and walking

Myogym [1] Wrist 10 31

Seated cable rows, one-arm dumbbell row, wide-grip pulldown behind the
neck, bent over barbell row, reverse grip bent-over row, wide-grip front

pulldown, bench press, incline dumbbell flyes, incline dumbbell press and
flyes, pushups, leverage chest press, close-grip barbell bench press, bar
skullcrusher, triceps pushdown, bench dip, overhead triceps extension,

tricep dumbbell kickback, spider curl, dumbbell alternate bicep curl, incline
hammer curl, concentration curl, cable curl, hammer curl, upright barbell

row, side lateral raise, front dumbbell raise, seated dumbbell shoulder press,
car drivers, lying rear delt raise, null

Mobiact [82] Waist/Trousers 61 11 Standing, walking, jogging, jumping, stairs up, stairs down, stand to sit,
sitting on a chair, sit to stand, car step-in, and car step-out

Motionsense [83] Waist/Trousers 24 6 Walking, jogging, going up and down the stairs, sitting and standing

MHEALTH [84,85] Leg/Ankle 10 13
Standing, sitting, lying down, walking, climbing up the stairs, waist bend

forward, frontal elevation of arms, knees bending, cycling, jogging, running,
jump front and back

PAMAP2 [86] Leg/Ankle 9 12 Lying, sitting, standing, walking, running, cycling, nordic walking,
ascending and descending stairs, vacuum cleaning, ironing, rope jumping

4.2. Data Pre-Processing

For pre-training, the sampling rate of Capture-24 is reduced to 50 Hz by sub-sampling
so as to reduce the computational load and training times (identical to [16]). We also
downsample all target datasets to 50 Hz via sub-sampling (if they were higher originally),
as it was shown in [16] that matching the sampling rates between pre-training and fine-
tuning is important for optimal performance. Following [16], the window size is set to
2 s with an overlap of 0 (for Capture-24) and 50% (for target datasets), in order to ensure
that both long- and short-term activities are sufficiently captured in any randomly picked
window. For Capture-24, the dataset is split randomly by participants at a 90:10 ratio
for training and validation. The train split was normalized to have zero mean and unit
variance, and the resulting means and variances were applied to the validation split as well.
Further, we only pre-train on randomly sampled 10% of the windows from the train split,
as it was shown to have comparable performance to using the entire split in [16], thereby
reducing the time taken for pre-training.

For evaluation, the target datasets are separated into five folds: the first fold is split
at an 80:20 ratio by the participant into the train-val and test sets. The train-val set is
once again partitioned randomly by participant IDs at an 80:20 ratio into the training and
validation splits. For the remaining folds, 20% of the participants are chosen randomly to
be the test set so that no participant appears in more than one test set across five folds. The
train and validation splits are constructed from the remaining participants (i.e., participants
that are not a part of the test set), once again at an 80:20 ratio. The means and variances from
the Capture-24 train split are also applied to all sets from the target datasets for improved
performance (as per [16]).

4.3. Implementation Details

All models were implemented using the Pytorch framework [87]. For the self-supervised
baselines, including multi-task self-supervision, Autoencoder, SimCLR, CPC, and Enhanced
CPC, we report the performance detailed in the original Enhanced CPC paper [30].

For the discrete version of CPC, we set the learning rate and L2 regularization during
pre-training to 10−4 and tune over the number of convolutional aggregator layers ∈ {2, 4, 6}.
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The loss weighting parameter, γ, is set to 0.25 as recommended in [27,29]. In addition, we
find that a prediction horizon of k = 10 with number of negatives = 10, is sufficient for
effective training. For most experiments (save Section 5.4), each symbol spans approx. two
timesteps, as we found it to have a good balance between the resulting pre-training times
and the temporal resolution.

The pre-training is performed for a maximum of 50 epochs, but early stopping with a
patience of 5 epochs is also employed to terminate training if the validation loss does not
improve. A cosine learning rate schedule is employed—first, the learning rate is warmed
up linearly to 10−4 (as mentioned above) for a duration of 8% of the total number of
updates. Subsequently, the learning rate is decayed to zero using a cosine function. The
early stopping only begins after 20 epochs in order to ensure the completion of warmup
and sufficient training before the termination of pre-training. The Adam [88] optimizer is
utilized with a batch size of 128.

The evaluation with the RNN classifier is also performed for 50 epochs, where the
learning rate and L2 regularization are tuned over {1 × 10−3, 1 × 10−4, 5 × 10−4} and
{0, 1 × 10−4, 1 × 10−5}, respectively. Once again, the Adam optimizer is utilized, with
a batch size of 256. The learning rate is decayed by a factor of 0.8 every 10 epochs. We
average the validation F1-scores across the folds in order to identify the best performing
hyperparameter combination. The corresponding average test set F1-score across the folds
(for the best hyperparameters) is reported in Table 2, where five randomized runs are also
performed. The best performing hyperparameters for GRU-based evaluation are listed in
Table A1 in Appendix A for reference.

Table 2. Activity recognition performance: we report the mean and standard deviation of the five fold
test F1-score across five randomized runs. We observe that discrete representations show comparable
if not better performance to self-supervision on three of the benchmark datasets, indicating the
capabilities of the learned symbols. The best performing technique overall for each dataset is denoted
in green , whereas the best unsupervised method is in bold. Therefore, methods with green are
the best method overall and the best unsupervised method as well. The performance for the methods
with ∗ was obtained from [30].

