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Abstract: Pedestrian navigation methods based on inertial sensors are commonly used to solve
navigation and positioning problems when satellite signals are unavailable. To address the issue of
heading angle errors accumulating over time in pedestrian navigation systems that rely solely on the
Zero Velocity Update (ZUPT) algorithm, it is feasible to use the pedestrian’s motion constraints to
constrain the errors. Firstly, a human step length model is built using human kinematic data collected
by the motion capture system. Secondly, we propose the bipedal constraint algorithm based on the
established human step length model. Real field experiments demonstrate that, by introducing the
bipedal constraint algorithm, the mean biped radial errors of the experiments are reduced by 68.16%
and 50.61%, respectively. The experimental results show that the proposed algorithm effectively
reduces the radial error of the navigation results and improves the accuracy of the navigation.

Keywords: pedestrian navigation; MIMU; INS; ZUPT; human step length model; bipedal constraint
algorithm

1. Introduction

The Global Navigation Satellite System (GNSS) is the most common navigation solu-
tion in an open outdoor environment, with an accuracy of up to a meter or even higher [1].
However, in an indoor environment or in a special environment where satellite signals
cannot be received outdoors, the above satellite-based navigation solution cannot meet
people’s needs [2]. Therefore, autonomous navigation solutions that rely only on their own
sensors are needed to achieve navigation and positioning in a satellite-denied environment.
Autonomous navigation systems play a crucial role in various scenarios, particularly in
meeting the safety needs of workers in special situations such as tunnel operations and
underground mines, assisting firefighters in rescue work at fire scenes, helping individu-
als navigate through the wild jungle, and providing guidance in large buildings such as
shopping malls, libraries, and museums.

Pedestrian navigation systems are categorized into non-autonomous modes, primarily
based on satellite navigation, and autonomous modes, which rely on sensors like the
Inertial Measurement Unit (IMU) [3]. Different from the widespread use of GNSS in
outdoor environments, indoor navigation and positioning uses more diverse methods.
Pascacio et al. [4] conducted a survey and analysis of the main technical means used in
indoor navigation and positioning. The proportions of each main technology and their
related papers are as follows: Wireless Local Area Network (WLAN) accounts for 53.5%,
IMU accounts for 30.9%, Ultra Wideband (UWB) accounts for 15.4%, Bluetooth (Bluetooth)
accounts for 2.3%, 5G accounts for 2.3%, Radio Frequency Identification (Radio Frequency
Identification, RFID) accounts for 2.3%, and vision cameras account for 1.1%.

Research has been conducted on pedestrian navigation technology since the 1980s.
Currently, it is divided into two categories: Pedestrian Dead Reckoning (PDR) and Inertial
Navigation System (INS).
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The PDR algorithm can be deployed on different parts of the human body, such as
the chest, waist, and feet, and has the advantage of easy installation and application [5].
Marth et al. first designed a personal navigation system composed of a pedestrian dead
reckoning module and GPS in 1998. When satellite signals are denied, the system can
only use accelerometers and magnetometers for dead reckoning [6]. Yao et al. proposed
a more robust method to solve the difficulty of calculating the number of steps for gait
detection caused by the traditional PDR in which the person is in the in situ traveling state,
the core idea of the method is to recognize the walking patterns of pedestrians, such as
normal walking and fast walking [7]. Basso et al. proposed to process vertical acceleration
using a phase-locked loop to detect the stride length and number of steps, and then to
calculate the step length using a segmented linear relationship with the stride length, as
well as estimating the direction of the stride based on lumbar kinematics using geometric
features of planar acceleration [8]. Based on the PDR algorithm, Liu et al. proposed a new
indoor positioning solution by combining extended Kalman filtering with the Wi-Fi signal
round-trip time, and the average positioning error was reduced by 37.4∼67.6% [9].

