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Abstract: Gas turbine vibration data may exhibit considerable differences under time-varying condi-
tions, which poses challenges for neural network anomaly detection. We first propose a framework
for a gas turbine vibration frequency spectra process under time-varying operation conditions, assist-
ing neural networks’ ability to capture weak information. The framework involves scaling spectra
for aligning all frequency components related to rotational speed and normalizing frequency am-
plitude in a self-adaptive way. Degressive beta variational autoencoder is employed for learning
spectra characteristics and anomaly detection, while a multi-category anomaly index is proposed
to accommodate various operating conditions. Finally, a dataset of blade Foreign Object Damage
(FOD) fault occurring under time-varying operating conditions was used to validate the framework
and anomaly detection. The results demonstrate that the proposed method can effectively reduce
the spectra differences under time-varying conditions, and also detect FOD fault during operation,
which are challenging to identify using conventional methods.

Keywords: gas turbine; anomaly detection; frequency spectrum; neural network; time-varying
operating conditions; normalization method

1. Introduction

Gas turbines are highly expensive industrial equipment that find widespread use in
numerous fields such as ship propulsion, gas transmission, and electric power genera-
tion due to their reliability as well as practicality [1,2]. Functioning within challenging
environments marked by elevated temperatures, increased pressures, and high rotational
speeds, components of gas turbines are susceptible to failures. n severe cases, these failures
can even lead to catastrophic accidents [3]. Condition monitoring and real-time anomaly
detection of gas turbines are important measures to improve equipment reliability, ensure
operational safety, and reduce equipment maintenance costs [4].

Analyzing vibration data to detect equipment anomalies constitutes a widely employed
approach, given that equipment failures often manifest prominently in vibration data. Nu-
merous scholars have thus far applied anomaly detection methods based on vibration signals
to diverse categories of rotating machinery, encompassing gas turbines [5–8]. This practice
underscores the effectiveness of utilizing vibration data for identifying potential anomalies
in machinery operation.

Anomaly detection can be regarded as a one-class classification (OCC) task, where the
objective is to learn a single data category and identify whether new data belong to this
category [9,10]. Performing anomaly detection without any fault samples available in the
training set is indeed a form of one-class classification task [11]. As a machine learning
approach, neural networks have been widely applied in the industry. Due to their data-
driven nature, neural networks are capable of extracting features from monitoring data
without prior information [12] and performing anomaly detection [13,14] on equipment.
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Autoencoder and its variants are often used for anomaly detection tasks due to their
unsupervised nature [15,16]. Anomaly detection using neural networks with an encoder–
decoder structure generally relies on reconstruction errors to determine the degree of
abnormalities [17–21].

The direct application of raw vibration waveform data in training neural network
models is challenging, as these waveforms do not distinctly reveal too much useful informa-
tion. As a result, the adoption of feature engineering for the extraction of relevant features
is a common choice. Indeed, neural networks possess robust feature extraction capabilities;
many feature extraction tasks are also accomplished by neural networks [22,23]. There-
fore, a potentially superior approach may involve inputting data into the neural network
that encompass as much information as possible, allowing the network to autonomously
discern and prioritize effective information. In such a scenario, the vibration spectrum
emerges as a favorable option, as it maximally preserves the amplitude information of
each frequency component and distinctly represents this information. Numerous studies
have employed vibration spectra for neural network-based anomaly detection in rotating
machinery [20,21,24].

However, given the high complexity of gas turbines, various factors impact the ac-
quired vibration waveforms and corresponding spectra. Temperature fluctuations, the
installation position and orientation of sensors, along with a substantial amount of mechan-
ical noise are crucial considerations. These factors may introduce significant disturbances
during the data analysis process. It is noteworthy that changes in the gas turbine speed
have the most pronounced effect on the spectrum. Depending on the application scenario,
gas turbines may need to operate under time-varying operating conditions, and the varia-
tions in rotational speed can significantly impact the distribution of the spectrum. In such
a situation, when the fault severity is not substantial, fault features may be obscured by
variations in rotational speed. The significance of components corresponding to the same
frequency in vibration spectra at different rotational speeds varies. Neural networks are
unable to effectively match frequency components in the spectrum that occupy different
positions due to varying rotational speeds, significantly impairing the learning capability
of the neural network. There have been some studies dedicated to anomaly detection in
time-varying operating condition equipment [25–28]. However, most of these studies have
focused on bearings or gearboxes. Due to the high difficulty of data acquisition, research
targeting gas turbines is comparatively scarce. The complexity of gas turbines further
exacerbates the difficulty of achieving this objective.