Wrist Waist Leg
Method

HHAR Myogym Mobiact Motionsense MHEALTH PAMAP2
Supervised baselines

Conv. classifier ∗ 55.63 ± 2.05 38.21 ± 0.62 78.99 ± 0.38 89.01 ± 0.89 48.71 ± 2.11 59.43 ± 1.56
DeepConvLSTM ∗ 52.37 ± 2.69 39.36 ± 1.56 82.36 ± 0.42 84.44 ± 0.44 44.43 ± 0.95 48.53 ± 0.98

GRU classifier ∗ 45.23 ± 1.52 36.38 ± 0.60 75.74 ± 0.60 87.42 ± 0.52 44.78 ± 0.47 54.35 ± 1.64
Self-supervision + MLP classifier

Multi-task self. sup ∗ 57.55 ± 0.75 42.73 ± 0.49 72.17 ± 0.38 86.15 ± 0.42 50.39 ± 0.72 60.25 ± 0.72
Autoencoder ∗ 53.64 ± 1.04 46.91 ± 1.07 72.19 ± 0.35 83.10 ± 0.60 40.33 ± 0.37 59.69 ± 0.72

SimCLR ∗ 56.34 ± 1.28 47.82 ± 1.03 75.78 ± 0.37 87.93 ± 0.61 42.11 ± 0.28 58.38 ± 0.44
CPC ∗ 55.59 ± 1.40 41.03 ± 0.52 73.44 ± 0.36 84.08 ± 0.59 41.03 ± 0.52 55.22 ± 0.92

Enhanced CPC ∗ 59.25 ± 1.31 40.87 ± 0.50 78.07 ± 0.27 89.35 ± 0.32 53.79 ± 0.83 58.19 ± 1.22
Discrete representations + RNN classifier

VQ CPC + LSTM class. 60.76 ± 1.09 29.62 ± 0.52 76.34 ± 0.30 89.06 ± 0.24 48.86 ± 0.34 55.28 ± 0.34
VQ CPC + GRU class. 60.26 ± 0.83 31.65 ± 0.29 77.78 ± 0.17 89.23 ± 0.23 49.01 ± 0.30 56.92 ± 0.26

5. Results

Through the work presented in this paper, we aim to demonstrate the potential of
learning discrete representations of human movements. For this, we first evaluate their
effectiveness for HAR via a simple recurrent classifier. The performance is contrasted
against established supervised baselines (such as DeepConvLSTM), as well as the state-of-
the-art for representation learning, which is self-supervision. Subsequently, we contrast the
impact of learning the discrete representations rather than computing via prior methods
involving SAX. This is followed by an exploration into the discrete representation learning
framework, where we study the impact of controlling the resulting alphabet size (i.e.,
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the fidelity of the representations) and the effect of the duration of sensor data on each
symbol’s representation. Finally, we apply self-supervised pre-training techniques designed
for discrete sequences in order to study whether such tasks can further help improve
recognition performance. Overall, these experiments are designed to not only study
whether discrete representations can be useful but also to derive a deeper understanding of
their working.

5.1. Activity Recognition with Discrete Representations

First, we evaluate the performance of the discrete representations for recognizing
activities from windows of discrete sequential data. After the pre-training is complete, we
perform inference to obtain the discrete representations and utilize the setup detailed in
Section 3.2 for classification. The performance is compared against diverse self-supervised
learning techniques, which represent the state of the art of representation learning in HAR
(as shown in [16]), including: (i) multi-task self-supervision, which utilizes transformation
discrimination; (ii) Autoencoder, reconstructing the original input through an additional
decoder network; (iii) SimCLR, contrasting two augmented versions of the same input
window against negative pairs from the batch; (iv) CPC, which uses multiple future timestep
predicton for pre-training; and (v) Enhanced CPC, as before but with improvements to the
CPC framework on the encoder, aggregator, and future prediction tasks [30]. Here, the
encoder weights are frozen and only the MLP classifier is updated with annotations.

DeepConvLSTM, a Conv. classifier with the same architecture as the encoder for Multi-
task, Autoencoder, and SimCLR, along with a GRU classifier function as the end-to-end
training baselines. We perform five fold cross validation and report the performance for
five randomized runs in Table 2. The comparison is performed on six datasets across sensor
locations (Capture-24 is collected at the wrist, whereas the target datasets are spread across
the wrist, waist, and leg) and activities (which include locomotion, daily living, health
exercises, and fine-grained gym exercises).

For the waist-based Mobiact, which covers locomotion-style activities along with
transitionary classes such as stepping in and out of a car, the discrete representation learning
performs comparably or better than all methods, obtaining a mean of 77.8%. However, for
Motionsense, the performance is similar to the best performing model overall, which is
Enhanced CPC, once again outperforming other self-supervised and supervised baselines.
Considering the leg-based PAMAP2 dataset, VQ-CPC obtains lower performance and is
similar to the GRU classifier. For MHEALTH as well, the performance drops significantly
compared to Enhanced CPC, showing a reduction of around 4.8%, yet outperforming the
Autoencoder, SimCLR, Multi-task, and CPC.

Finally, we consider wrist-based datasets such as HHAR and Myogym. HHAR com-
prises locomotion-style activities and the discrete representations improve the performance
over Enhanced CPC by around 1.5%, thereby constituting the best option for wrist-based
recognition of locomotion activities. Interestingly, the discretization results in poor features
for classifying fine-grained gym activities, with the performance dropping significantly
compared to other self-supervised methods. Enhanced CPC also sees substantially lower
performance than SimCLR, likely due to the increased striding in the encoder, which results
in a latent representation for approx. every second timestep, thereby negatively impacting
the recognition of activities such as fine-grained curls and pulls. In addition, the discretiza-
tion results in a smaller, finite codebook, which is a loss in temporal resolution compared
to continuous-valued high-dimensional features. This is detrimental to Myogym, resulting
in poor performance.

Therefore, the discrete representations can result in effective recognition of locomotion-
style and daily living activities, and overall perform the best (or similar to the best) on
three benchmark datasets, at the wrist and waist. The loss in resolution due to mapping
the continuous-valued sensor data to a finite collection of codebook vectors (and their
indices) does not have a significant negative impact on locomotion-style activities but is
detrimental for recognizing fine-grained movements (as present in Myogym for example).
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In addition, the effective performance across sensor locations indicates the capability of the
discrete representation learning process and shows its promise for sensor-based HAR. This
result presents practitioners with a new option for activity recognition, with comparable
performance and potentially lowered data upload costs, as the discretized representations
result in more compressed data than continuous-valued sensor readings.

5.2. Comparison to Established Discretization Methods

In this experiment, we compare the performance of SAX, which is an established
method for discretizing uni-variate time-series data, and SAX-REPEAT [37], which utilizes
SAX for discretizing multi-channel time-series data. For appropriate comparison, SAX also
results in one symbol for every second timestep of sensor data, with an alphabet size of 512.
SAX-REPEAT separately applies SAX to each channel of accelerometer data, resulting in
tuples of indices for every second timestep. As utilizing the tuples as-is results in a possible
dictionary size of 5123, SAX-REPEAT performs K-Means clustering (with k = 512) on the
tuples in order to maintain an alphabet size of 512, where the cluster indices function as
the discrete representation. The same classifier setup (Section 3.2) is utilized for activity
recognition (including the parameter tuning for classification) and five random runs of the
five fold validation F1-score is detailed in Table 3. The comparison is drawn against the
learned discrete representation method, which is VQ-CPC.