With the development of deep learning technology, many scholars try to use it to
solve the old problems of the traditional PDR algorithm. Edle et al. applied BLSTM-RNN
to gait detection to improve the stability and recognition ability of the algorithm [10].
Lin et al. [11] and Luo et al. [12] analyzed the pedestrian directions of forward, back-
ward, left, and right using LSTM and CNN. Wang et al. designed a step estimation
network based on LSTM, with a stride error rate of 4.63% and a walking distance error rate
of 1.43% [13]. Furthermore, Asraf et al. designed PDRNet [14] based on ResNet, and
Klein et al. designed StepNet [15,16], which directly uses accelerometer and gyroscope
measurement data to output the direction and distance through the neural network. The
steps of using accelerometer and gyroscope data to perform gait detection, and then com-
pleting step length estimation and heading estimation using the PDR method, are skipped.
However, the above-mentioned PDR methods based on deep learning inevitably have the
problem of a large computational workload and often require the use of computer graphics
cards for calculations. Therefore, under the current circumstances, this solution is still
mainly limited to the scope of laboratory research, which is not conducive to the embedded
design of pedestrian navigation equipment and cannot be deployed in the short term.

With the continuous improvement of Micro Inertial Measurement Unit (MIMU) accu-
racy, many researchers have focused their research on INS-based pedestrian navigation
solutions. Elwell et al., in 1999, proposed the idea of designing a Zero Velocity Update
algorithm using pedestrian step characteristics [17]. Based on this, Foxlin designed the
first foot-mounted pedestrian inertial navigation system in 2005 [18]. Borenstein et al. of
the University of Michigan proposed the Heuristic Drift Reduction (HDR) method for
estimating and eliminating the heading angle drift error [19]. Skog et al. of the Royal
Institute of Technology, Sweden, quantitatively analyzed a variety of gait detection algo-
rithms and ZUPT algorithms [20]. They demonstrated that gyroscope-based detection
outperforms accelerometer-based detection under specific assumptions. Zhang et al. re-
alized the combined pattern recognition of four gait patterns and four device poses [21].
Meanwhile, Xu et al. investigated an indoor localization algorithm combining IMU and
UWB [22]. Garcia et al. proposed a new FootSLAM algorithm using only IMU data, showing
the possibility of using human odometers for indoor mapping and precise navigation [23].
Zhang et al. also proposed a yaw angle error self-observation algorithm (YESO) to reduce
the yaw angle error and calibrate the yaw angle [24].

Meanwhile, multi-IMU information fusion algorithms have gradually become a hot
research topic in recent years. Qian et al. used the IMU of the trunk and lower limbs to
form a virtual foot IMU which, in turn, realizes the pedestrian navigation function, and
the final positioning accuracy is about 6% of the travel distance [25]. Based on a zero-
speed detector based on hypothesis testing and great likelihood estimation designed using
human gait information, Shi Wei et al. designed a Kalman-filtered ellipsoid-constrained
algorithm under the maximal step length constraint while walking [26,27]. Xu Yuan et al.,



Sensors 2024, 24, 1073 3 of 15

on the other hand, solved the problem of poor viewability of heading information in the
traditional foot-based heading reference system by designing an indoor personal navigation
system combining a foot-based heading reference system and a shoulder-based electronic
compass [28,29]. Patel et al. conducted experimental analysis on four different fusion
methods of multi-IMU, proving that the navigation accuracy of using five IMU fusion
filters has been improved [30]. Niu et al. [31,32], Li et al. [33], and Prateek et al. [34]
also studied pedestrian navigation algorithms based on dual foot-mounted IMU. They
showed that, by limiting the distance between the two feet, the Kalman filter can be used
to constrain the navigation error and obtain better robustness in the system.

However, the above studies did not make full use of human kinematic characteristics
to suppress heading angle errors to improve navigation accuracy. In this paper, we built
a human step length model using human kinematic data collected by the motion capture
system. And based on the established human step length model, we propose the bipedal
constraint algorithm to address the issue of heading angle errors accumulating over time in
pedestrian navigation systems. The contributions of the paper are as follows:

• We collected human kinematics data using an optical–inertial fusion motion capture
system. A whole-body musculoskeletal model of the human body was created to
analyse navigation-related human kinematic parameters and build the human step
length model. This provides a parameter basis for the navigation algorithm.