In order to solve these problems, this paper proposes a spectral data process frame-
work, which aligns the spectrum under time-varying operating conditions according to the
rotational speed. This ensures that frequency components related to the rotational speed
are aligned to the same position in each spectrum. Consequently, during the training of
neural networks, components reflecting identical frequency information can be input to the
same neurons. Then, a self-adaptive global normalization method is proposed to mitigate
the impact of high-amplitude frequency components on the capabilities of neural networks.
The goal of the methods is to improve the learning ability of the neural network to the
information in the vibration spectrum. To demonstrate the effectiveness of the approach
under variable operating conditions, a dataset from a real gas turbine with a Foreign Object
Damage (FOD) [29] fault is utilized for validation. The main contributions of this paper are
as follows:

• To address the issue of poor performance when using frequency spectra to train neural
networks, a spectra alignment method is proposed. This method aligns the corre-
sponding frequency components related to the rotational frequency of the spectrum to
the same positions, making it compatible with neural networks.

• A self-adaptive global normalization method suitable for vibration spectra is proposed,
which enhances features of weak components while preserving the distinctions of
the importance of frequency components with different amplitudes. This approach
enables neural networks to better learn information from the spectra.



Sensors 2024, 24, 941 3 of 18

• An entire abnormal detection framework for gas turbines was established with a more
suitable anomaly index for time-varying operating conditions. And the effectiveness
of the proposed methods was validated using a real gas turbine dataset.

The remainder of this article is organized as follows. The second part describes the
spectra alignment method and the self-adaptive normalization method. The complete
anomaly detection process used in the experiment is also presented. In the third part, the
proposed method is validated with a real gas turbine dataset. Conclusions are presented in
the fourth part.

2. Proposed Method
2.1. Spectra Alignment

Spectrum analysis is one of the most commonly employed methods in the field of
fault diagnosis. The spectrum is obtained by the Fourier transform of the vibration wave-
form. In practical applications, the vibration waveform data that can be collected are
discrete. Therefore, the Fast Fourier Transform (FFT) is commonly employed to compute
the spectrum:

S(ω) = FFT(s(N)) (1)

where S(ω) represents the spectrum, s(N) represents the original vibration waveform, N
represents the number of sampling points in the vibration waveform, and the length of
the spectrum is consistent with it. Due to the symmetry of the spectrum, typically only
the first half is considered in practice. Therefore, the effective length of the spectrum used
is n = N/2. The vibration spectrum provides a clear representation of the signal in the
frequency domain, facilitating a more effective visualization of the amplitude informa-
tion of different frequency components. The spectrum enhances the identification and
understanding of anomalies in vibration signals, playing a crucial role in frequency domain
analysis and fault diagnosis.

The utilization of spectral data for training neural networks is a common practice. For
neural networks, inputs may comprise either features derived from data or the complete
dataset itself. Feature data comprise selected critical information, reflecting key object
characteristics, thereby facilitating enhanced learning capabilities for neural networks.
When a manually extracted feature is unable to meet the requirements, it is possible to input
all the information into the neural network and let the neural network extract the effective
information. Spectra can be regarded as a kind of whole data, and some researchers have
utilized one-dimensional convolutional layers to process spectra data in a manner similar
to image processing techniques [30]. On the other hand, it is important to acknowledge
that there are differences between spectra and images. One of the rationales supporting
the suitability of convolutional neural networks (CNNs) for image data processing lies in
their capability to adeptly acquire spatial information in images. In other words, CNNs are
capable of capturing the correlations between adjacent pixels, thereby acquiring knowledge
about the spatial relationships within the image [31]. However, there is generally no
significant correlation between adjacent spectral lines in the frequency domain. Hence, it is
not optimal to use a convolutional neural network to process the spectra like pictures but
to treat each spectral line of the spectrum as an independent feature.