Table 3. Comparing the performance of the proposed discrete representation learning technique to
SAX and SAX-REPEAT (multi-variate version of SAX): SAX and SAX-REPEAT perform poorly relative
to VQ CPC, demonstrating that learning the discrete representations results in better recognition. The
best performing models are shown in green .

Wrist Waist Leg
Method

HHAR Myogym Mobiact Motionsense MHEALTH PAMAP2

SAX + LSTM class. 43.78 ± 0.96 14.22 ± 0.40 66.45 ± 0.18 70.14 ± 0.36 41.04 ± 0.58 47.61 ± 1.04
SAX-REPEAT + LSTM class. 39.17 ± 0.69 28.65 ± 0.69 71.73 ± 0.74 71.31 ± 0.74 38.89 ± 0.48 43.30 ± 1.83

VQ CPC + LSTM class. 60.76 ± 1.09 29.62 ± 0.52 76.34 ± 0.30 89.06 ± 0.24 48.86 ± 0.34 55.28 ± 0.34
VQ CPC + GRU class. 60.26 ± 0.83 31.65 ± 0.29 77.78 ± 0.17 89.23 ± 0.23 49.01 ± 0.30 56.92 ± 0.26

For all datasets, the SAX baseline performs poorly compared to the learned discrete
representations, showing a reduction of over 10% for HHAR, Myogym, and Motionsense,
and a smaller reduction for Mobiact, MHEALTH, and PAMAP2. This can be expected as
SAX utilizes the magnitude of the accelerometer data as the input, thereby reducing three
channels to one and losing information about the direction of movement. Considering SAX-
REPEAT next, we see that it shows worsened performance to SAX on HHAR, MHEALTH,
and PAMAP2. For Mobiact, the performance is only 6% lower than VQ-CPC + GRU
classifier, whereas for the other datasets, the difference is greater. Only on Myogym, the
performance is better than VQ-CPC, albeit substantially lower than the state-of-the-art
self-supervised as well as end-to-end training methods. The lower performance for SAX
and SAX-REPEAT for Myogym also indicates that discretization is not a good option for
fine-grained activities. Our experiments clearly show that SAX and SAX-REPEAT are
worse at recognizing activities compared to VQ-CPC. Further, the reduction in performance
of SAX-REPEAT relative to SAX on HHAR, MHEALTH, and PAMAP2, indicates that
modifying SAX to apply to multi-variate data is challenging. Overall, Table 3 shows
that the traditional methods are not effective for discretizing accelerometer data, and that
learning a codebook in an unsupervised, data-driven way results in a better mapping of
sensor data to discrete representations.

5.3. Effect of the Learned Alphabet Size

One of the advantages of discrete representation learning via vector quantization is
the control over the size of the learned dictionary. It can be set depending on the required
fidelity of the learned representations and the capacity of the computation power available
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for classification. For applications where the separation of activities requires a small
dictionary (e.g., 8 or 16 symbols), we can accordingly set the dictionary size and thereby
save computation power during classification. For our base setup (Table 2), we utilize
independent quantization of partitions of the vectors, resulting in a possible 1002 dictionary
size. Here, we explicitly control the dictionary size by setting the number of groups to 1
and varying the number of variables (i.e., the number of codebook vectors) between (32, 64,
128, 256, 512). We also note that the final dictionary size can be lower than the codebook
size and depends on the underlying movements and sensor data. We perform activity
recognition on the resulting discrete representations of windows of sensor data using the
best performing models from Table 2, albeit with increasing alphabet sizes. The results
from this experiment are tabulated in Table 4. A similar analysis was also performed in
VQ-APC [51].

Table 4. Studying the impact of the maximum dictionary size on activity recognition: we explicitly
limit to {32, 64, 128, 256, 512} codebook vectors and study how performance is affected by the applied
constraint. For HHAR, we observe a substantial increase of over 7% by limiting the size to 64. For
MHEALTH and PAMAP2, the improvements are more modest. This indicates that a more deliberate
choice of dictionary size can result in further performance increases. The mean dictionary size across
the five folds for the base setup of the VQ CPC + GRU classifier is shown in brackets in the last row.
The best performing models are shown in green .

Wrist Waist Leg
Max. Dict. Size

HHAR Myogym Mobiact Motionsense MHEALTH PAMAP2

32 11.58 ± 0.12 2.80 ± 0.00 29.89 ± 0.24 37.46 ± 0.26 14.38 ± 0.28 21.26 ± 0.37
64 67.62 ± 0.21 20.78 ± 0.28 74.19 ± 0.19 89.70 ± 0.18 48.77 ± 0.36 58.06 ± 0.51
128 57.71 ± 0.87 27.81 ± 0.28 75.73 ± 0.41 79.49 ± 0.24 49.62 ± 0.51 56.56 ± 0.66
256 60.21 ± 0.66 18.13 ± 0.33 75.53 ± 0.24 90.28 ± 0.28 47.71 ± 0.49 57.12 ± 0.34
512 60.41 ± 0.55 12.92 ± 0.44 64.25 ± 0.51 71.73 ± 0.23 46.81 ± 0.80 53.40 ± 0.60

VQ CPC +
GRU classifier

60.26 ± 0.83
(127.8)

31.65 ± 0.29
(155)

77.78 ± 0.17
(148)

89.23 ± 0.23
(140)

49.01 ± 0.30
(130.2)

56.92 ± 0.26
(140.4)

First, we notice that having a max. alphabet size of 32 results in poor performance.
Such a small dictionary size provides limited descriptive power for the representations and
therefore leads to significant drops in performance relative to the base setup of utilizing
multiple groups during quantization (see Section 3.1.2). Along the same lines, having too
large a dictionary size is also slightly detrimental (max dict size = 512), as it can lead to
long-tailed distributions of the symbolic representations and the network starting to pay
attention to noises instead.