• We developed an embedded pedestrian navigation system that includes an IMU and
a barometer. The system acquires and wirelessly transmits navigation data. We used
this system to verify the effectiveness of the navigation algorithm.

• We proposed the bipedal constraint algorithm to address the issue of the ZUPT al-
gorithm’s inability to constrain the heading angle. The virtual observation quanti-
ties and corresponding observation matrices of both the ZUPT algorithm and the
bipedal constraint algorithm were constructed for application to the Kalman filter.
The experiment demonstrates that the bipedal constraint algorithm effectively limits
the heading angle error during navigation and enhances the accuracy of navigation
and positioning.

The rest of the paper is organized as follows: in Section 2, we present the human
step length model and the bipedal constraint algorithm. In Section 3, we describe the
experiment in detail and evaluate the results. In Section 4, we provide a conclusion for our
study and talk about future work.

2. Pedestrian Navigation System

The pedestrian navigation system is based on the Strapdown Inertial Navigation
System (SINS) and Kalman filter (KF), and uses distance for coupling.

2.1. Strapdown Inertial Navigation System

The core of SINS is to use numerical integration to calculate the attitude, speed, and
position of the carrier. Therefore, the SINS algorithm mainly includes three parts: an
attitude update algorithm, a speed update algorithm, and a position update algorithm.

2.1.1. Attitude Update Algorithm

The differential equation for the attitude of the carrier in the n-system of geographic
coordinates is given by

Ċn
b = Cn

b (ω
b
nb×) (1)

Here, Cn
b is the attitude array of the b-system with respect to the n-system. ωb

nb is the
angular velocity of the b-system with respect to the n-system. Also, according to the law of
chain multiplication of matrices, there is

Cn(m)
b(m)

= Cn(m)
i Ci

b(m) = Cn(m)
n(m−1)C

n(m−1)
b(m−1) Cb(m−1)

b(m)
(2)
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Cn(m−1)
b(m−1) and Cn(m)

b(m)
represent the attitude matrices at tm−1 and tm, respectively. Cb(m−1)

b(m)

represents the rotational change of the b-system from moment tm−1 to moment tm using the
i-coordinate system as the reference frame. Cn(m)

n(m−1) represents the rotational change of the
n-system from moment tm to moment tm−1 using the i-coordinate system as the reference
frame. When using the two-subsample cone error compensation algorithm, for Cn(m)

n(m−1)

and Cb(m−1)
b(m)

, there is

Cn(m)
n(m−1) = MT

RV(ϕ
n
in(m)) ≈ MT

RV(Tωn
in(m)) (3)

Cb(m−1)
b(m)

= MRV(ϕ
b
ib(m)) (4)

ϕb
ib(m) = (∆θm1 + ∆θm2) +

2
3

∆θm1 × ∆θm2 (5)

MRV(ϕ) = Ci
b = I +

sin ϕ

ϕ
(ϕ×) +

(1− cos ϕ)

ϕ2 (ϕ×)2 (6)

Here, T = tm − tm−1, ωn
in(m)

is the angular velocity of the n-system relative to the
i-system at this time, ∆θm1 and ∆θm2 are the two angular increments in the period from
tm−1 to tm, and ϕ represents the equipment rotation vector.