However, under variable operating conditions, directly using the spectral data as
features for training a neural network consisting of fully connected layers is also not an
ideal choice. For instance, in Figure 1b, frequency components with the same meaning are
denoted by lines of the same color, yet their positions within the spectrum differ. Hence, if
the spectrum is directly fed into a neural network, the features entering the same neural unit
will not be consistent with each change in rotational speed. This makes it difficult for the
neural network to extract meaningful information from the data. Hence, it is crucial to align
the frequency components with the same significance in spectra to the same positions before
feeding them into the neural network. This alignment process ensures that the network
can effectively capture the relevant information and improve accuracy and interpretability.
The results obtained from this operation are similar to the order spectrum. However, order
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spectra are primarily used for cases where the rotational speed is continuously changing,
and they require higher demands on data acquisition. It is necessary to have key phase
signals with the same sampling frequency as the vibration signal. However, in practical
gas turbine monitoring, achieving this is challenging. In this study, the acquired vibration
data comprise not an entirely continuous waveform but rather numerous short waveform
segments, each with a brief data collection period. The rotational speed of the gas turbine
transitions between several stable values instead of exhibiting continuous changes, and each
waveform segment corresponds to a nearly constant rotational speed. Consequently, order
spectrum analysis is not applicable to such data. The proposed spectra alignment method
in this paper is more easily implementable and preserves the meaningfulness of amplitude
information, better meeting the requirements of neural networks for data processing.

Figure 1. Demonstration of spectra alignment using gas turbine vibration spectra under six opera-
tional conditions.

To align the spectra, it is necessary to subject the spectra to varying degrees of com-
pression, contingent upon the rotational speeds. The compression rate r of the spectrum is
defined by the following equation:

r =
n
m

(2)

where n represents the length of the original spectrum, and m represents the length of the
aligned spectrum. The maximum compression rate, denoted as γ, is defined based on the
spectrum with the highest rotational speed in the training set. To ensure alignment of the
compressed spectra, r for other spectra can be calculated using the following formula:

r =
γ× rpm
rpmmax

(3)

where rpm is the rotational speed corresponding to the spectrum, and rpmmax is the
maximum rotational speed of the training set. The maximum compression rate γ is decided
according to the actual situation, and its value should be at least larger than the ratio of
the largest rotational speed to the smallest rotational speed in the training set; otherwise,
some of the spectrum compression rates will be less than 1. A larger γ can be chosen to
reduce the data length when the spectral data are long, which can reduce the number of
neural network parameters, similar to pooling operations. Define mmin as the length of the
compressed spectrum corresponding to the maximum compression rate. In order to ensure
the same length of the compressed spectra, only the first mmin data points are retained in
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each spectrum. In practice, the test set may have a higher rotational speed than the training
set, so a figure smaller than mmin can be chosen as the length of the retained data.

The compression operation of the spectrum is to merge r consecutive data points
into one dataset with the spectrum energy constant. It is merged by obtaining the sum
of squares of these data and then taking the root of the sum. The i-th data of the merged
spectrum is calculated by the following equations:

L = (i− 1)r (4)

R = ir (5)

SA
i =

√√√√⌊R⌋−1

∑
n=⌈L⌉

S2
n + S2

⌈L⌉−1(⌈L⌉ − L) + S2
⌊R⌋(R− ⌊R⌋) (6)

where L and R are the left side and right side of the merging range, ⌊•⌋ denotes rounding
down to the nearest integer, ⌈•⌉ denotes rounding up to the nearest integer, SA

i is the
i-th term of the aligned spectrum, Sn is the n-th term of the original spectrum. The i-th
data point of the merged spectrum is obtained by combining L-th to R-th data points of
the original spectrum, but since r is not an integer, the head and tail data points need
to be sliced during the merging. The computation process of Formula (6) can be more
readily comprehended through Figure 2. A special case is that when L is equal to 0, S2

⌈L⌉−1
cannot be calculated—it should be set to zero—and when R is equal to the length of the
spectrum, S2

⌊R⌋ also should be set to zero. This adjustment ensures the proper calculation
of the formula.

Figure 2. Demonstration of Equation (6).

Figure 1 demonstrates the effect of spectra alignment under six different operating
conditions (①–⑥). Figure 1a shows the six working conditions of the spectra, Figure 1b
shows the result of reducing using a ratio of 10:1, where the square root of the quadratic
sum of the 10 data points is taken in order to be consistent with the operation of spectra
alignment, and Figure 1c shows the result of spectra alignment with the parameter γ equal
to 10. Three frequency components significantly correlated with the rotational frequency are
marked with dashed lines of three colors in Figure 1, and since each spectrum corresponds
to a different rotational speed, the corresponding frequency components in Figure 1b all
have different positions which are related to the rotational speed, while in Figure 1c, the
corresponding frequency components are all at the same position.
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2.2. Self-Adaptive Global Normalization

Before training a neural network, the data are generally normalized to avoid gradient
explosion and to speed up the training process of the network by adjusting the data range.
The common normalization method is a linear variation of the original data to map the
data to the range [0,1]. Each spectrum can be viewed as a one-dimensional array. There are
three normalization methods that can be chosen for such data:

1. Feature normalization: Each corresponding data point across various spectra is nor-
malized using the same parameters. This means that the normalization is performed
independently for each position across all spectra.