We obtain the highest performance when the max dictionary sizes are 64, 128, or 256.
For HHAR, the constraint on the dictionary size results in an increase of over 7% relative
to the base setup (VQ CPC + GRU classifier). For Myogym and Mobiact, however, not
constraining the resulting dictionary sizes is the best option, with clear increases over the
constrained models. For Motionsense and PAMAP2, controlling the learned alphabet size
results in modest performance improvements of 1%, whereas for MHEALTH, it is around
0.6%. Clearly, with reducing codebook sizes, the model is forced to choose what information
to discard and what to encode [51]. This process can result in higher performance as the
network can more efficiently learn to ignore irrelevant information (such as noise) and
picks up more discriminatory information.

Next, we consider the mean dictionary size across all folds obtained by utilizing
groups = 2 (as in Table 2; see Section 3.1.2 for reference). For all target datasets, the size
<160 symbols, emphasizing that effective recognition can be obtained using just around
130–160 symbols. This is encouraging, as downstream tasks such as gesture or activity
spotting, can be performed more easily with a smaller dictionary size. The importance of
creating groups during discretization is also visible, as it results in the highest performance
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for two target datasets, along with comparable performance for three datasets, without
having to further tune the dictionary size as a hyperparameter.

5.4. Impact of the Encoder’s Output Frequency

In Section 3, we detailed the architecture for learning discrete representations of human
movements. The convolutional encoder results in approximately one latent representation
per two timesteps of sensor data. With appropriate architectural modifications, we can
increase or reduce the output frequency of the encoder. Intuitively, a lower output frequency
can be problematic as too much motion (and variations of motion) can be mapped to each
symbol. When this occurs, nuances in movements are not captured well by the symbolic
representations. In this experiment, we vary the output frequency and study the impact
on performance. The convolutional encoder is modified accordingly: (i) for an output
frequency of 50 Hz (i.e., no downsampling relative to the input), we change the stride of
the first block to 1 and for the second block, set the kernel size and stride = 1; and (ii) for an
output frequency of 11.5 Hz (i.e., further downsampling by two relative to the base setup),
the second block also has a kernel size of 4 with stride = 2. We perform activity recognition
on the six target datasets, and report the five fold cross validation performance across five
randomized classification runs in Table 5.

Table 5. Investigating the impact of the encoder’s output frequency: by adjusting the encoder
architecture, we study whether an output frequency of 50 Hz (same as input), or 24.5 Hz (base setup),
or 11.5 Hz (approx. halved relative to the base setup) is more suited for the representations. We
observe that the base setup of 24.5 Hz results in better performance while also reducing computational
costs. The best performing models are shown in green .

Wrist Waist Leg
Encoder Output Freq.

HHAR Myogym Mobiact Motionsense MHEALTH PAMAP2

50 Hz 58.02 ± 0.46 18.30 ± 0.45 77.65 ± 0.43 85.25 ± 0.39 48.43 ± 0.66 51.36 ± 0.91
11.5 Hz 48.95 ± 1.26 16.50 ± 0.31 53.51 ± 0.26 63.68 ± 0.37 32.78 ± 0.66 41.62 ± 0.61
24.5 Hz 60.26 ± 0.83 31.65 ± 0.29 77.78 ± 0.17 89.23 ± 0.23 49.01 ± 0.30 56.92 ± 0.26

As expected, an encoder output frequency of 11.5 Hz (i.e., # timesteps/symbol ≈ 4)
results in substantial reductions in performance relative to the base setup (where the output
frequency is 24.5 Hz). For HHAR, the drop in performance is around 10%. However,
for Myogym, MHEALTH, and PAMAP2, it is over 15%. The waist-based datasets see the
highest impact on performance, experiencing a reduction of over 20% with the longer
duration mapping. We can reasonably expect that a lower encoder output frequency, will
result in further reduction in performance.

We also note that maintaining the same output frequency as the input also causes a
drop, albeit smaller, in the test set performance. While this configuration can be utilized for
obtaining discrete representations, the training times are considerably higher, while also
not resulting in performance improvements. Therefore, an output frequency of 24.5 Hz
(relative to an input of 50 Hz) is better, allowing for quicker training while also covering
more of the underlying motion.

5.5. NLP-Based Pre-Training with RoBERTa

One of the advantages of converting the sensor data into discrete sequences is that
it allows us to apply powerful NLP-based pre-training techniques such as BERT [35],
RoBERTa [34], GPT [89], etc., as learned embeddings for the RNN classifier. In addi-
tion, the release of new techniques for text-based self-supervision can be accompanied by
corresponding updates to the classification of the discrete representations learned from
movement data. Therefore, in this experiment, we investigate whether Robustly Optimized
BERT Pretraining Approach (RoBERTa) [34] based pre-training on the symbolic representa-
tions is useful for improving activity recognition performance. While RoBERTa can increase
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the computational footprint of the recognition system, it can be potentially replaced with re-
cent advancements in distilling and pruning BERT models such as SNIP [90], ALBERT [91],
and DistillBERT [92] while maintaining similar performance.

First, we extract the symbolic representations on the large-scale Capture-24 dataset
(utilizing 100% of the train split), and use it to pre-train two RoBERTa models, called
‘small’ and ‘medium’. The ‘small’ model contains an embedding size of 128 units, a
feedforward size of 512 units, and two Transformer [93] encoder layers with eight heads
each. On the other hand, the ‘medium’ sized model comprises embeddings of size 256,
with a feedforward dimension of 1024, and four Transformer encoder layers with eight
heads each. The aim of training models with two different sizes is to investigate whether
increased depth results in corresponding performance improvements or not. Following
the protocol from Table 2, the performance across five random runs is reported for five
fold cross validation is reported in Table 6. As shown in Figure A1 (in Appendix A), the
randomly initialized learnable embedding layer is replaced with the learned RoBERTa
models, which are frozen. Only the GRU classifier is updated with label information during
the classifier training.

Table 6. Evaluating the impact of utilizing pre-trained RoBERTa embeddings (obtained from the
discretized Capture-24 dataset) for recognizing activities: we observe that the addition of RoBERTa
embeddings results in improvements for all target datasets. Further, we achieve the state-of-the-art
for self-supervision for three datasets, which cover locomotion and daily living activities. The best
performing technique overall for each dataset is denoted in green , whereas the best unsupervised

method is in bold. Therefore, methods with green are the best method overall and the best
unsupervised method as well. The performance for the methods with ∗ was obtained from [30].