2.1.2. Speed Update Algorithm

There is an inertial specific force equation in the n-system as follows:

v̇n
en = Cn

b f b
s f − (2ωn

ie + ωn
en)× vn

en + gn (7)

Here, f b
s f is the accelerometer output specific force, 2ωn

ie × vn
en is the Göttinger’s

acceleration, ωn
en × vn

en is the centripetal acceleration due to the motion of the carrier
around the center of the earth, and gn is the acceleration due to gravity. Integration leads to
the following formula:

vn(m)
m = vn(m−1)

m−1 + ∆vn
s f (m) + ∆vn

cor/g(m) (8)

Here, vn(m−1)
m−1 and vn(m)

m are the velocities of the carrier at the moments tm−1 and tm,
respectively, and there are

∆vn
s f (m) =

∫ tm

tm−1

Cn
b (t) f b

s f (t)dx (9)

∆vn
cor/g(m) =

∫ tm

tm−1

{−[2ωn
ie(t) + ωn

en(t)]× vn
en(t) + gn(t)}dt (10)

The numerical integration of Equations (9) and (10) can be approximated as follows:

∆vn
s f (m) ≈[I −

T
2
(ωn

in(m−1/2)×)]C
n(m−1)
b(m−1)

[∆vm +
1
2

∆θm × ∆vm +
2
3
(∆θm1 × ∆vm2 + ∆vm1 × ∆θm2)]

(11)

∆vn
cor/g(m) ≈ {−[2ωn

ie(m−1/2) + ωn
en(m−1/2)]× vn

en(m−1/2) + gn
m−1/2}T (12)

Here, ∆v is the specific velocity increment and ∆θ is the angular increment.
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2.1.3. Position Update Algorithm

The matrix form of the differential equation for the position of the inertial navigation
system is as follows:

ṗ = Mpvvn (13)

Here,
p =

[
L λ h

]T (14)

Mpv =

 0 1/(RM + h) 0
sec L/(RN + h) 0 0

0 0 1

 (15)

Here, L, λ, and h represent the longitude, latitude, and altitude. RM represents the
principal radii of curvature along the meridional section. RN represents the principal
radii of curvature along the prime–vertical normal section. The numerical integration of
Equation (13) yielded

pm = pm−1 + Mpv(m−1/2)(v
n
m−1 + vn

m)
T
2

(16)

2.1.4. Attitude Initialization

When the IMU is stationary, the equation for specific force can be simplified to

0 = Cn
b f b

s f + gn (17)

Transform and expand Equation (17) into the component form: f b
s f x

f b
s f y

f b
s f z

 = −
[
CT

1 CT
2 CT

3
] 0

0
−g

 (18)

Then,
C3 =

[
f b
s f x/g f b

s f y/g f b
s f z/g

]
(19)

Equation (19) represents the third row of the attitude matrix Cn
b . The elements of the

first two rows can be chosen arbitrarily, provided that they satisfy the right-hand rule.

2.2. Human Step Length Model

As the error of the pedestrian navigation system accumulates over time, it is feasible
to use the motion constraints of pedestrians as error constraints. Based on this, more
accurately grasping the kinematic characteristics of pedestrians by establishing a human
step length model is one of the key means of improving the positioning accuracy and
reliability of autonomous navigation systems.

2.2.1. Data Collection

Data collection is performed following time synchronization and system calibration,
utilizing both the Optitrack optical motion capture system and the FOHEART MAGIC
inertial motion capture system.

Table 1 shows the data collection program, which involved selecting 10 volunteers to
complete the human kinematics data collection. The “Load” refers to the weight a person
carries when moving. The data collection modes in this case include walking on a treadmill
at speeds of 1, 2, 2.5, 3, 3.5, 4, 4.5, and 5 km/h for one minute each, as well as free-walking
and free-jogging for three laps each, resulting in a total of ten modes.
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Table 1. Data collection program.

No. Sex Height/cm Load/kg

1 Male 165 0, 10, 15
2 Male 170 0, 10, 15
3 Male 175 0, 10, 15
4 Male 180 0, 10, 15
5 Male 185 0, 10, 15
6 Male 190 0, 10, 15
7 Female 158 0, 5
8 Female 165 0, 5
9 Female 170 0, 5
10 Female 175 0, 5

2.2.2. Data Processing

The process of data collection involves five stages: real-time data collection, data
pre-processing, conversion to standard data formats, data slicing, and database storage.
The human kinematics data collection site is shown in Figure 1.