Wrist Waist Leg
Method

HHAR Myogym Mobiact Motionsense MHEALTH PAMAP2

Supervised baselines

Conv. classifier ∗ 55.63 ± 2.05 38.21 ± 0.62 78.99 ± 0.38 89.01 ± 0.89 48.71 ± 2.11 59.43 ± 1.56
DeepConvLSTM ∗ 52.37 ± 2.69 39.36 ± 1.56 82.36 ± 0.42 84.44 ± 0.44 44.43 ± 0.95 48.53 ± 0.98

GRU classifier ∗ 45.23 ± 1.52 36.38 ± 0.60 75.74 ± 0.60 87.42 ± 0.52 44.78 ± 0.47 54.35 ± 1.64
Self-supervision + MLP classifier

M-task self. sup ∗ 57.55 ± 0.75 42.73 ± 0.49 72.17 ± 0.38 86.15 ± 0.42 50.39 ± 0.72 60.25 ± 0.72
SimCLR ∗ 56.34 ± 1.28 47.82 ± 1.03 75.78 ± 0.37 87.93 ± 0.61 42.11 ± 0.28 58.38 ± 0.44

Enhanced CPC ∗ 59.25 ± 1.31 40.87 ± 0.50 78.07 ± 0.27 89.35 ± 0.32 53.79 ± 0.83 58.19 ± 1.22
Discrete representations + GRU classifier

VQ-CPC 60.26 ± 0.83 31.65 ± 0.29 77.78 ± 0.17 89.23 ± 0.23 49.01 ± 0.30 56.92 ± 0.26
VQ-CPC + RoBERTa sml. 62.30 ± 0.68 34.41 ± 0.45 79.42 ± 0.38 91.76 ± 0.22 51.77 ± 0.28 59.34 ± 0.48
VQ-CPC + RoBERTa med. 63.31 ± 0.38 35.16 ± 0.29 78.99 ± 0.33 91.45 ± 0.26 51.59 ± 0.42 59.53 ± 0.38

First, we observe that utilizing the learned RoBERTa embeddings (VQ CPC + RoBERTa
small/medium in Table 6) instead of the random learnable embeddings (VQ CPC in Table 6)
results in performance improvements for all target datasets. This indicates the positive
impact of pre-training with RoBERTa. For the small version, the HHAR and Myogym see
increases of 2% and 2.8%, respectively. A similar trend is observed for the waist-based
Mobiact and Motionsense as well, improving by 1.6% and 2.5%. Finally, the leg-based
datasets also see improvements of around 2.5% each. Interestingly, the medium-sized
model of RoBERTa shows a similar performance to the small version, except for the wrist-
based HHAR and Myogym, where the increase over random embeddings is 3% and 3.5%,
respectively. The similar performance demonstrated by the medium version indicates that
the increase in model size did not result in corresponding performance improvements,
likely because Capture-24 is not large enough to leverage the bigger architecture. Potentially,
an even larger dataset (e.g., Biobank [94]) can be utilized for the medium version (or even
larger variants).

The advantage of performing an additional round of pre-training via RoBERTa is
clearly observed in Table 6, as VQ CPC + RoBERTa outperforms the state-of-the-art self-
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supervision on three datasets (HHAR, Mobiact, and Motionsense) by clear margins. For
the leg-based datasets, the performance with the addition of RoBERTa is closer to the most
effective methods through improved learning of embeddings. This result is promising for
wearables applications, as it proves that the rapid advancements from NLP can be applied
for improved activity recognition as well.

6. Discussion

In this paper, we propose a return to discrete representations as descriptors of human
movements for wearable-based applications. Going beyond prior works such as SAX, we
instead learn the mapping between short spans of sensor data and symbolic representations.
In what follows, we will first visualize the distributions of the discrete representations for
activities across the target datasets and examine the similarities and differences. The latter
half of this section contains an introspection of the method itself, along with the lessons
learned during our explorations.

6.1. Visualizing the Distributions of the Discrete Representations

We demonstrated that training GRU classifiers with randomly initialized embeddings
(Table 2) results in effective activity recognition on five of six benchmark datasets. In addi-
tion, deriving pre-training embeddings from the discrete representations via RoBERTa fur-
ther pushes the performance, exceeding state-of-the-art self-supervision on three datasets.
Given their recognition capabilities, we plot the distributions of the discrete representations
for each activity, in order to visualize how the underlying movements may be different. This
serves as a first check to visually examine whether similar activities such as walking and
walking up/downstairs—which may have similar underlying movements—are actually
represented in similar discrete representations.

In Figures 5 and A2, we present the histograms of the discrete representations per
activity. The y-axis comprises the fraction of the total sum of representations held by
each discrete symbol. First, we note that the discrete representations exhibit long-tailed
distributions, with a significant portion of representations being used very sparsely (more
clearly visible in Figure A2). The impact of such a distribution is challenging to predict, on
one hand, the rarely occuring symbols can increase the complexity of the classifiers (and
embeddings) due to their numerosity, while on the other, it is likely they capture more
niche movements as they may be performed by participants. Such niche movements can
potentially help with the classification of less frequent activities. In addition, we also note
that the distributions for sitting and standing contain limited variability, as the underlying
movements themselves exhibit less motion. This somewhat verifies that the learned discrete
representations correspond to the movements themselves, given that a lack of movement is
captured in the distribution of representations per activity. Interestingly, the histograms
for going up and down the stairs look very similar, while walking also retains similarities
to them. Running looks slightly different, with more spreading out across the symbolic
representations, therefore indicating that higher variability of underlying movements
involving running, which makes sense intuitively. Therefore, the distributions of the
discrete representations provide practitioners with an additional tool for understanding
human activities as well as the underlying movements. This is a point in favor of discrete
representations, as the analysis is possible in conjunction with comparable if not better
performance for activity recognition.

6.2. Analyzing the VQ-CPC Discretization Framework

Here, we examine specific components of the framework, in order to understand
their impact on both discrete representation learning, as well as on downstream activity
recognition. To this end, we consider the following components: (i) the Encoder network,
where the architecture determines the duration of time covered by each symbol; and
(ii) the self-supervised pretext task, which acts as the base for the discrete representation
learning. In what follows, we study the activity recognition performance for the same



Sensors 2024, 24, 1238 18 of 28

target datasets, albeit replacing the aforementioned components of the framework with
suitable alternatives, and examine the performance.