(a) Data Collection Site (b) Marked Points

Figure 1. Data collection site and marked points: (a) shows the data collection site and (b) shows the
marked points.

By calculating the distance between the two feet, the variation pattern of the step
length under different traveling speeds and weight loads can be obtained, and then fitted
with a linear function:

StepLength = 2.789× Height− 3.897 (20)

2.3. Bipedal Constraint Algorithm Based on Step Length Model

The ZUPT algorithm can effectively limit the correction of velocity state quantities in
the navigation system. However, it does not provide sufficient constraints on the position
and heading angles. This paper presents a bipedal constraint algorithm based on the step
length model for two IMUs located in each foot. The algorithm implements correction
constraints on the heading angle and position to enhance the system’s navigation accuracy.

According to the human step length model, there is a maximum distance threshold
between the dual feet of a pedestrian while walking. When one of the feet is in a stationary
state and the other foot is in a swinging state, if the stationary foot is used as the coordinate
origin, the swinging foot is within a ball with the origin as the center and the threshold
as the radius. If the distance between the two feet exceeds the threshold range, a virtual
position observation can be constructed based on the distance between the feet and the
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threshold. This observation can then be combined with the Kalman filter to correct the
navigation system.

In SINS, the position p consists of the longitude L, latitude λ, and height h. When
dealing with the relationship between two IMUs, it is more intuitive and convenient to use
the navigation coordinate system based on east, north, and sky. The conversion formula is
as follows: 

PE = sin L(RN + h)

PN = λ(RM + h)

PU = h

(21)

The position coordinates are PE for the east, PN for the north, and PU for the sky. Also,
noting that the spacing between two IMUs is D, here is

D = |Pr − Pl | = [(PE,r − PE,l)
2 + (PN,r − PN,l)

2 + (PU,r − PU,l)
2]1/2 (22)

Here, l and r represent the left foot IMU and the right foot IMU, respectively. Pr and
Pl represent the positions of the left foot IMU and the right foot IMU, respectively. Assume
that when the left foot is in a stationary state and the right foot is in a swinging state, if the
distance between the two feet is greater than the set threshold B, then

P̂r = Pl +
B
D
(Pr − Pl) =

1
D
((D− B)Pl + BPr) (23)

Rr = σ2
p I3 (24)

Here, P̂r is the virtual observation position of the right foot position at this time, σp
represents the variance of position, I represents the identity matrix, and Rr is the covariance
matrix. After converting the resulting east, north, and sky positions back to longitude,
latitude, and altitude via Equation (21), the virtual observations when using the cooperative
navigation algorithm are obtained:

ZBipedal =

L− L̂
λ− λ̂

h− ĥ

 (25)

And the corresponding observation matrix is

HBipedal =
[
03×6 I3 03×6

]
(26)

To provides an overview of the navigation algorithm. The pseudocode is listed in
Algorithm 1.

When a pedestrian walks, their feet alternate between contacting the ground, result-
ing in a zero-speed state. To determine when both feet are at zero speed, a zero-speed
determination is performed, and the ZUPT algorithm is applied to the feet in this state.
Additionally, when one foot is stationary and the other is swinging, the system makes a
threshold judgment on the distance between the two feet. If the swinging foot exceeds the
range of the stationary foot, cooperative navigation constraints are applied to the swinging
foot. The system also includes a barometer to provide altitude information for the naviga-
tion system to use as a constraint. The altitude constraint is performed in the same way as
the zero-speed correction algorithm, that is, when the foot is at zero-speed. In this paper,
the bipedal spacing constraint threshold is provided by the human step length model.
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Algorithm 1 Bipedal Constraint Algorithm Based on Step Length Model.