6.2.1. Impact of the Encoder Architecture

Our Encoder architecture is based on the Enhanced CPC framework [30]. As detailed
in Section 3.1, it contains four convolutional blocks, with a kernel size of (4,1,1,1), and stride
of (2,1,1,1), respectively. Therefore, the resulting z-vectors are obtained approximately once
every second timestep (we obtain 49 z-vectors from an input window of 100 timesteps
due to the striding). From Table 5, we see that decreasing the encoder output frequency to
11.5 Hz is detrimental to performance. We now conduct a deeper analysis of the design of
suitable encoders by considering the following configurations: (i) increasing the kernel size
of the first layer to (8, 16), while keeping the architecture otherwise identical to the base
setup; and (ii) utilizing an encoder identical to the convolutional encoders of multi-task
self-supervision [15] and SimCLR [70]. The learning rate and L2 regularization are identical
to the base setup, and we also tune the number of aggregator layers across (2,4,6) layers, as
described in Section 4.
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Figure 5. Plotting the histograms per class of the derived discrete representations for the train set from
the first fold of Motionsense: The y-axis corresponds to the fraction of the number of occurrences for
the symbols computed against the available data. The x-axis comprises the discrete representations,
which are numbered. We observe that standing and sitting are covered by only a few symbols, which
can be reasoned by the lack of movements in these classes. Walking up and down the stairs is also
similar, yet hard to distinguish via visual examination from both walking and running. For clarity,
we truncate the y-axis to 0.6 and x-axis to 50 symbols in order to show the plot in more detail. The
full figure is available in the Appendix (refer to Figure A2).

In the base setup, movement across four timesteps (0.08 s at 50 Hz) contributes to
each symbol. This is increased to (8, 16) timesteps depending on the filter size of the first
layer. From Table 7, we see that this is detrimental to HAR. Clearly, it becomes difficult
to learn the mapping between eight timesteps (and greater, i.e., ≥0.16 s) to symbols, as
the underlying movements cover much longer durations and thus become too coarse for
symbolic representations. We extend this analysis by applying the encoder from multi-task
self-supervision. Ref. [15] instead of the base encoder, for pre-training. As the encoder
contains three blocks with filter sizes of (24, 16, 8), a total of 46 timesteps (i.e., 0.92 s of
movements) contribute to each symbol. We observe a significant drop in performance as
a result, with around 15% reduction for HHAR and approx. 30% decrease for Mobiact.
While it is preferable to learn symbols that represent short spans of time, clearly, accurately
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mapping longer durations to symbols is a difficult proposition. From our exploration, a
filter size of 4 (for the first layer) seems ideal, covering sufficient motion as well as resulting
in accurate HAR. This also motivates the architecture of our encoder, where all layers apart
from the first one have a filter size of 1. Having multiple layers (after the first) with filter
size >1 would result in z-vectors corresponding to longer durations, thereby resulting in
reduced performance.

Table 7. Studying the impact of the encoder network architecture on recognition performance: we ex-
amine whether a smaller receptive field in the encoder is more preferable for discrete representations.
We note that larger receptive fields (e.g., 8 or 16) result in performance reduction compared to the
base setup (filt. size = 4). The best performing models are shown in green .

Wrist Waist Leg
Encoder Arch.

HHAR Myogym Mobiact Motionsense MHEALTH PAMAP2
Base setup (filt. size = 4) 60.26 ± 0.83 31.65 ± 0.29 77.78 ± 0.17 89.23 ± 0.23 49.01 ± 0.30 56.92 ± 0.26
Base setup + filt. size = 8 55.15 ± 0.60 16.80 ± 0.44 70.15 ± 0.39 77.95 ± 0.28 47.73 ± 0.26 43.68 ± 0.52
Base setup + filt. size = 16 49.07 ± 0.45 16.59 ± 0.42 71.22 ± 0.12 81.38 ± 0.56 46.18 ± 0.37 44.29 ± 0.50

Multi-task enc. [15] 45.32 ± 1.43 22.31 ± 0.11 48.92 ± 0.23 76.37 ± 0.41 39.60 ± 0.76 47.93 ± 0.76

6.2.2. Effect of the Base Self-Supervised Method on Recognition Performance

Next, we evaluate the applicability and utility of various self-supervised methods
to serve as the basis for the discrete representation learning setup. Such analysis enables
us to determine which self-supervised method can be utilized, allowing us to provide
suggestions for specific scenarios. For example, as discussed in [16], simpler methods such
as Autoencoders may be preferable—even though the performance is slightly lower—as
they are easier and quicker to train. Furthermore, K-means-based vector quantization (VQ)
was also originally introduced in an Autoencoder setup [29]. Therefore, we not only study
Autoencoders, but also other baselines such as multi-task self-supervision and SimCLR,
for their effectiveness toward functioning as the base for deriving discrete representations.
For this analysis we also perform brief hyperparameter tuning for the baseline methods,
using the best parameters detailed in [16] and over the number of convolutional aggregator
layers ∈ {2, 4, 6} (similar to VQ-CPC). The results from this analysis are given in Table 8.

Table 8. Evaluating the impact of the base self-supervised method on activity recognition: we
observe that Enhanced CPC (i.e., the base self-supervision for VQ-CPC) is clearly the most suitable
self-supervised method, while simpler techniques such as Autoencoders can also be utilized, albeit
with performance reductions. Further, we also investigate whether the VQ-CPC encoder can result in
better performance for other methods, and find that to be true for both multi-task self-supervision
and SimCLR. The best performing models are shown in green .

Base Self-Supervision
Wrist Waist Leg

HHAR Myogym Mobiact Motionsense MHEALTH PAMAP2
VQ-CPC 60.26 ± 0.83 31.65 ± 0.29 77.78 ± 0.17 89.23 ± 0.23 49.01 ± 0.30 56.92 ± 0.26

VQ-Autoencoder 48.12 ± 0.72 30.61 ± 0.97 73.03 ± 0.59 79.59 ± 0.68 45.61 ± 0.81 48.99 ± 1.37
VQ-Autoencoder + VQ-CPC encoder 50.60 ± 1.05 33.15 ± 0.44 73.26 ± 0.47 75.89 ± 0.62 37.75 ± 0.59 51.23 ± 0.66

VQ-multi-task self-supervision 45.32 ± 1.43 22.31 ± 0.11 48.92 ± 0.23 76.37 ± 0.41 39.60 ± 0.76 47.93 ± 0.76
VQ-multi-task self-supervision + VQ-CPC

encoder 58.29 ± 0.69 24.53 ± 0.62 72.87 ± 0.14 80.49 ± 0.60 44.85 ± 0.63 56.28 ± 0.40

VQ-SimCLR 25.34 ± 0.40 11.17 ± 0.17 14.24 ± 0.38 60.67 ± 0.12 9.04 ± 0.09 19.62 ± 0.66
VQ-SimCLR + VQ-CPC encoder 58.49 ± 0.29 2.85 ± 0.01 59.62 ± 0.35 59.54 ± 0.15 41.62 ± 0.32 55.80 ± 0.52

First, we compare the performance of VQ-CPC against adding the VQ module to the
Autoencoder setup (“VQ-Autoencoder” in Table 8). For target datasets such as HHAR,
Motionsense, and PAMAP2, the drop in performance while utilizing the Convolutional
Autoencoder as the base is around 10%. In the remaining target scenarios, the reduction
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is lower at around 4%, save for Myogym where the performance is comparable. The
established multi-task self-sup. Ref. [15] framework is ill-suited for discrete representation
learning, with significant reductions in performance throughout, consistently performing
worse by approx. 10% for most datasets and peaking at around 29% for Mobiact. A similar
analysis of SimCLR shows an even more substantial reduction in performance, dropping
by over 35% consistently. As analyzed in Section 6.2.1, the low performance of SimCLR
and multi-task self-sup. is likely due to the encoder architecture itself, which has a large
receptive field (see below).

In order to study whether smaller filters are more suitable for other self-supervised
methods as well, we replace their encoders with the encoder network from VQ-CPC, and
study the impact on the recognition accuracy. For the Autoencoder, the effect is mixed, with
the performance increasing slightly for datasets such as HHAR, Myogym, and PAMAP2,
whilst reducing for Motionsense and MHEALTH. In the case of multi-task self-sup., we
observe that matching the encoder network (to VQ-CPC) has a significant impact on
performance, resulting in improvements of approx. 8% for PAMAP2, 13% for HHAR, 24%
for Mobiact, and more modest 4–5% for Motionsense and MHEALTH. This clearly shows
that large receptive fields such as the one resulting from the original Multi-task encoder
are detrimental to discrete representation learning. Furthermore, utilizing a filter size
of 4 is also a better option for other methods, including SimCLR. Overall, we observe
that the Autoencoder or multi-task self-sup. with the replaced encoder can function as
viable alternatives, albeit there is generally a reduction in performance relative to VQ-
CPC. This can be useful in some situations as simpler methods may be preferable due to
computational constraints.

6.3. Potential Impact beyond Standard Activity Recognition, and Next Steps

This work presents a proof of concept in favor of learning discrete representations for
sensor-based human activity recognition. We present an alternative data processing and
feature extraction pipeline to the HAR community, to be utilized for further application
scenarios but also to (once again) jumpstart research into developing discrete learning
methods. In what follows, we describe future potential application scenarios where discrete
representations can be especially useful.

NLP-Based Pre-training: We observe in Table 6 that adding pre-trained RoBERTa
embeddings results in clear improvements over utilizing randomly initialized learnable
embeddings for all target datasets. For the locomotion-style and daily living datasets in
particular, this results in state-of-the-art performance, which is highly encouraging, as
it opens the possibility of adopting more powerful recent advancements from natural
language processing for improved recognition of activities. Replacing RoBERTa, larger
models such as GPT-2 [95] or GPT-3 [96] or modifications to existing methods (e.g., masking
spans of data [27]) can be utilized on larger scale datasets such as UK Biobank [94], leading
to potential classification performance improvements. This is promising as advancements in
NLP can also result in tandem improvements in sensor-based HAR. In resource-constrained
situations, however, works miniaturizing and pruning language models [90–92] can be
employed to reduce size while maintaining similar performance.

Activity Summarization: The discrete representations also enable us to utilize estab-
lished methods from NLP for unsupervised text summarization. They typically involve
extracting key information/sentences from texts via methods like graphs [97,98] and clus-
tering [99,100]—i.e., they are extractive rather than generative, as they do not have access
to paired summaries for training. Therefore, we can utilize such summarization techniques
in order to extract the most informative sensor data, allowing us to, e.g., reduce noise (by
removing unnecessary data), or summarize the important movements during the hour/day,
etc., for understanding routines.

Sensor Data Compression: The discretization results in symbolic representations,
which are essentially the ‘strings of human movements’, effectively compressing the original
data requiring substantially less memory for storing relative to multi-dimensional floating
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point numbers. This can be helpful in situations where data needs to be transmitted
from the wearable to a mobile phone or server, leading to a reduction in transfer costs.
Furthermore, it also enables more efficient processing of extremely large-scale wearables
datasets (such as the UK Biobank with 700k person days of data [94]), where the size is a
crutch for analysis and model development.

Activity and Routine Discovery: As mentioned in [24], the process of discovering
activities from unlabeled data is (in many ways) the opposite of building classifiers to
recognize known activities using labeled data. An important application includes health
monitoring where typical healthy behavior can be characterized by such discovery algo-
rithms, whereas they may be difficult for humans (incl. experts) to fully specify [24]. One
approach involves deriving ‘characteristic actions’ via motif discovery, as such sequences
are statistically unlikely to occur across activities and therefore correspond to important
actions within the activity [24]. Discovering motifs is easier in the discrete space (rather
than raw sensor data space), especially for multi-channel data, as the simplification to a
smaller alphabet aids with the identification of recurring patterns. Such a setup can be vital
for understanding and analyzing human behaviors.

7. Conclusions

The primary aim of this work was to serve as a proof of concept to demonstrate how
discrete representations can be learned from wearable sensor data, and that the perfor-
mance of activity recognition systems based on such learned discretized representations
is comparable to, if not better than, when using dense, i.e., continuous representations
derived through state-of-the-art representation learning methods. In particular, we showed
how automatically deriving the mapping between sensor data and a codebook of vectors
in an unsupervised manner can solve some of the existing concerns with HAR applications
based on discrete representations, including low activity recognition performance and
difficulty with multi-channel data.