Require: ∆v and ∆θ measured by bipedal IMUs
Ensure: Attitude, speed, and position of bipedal navigation systems

k← 0
SINSl ← Initial system state and Kalman filter of left foot
SINSr ← Initial system state and Kalman filter of right foot
loop

k← k + 1
if (Stancel = 1) or (Stancer = 1) then

Perform the ZUPT algorithm on the foot at zero speed
ZZUPT =

[
VE VN VU

]T

HZUPT =
[
03×3 I3×3 03×9

]
Constrains hStance=1 using the barometer

end if
if (Stance = 1)⊕ (Stance = 1) = 1 then

D = |Pr − Pl |
if D > B then

Algorithmically constrains feet in non-zero speed states
P̂r = Pl +

B
D (Pr − Pl) =

1
D ((D− B)Pl + BPr)

ZBipedal =
[
L− L̂ λ− λ̂ h− ĥ

]T

HBipedal =
[
03×6 I3 03×6

]
end if

end if
end loop

3. Experiment and Results

The effectiveness of the proposed method was confirmed through experiments. The ex-
periment utilized a self-developed pedestrian navigation module with TI’s CC2652P1FRGZR
as the main processor and communication processor. The LPD22HBTR collects air pres-
sure data, while the six-axis IMU sensor ASM330LLH collects acceleration and angular
velocity data. Additionally, the three-axis geomagnetic sensor MMC5883 is used to collect
geomagnetic data. The collected data are encoded in hexadecimal and transmitted to the
tablet through the communication module for storage. The parameters of the sensors are
shown in Table 2. The pedestrian module can be powered by either a USB port or a battery.
Figure 2 shows the foot module prototype, which controls the starting and stopping of the
system through a switch.

Figure 2. Navigation module prototype.
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Table 2. Specification of the sensors.

Specification Barometer Accelerometer Gyroscope

Full scale 1260 hpa ±16 g ±4000 dps
Bias stability - - 3 deg/h

Noise 0.75 pa/
√

Hz 60 µg/
√

Hz 5 mdps/
√

Hz
Temperature −40∼+85 ◦C −40∼+105 ◦C

During the experiment, the navigation modules of both feet were powered on and
connected to the tablet. The navigation modules were placed side by side on the ground
for 10 s to preheat and initialize, and then installed on the left and right feet, respectively.
The experimenter completed two walks in different locations, labeled Walk 1 and Walk 2
(see Figure 3 and Figure 4, respectively), returned to the starting point, stopped collecting
data, and recorded the test results.

Figure 3. Tsinghua University’s FIT building (Walk 1).

Figure 4. Tsinghua University’s Weiqing building (Walk 2).
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The experimenter was 24 years old, 183 cm tall, weighed 70 kg, and was not weight-
bearing. The maximum stride length during normal walking was obtained using the human
step length model. The distance threshold between the two IMUs in the bipedal constraint
algorithm was set to B = 1.2 m. Figures 5–7 show the result of Walk 1, and Figures 8–10
show the result of Walk 2. Walk 1 was undertaken in the corridor on the second floor of
Tsinghua University’s FIT building, as shown in Figure 3. Walk 2 was undertaken outside
Tsinghua University’s Weiqing building, as shown in Figure 4.

(a) ZUPT Algorithm (b) ZUPT Combined with Bipedal Constraint Algorithm

Figure 5. Displacement trajectory of Walk 1: (a) is the displacement trajectory with only the
ZUPT algorithm and (b) is the displacement trajectory with ZUPT combined with the bipedal
constraint algorithm.

(a) Left foot (b) Right Foot

Figure 6. Attitude angle of Walk 1 without bipedal constraint algorithm.

(a) Left foot (b) Right Foot

Figure 7. Attitude Angle of Walk 1 with bipedal constraint Algorithm.
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(a) ZUPT Algorithm (b) ZUPT Combined with Bipedal Constraint Algorithm

Figure 8. Displacement trajectory of Walk 2: (a) is the displacement trajectory with only the
ZUPT algorithm and (b) is the displacement trajectory with ZUPT combined with the bipedal
constraint algorithm.

(a) Left foot

(b) Right Foot

Figure 9. Attitude angle of Walk 2 without bipedal constraint algorithm.
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(a) Left foot

(b) Right Foot

Figure 10. Attitude angle of Walk 2 with bipedal constraint algorithm.