A deeper dive into the workings of discretization showed that explicitly controlling
the maximum dictionary size can result in better representations. Further, the addition
of powerful NLP-based pre-training techniques such as RoBERTa resulted in improved
activity recognition for all target datasets. Therefore, this paper casts the multi-channel
time-series classification problem as a discrete sequence analysis problem (similar to nat-
ural language processing), thereby facilitating the adoption of recent advancements in
discrete representation learning for the field of sensor-based human activity recognition.
In summary, our work offers an alternative feature extraction pipeline in sensor-based
HAR, allowing for discretized abstractions of human movements and therefore enabling
improved analysis of movements.
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Appendix A

Appendix A.1. Datasets

Appendix A.1.1. Capture-24

It is a large-scale dataset recorded from a single wrist-worn accelerometer based on
the Axivity AX3 platform [31–33]. It comprises free living conditions, with 151 users of
data for approximately one day each, resulting in around 4000 h of data in total. Out of this,
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2500 h are coarsely labeled into the six broad activities sleep, sit-stand, mixed, walking,
vehicle, and bicycling. There are also 200 fine-grained activities, and the annotation was
performed using a chest-mounted Vicon Autograph and Whitehall II sleep diaries. Going
by the broad labels, around 75% of the data is either sleep or sit-stand, thereby rendering it
imbalanced.

Appendix A.1.2. HHAR

The underlying goal for the collection of this dataset was to study the impact of
heterogenous recording devices (incl. sensors, devices, and workloads) on recognition of
human activities [81]. It contains data from both mobile phones (LG Nexus 4, Samsung
Galaxy S Plus, Samsung Galaxy S3, Samsung Galaxy S3 mini) and smartwatches (LG G and
Samsung Galaxy Gear). We only utilize the data from the wrist watches, which were worn
on each arm, as we are interested in studying the performance obtained at the wrist. Data
was collected from nine users in total, who performed five minutes per activity, resulting in
a balanced dataset.

Appendix A.1.3. Myogym

The Myogym [1] dataset was collected from 10 participants performing thirty different
gym activities (or the NULL class), where each activity contains ten repititions. The
Myo armband on the right forearm was utilized for recording the data, and comprises
an IMU containing an accelerometer, gyroscope, and magnetometer, along with eight
electromyogram (EMG) sensors. Data were recorded at 50 Hz and the aim of the study was
to faciliate activity and gesture recognition, as well as sensor fusion.

Appendix A.1.4. Mobiact

A Samsung Galaxy S3 smartphone placed freely in a trouser pocket was utilized to
four types and twelve locomotion-style + transitionary activities [82] at a rate of 200 Hz.
Following [15], we removed the lying class, resulting in eleven activities from a total of 61
participants (out of 66). The sensors include accelerometer, gyroscope, and orientation, and
we utilize v2 of this dataset (as in [15]).

Appendix A.1.5. Motionsense

It contains data recorded from an iPhone 6s, including accelerometer, gyroscope, and
attitude information at a rate of 50 Hz [83]. A total of 24 subjects (14 men and 10 women)
were recruited for data collection, with the aim of developing privacy preserving sensor
data transmission systems. It mainly contains locomotion-style activities (see Table 1),
collected from the front trouser pocket.

Appendix A.1.6. MHEALTH

The MHEALTH dataset [84,85] consists of data from 10 participants performing 12 ac-
tivities. Shimmer 2 [101] wearable sensors were utilized for the recording, and placed on
the chest, right wrist, and left ankle. The sampling rate is 50 Hz and the activities under
study include locomotion along with some exercises. The collection was performed out of
the laboratory, without any constraints on how they had to be executed; the subjects were
asked to try their best while executing the activities.

Appendix A.1.7. PAMAP2

This dataset comprises three IMUs and a heart rate (HR) monitor, recorded to facilitate
the development of physical activity monitoring systems [86]. One IMU is placed at the
chest along with the HR monitor, whereas the remaining two are placed on the dominant
wrist and the ankle. A total of 9 participants (8 males + 1 female) are preset in the dataset
and followed a protocol of 12 activities (listed in Table 1) along with (watch TV, computer
work, drive car, fold laundry, clean house, and play soccer) optionally. In our study, we
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only utilize the 12 that form a part of the protocol for collection. Further, we only utilize
data from the ankle-worn accelerometer, as we evaluate the performance across sensor
locations as well.

[0, 27, 32, ..., 64, 2 ]

Discrete sequence Roberta
embeddings

RNN Classifier

Figure A1. Using RoBERTa embeddings for classifying discrete representations: first, we pre-train a
RoBERTa model on discrete representations (indexed) from Capture-24. Subsequently, we replace
the learnable embeddings with frozen RoBERTa embeddings in order to study the impact of the
NLP-based pre-training. A GRU network is used along with an MLP for activity recognition.

Table A1. Hyper-parameters utilized for pre-training and evaluation on the target datasets.

Pre-Training Evaluation
Dataset

lr l2 reg. # Conv. agg. k # neg. γ lr wd

HHAR 1 × 10−4 1 × 10−4 2 10 10 0.25 5 × 10−4 1 × 10−4

Myogym 1 × 10−4 1 × 10−4 2 10 10 0.25 5 × 10−4 1 × 10−5

Mobiact 1 × 10−4 1 × 10−4 2 10 10 0.25 1 × 10−3 1 × 10−4

Motionsense 1 × 10−4 1 × 10−4 2 10 10 0.25 5 × 10−4 0.0

MHEALTH 1 × 10−4 1 × 10−4 2 10 10 0.25 5 × 10−4 1 × 10−5

PAMAP2 1 × 10−4 1 × 10−4 2 10 10 0.25 1 × 10−3 1 × 10−4
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Figure A2. Visualizing the histograms of discrete representations per class for the first fold of
Motionsense. This is the full figure from which Figure 5 is obtained by truncating the x-axis to
50 symbols.
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Figure A3. Visualizing how the weights of the VQ-CPC architecture are updated using different
parts of the overall loss. As detailed in Section 3.1.1, the Aggregator network is updated using
∑K

k=1 LCPC
k whereas the codebook vectors utilize ∥sg(z)− ẑ∥2. Finally, the encoder is updated using

both ∑K
k=1 LCPC

k and γ∥z − sg(ẑ)∥2.
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