Analyzing the results of the experiment, it can be seen that, although ZUPT alone
can be used for speed constraints and preliminary navigation solutions can be performed,
it cannot effectively constrain the heading angle error during the navigation process.
As the navigation time increases, the trajectories will gradually diverge, and the navigation
settlement results of the two feet will gradually expand from each other. This is obvious
when walking in a straight line. As the pedestrian walks in a straight line, the navigation
results of the two feet gradually deviate from the original heading, and the distance between
them gradually increases. When there are turns during walking, the navigation errors
accumulated due to heading errors will be more significant, and this error will increase
with the increase in turns. In the end, it is impossible to return to the starting point of the
trip relying solely on the navigation solution results of ZUPT. After adopting the bipedal
constraint algorithm, the INS on the left and right sides provide each other with position
observations, and the Kalman filter effectively reduces the errors in the navigation results
of the left and right INS due to gyroscope drift. Therefore, it is necessary to introduce the
bipedal constraint algorithm to constrain the position and heading angles.

The radial error results of the navigation solutions before and after the introduction of
the bipedal constraint algorithm are shown in Table 3.

Table 3. Experimental results.

Experiment Radial Error without Algorithm (m) Radial Error with Algorithm (m) Improvement
Left Foot Right Foot Mean Left Foot Right Foot Mean Left Foot Right Foot Mean

Walk 1 9.3999 7.9166 8.6583 4.4108 1.1022 2.7565 53.07% 86.08% 68.16%
Walk 2 1.8467 3.6703 2.7585 0.7231 2.0017 1.3624 60.84% 45.46% 50.61%
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The left and right biped radial errors of Walk 1 are reduced by 53.07% and 86.08%,
respectively, the left and right biped radial errors of Walk 2 are reduced by 60.84% and
45.46%, respectively, and the mean biped radial errors of Walk 1 and Walk 2 are reduced
by 68.16% and 50.61%, respectively. And Table 4 shows a comparison of the proposed
algorithm with other algorithms. It can be seen that, by introducing the bipedal constraint
algorithm, the positioning accuracy of the navigation algorithm has been significantly
improved, and our proposed algorithm has better results.

Table 4. Comparison of four algorithms in terms of position error.

Algorithm Proposed by
Xu [28,29]

Proposed by
Shi [26,27]

Proposed by
Niu [31,32]

Proposed in
This Paper

Improvement About 30% 41.46% About 50% 68.16%/50.61%

4. Conclusions

In this article, we used motion capture technology to collect human kinematic data
from multiple volunteers, and a human step model was established based on this. Secondly,
given the defect that the ZUPT algorithm cannot effectively constrain the heading angle,
we proposed the bipedal constraint algorithm based on the established human step length
model, which was used to construct a virtual observation of the relative position. Real field
experiments demonstrated that, by introducing the bipedal constraint algorithm, the mean
biped radial errors of Walk 1 and Walk 2 were reduced by 68.16% and 50.61%, respectively.
The results of the experiments indicate that the algorithm effectively reduces the radial
error of the navigation results and improves the navigation accuracy.

In future work, more types of human kinematics data of gaits can be collected to obtain
human kinematics conditions under different gaits, and then different constraint algorithms
can be proposed for different gaits to further improve the accuracy of the navigation system.
Secondly, the algorithm proposed in this article, combined with the ZUPT algorithm,
effectively suppress the divergence of navigation errors, but do not completely eliminate it.
Considering that the heuristic course correction algorithm also has an effective constraint
effect on the course angle, combining the algorithm in this paper with it may lead to better
navigation results. In addition, the current algorithm only applies to two feet. In the future,
we should consider adding new nodes, such as at the waist and head, to further improve
the robustness of the algorithm.
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Abbreviations
The following abbreviations are used in this manuscript:

IMU Inertial Measurement Unit
INS Inertial Navigation System
KF Kalman filter
ZUPT Zero Velocity Update
PDR Pedestrian Dead Reckoning
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