2. Instance normalization: Each spectrum is normalized using the same parameters.
This normalization is applied separately to each spectrum, regardless of the position
of the data points.

3. Global normalization: All the data points in all the spectra are normalized using
the same parameters. The normalization is performed collectively on all the spectra,
treating them as a single set of data.

As mentioned in the previous section, each data point in the spectrum can be consid-
ered as a separate feature. Therefore, it is evident that feature normalization is a suitable
normalization method for spectra. However, in practice, the best result is achieved by using
global normalization and employing a self-adaptive nonlinear normalization method.

The main idea of self-adaptive normalization is to linearly transform the majority of
the main data points to the range [0,1] and apply a nonlinear transformation to extreme
outliers. This method utilizes a nonlinear piecewise function to map all the data points to
the range of (−1, 2). The function is defined as follows:

xnorm =


−e(1−

x−k1
k2−k1

)
+ 2, x > k2

x−k1
k2−k1

, k1 ≤ x ≤ k2

e(
x−k1

k2−k1
) − 1, x < k1

(7)

where x is the original data, xnorm is the normalized data, k1 and k2 are the two parameters
of normalization, which act similarly to the maximum and minimum values in linear
normalization, and their values are determined by the distribution of the data. The upper
bound t1 for k1 and the lower bound t1 for k1 are first determined using the quadrature
distance method:

IQR = Q3 −Q1 (8)

t1 = Q1 − 1.5× IQR (9)

t2 = Q3 + 1.5× IQR (10)

where Q1 represents the first quartile, Q3 represents the third quartile, and IQR represents
the interquartile range. To prevent the clustering of data from being divided by k1 or k2,
it is necessary to determine the suitable splitting points based on the density of the data.
Here is the process to determine the splitting points:

1. Sort the data in ascending order.
2. Compute the difference between two adjacent data points.
3. Compute the average of these differences and multiply it by 10 to obtain the thresh-

old value.
4. Identify all data points whose difference values exceed the threshold. These points

are considered as potential splitting points.
5. Find k1, which is the first splitting point that is less than or equal to t1.
6. Find k2, which is the left neighbor of the first splitting point that is greater than or

equal to t2.

For the sake of facilitating comprehension of the computational procedure, Algorithm 1
provides the pseudocode for this algorithm.
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Algorithm 1 Find Normalization Parameters k1 and k2

Require: data (array of numeric values), t1 (numeric value), t2 (numeric value)
Ensure: k1, k2 (numeric values)

1: Sort the data in ascending order.
2: Initialize an empty array di f f erence.
3: for i← 0 to len(data)− 2 do
4: di f f erence[i]← data[i + 1]− data[i]
5: end for
6: threshold← mean(di f f erence)× 10
7: index ← where(di f f erence > threshold)
8: for i← 0 to len(index)− 2 do
9: if data[index[i]] ≤ t1 and t1 < data[index[i + 1]] then

10: k1← data[index[i]]
11: end if
12: if data[index[i]] < t2 and t2 ≤ data[index[i + 1]] then
13: k2← data[index[i + 1] + 1]
14: end if
15: end for

This approach helps ensure that data points that are closely clustered together are not
split by the selected splitting points, allowing for a more appropriate determination of the
splitting points based on the density of the data. The difference between proposed self-
adaptive normalization and some common normalization methods is visualized in Figure 3.
The use of 0–1 normalization methods can diminish the differences in low-amplitude fre-
quency components, making it difficult for neural networks to learn meaningful information
from them, especially when certain frequency components have extremely high amplitudes.
The data range after Z-score normalization may be extensive, and excessively large numeri-
cal values can induce instability during neural network training, thereby compromising the
learning capacity of the neural network. The Sigmoid function is a non-linear normalization
function commonly employed as an activation function in neural networks. It lacks the
ability to adjust its parameters based on the target data, rendering its effectiveness relatively
unstable. As illustrated in Figure 3c, the differences in high-amplitude data are excessively
diminished. Self-adaptive normalization enhances the distinctiveness of low-amplitude
components of different spectra while preserving the information of high-amplitude com-
ponents. This allows neural networks to capture more information from spectra. Choosing
overall normalization along with the self-adaptive normalization method can reduce the
overall impact of the very high-amplitude spectral components of the spectra with high
rotational speed. Instance normalization can achieve the same benefits by using the self-
adaptive method, as shown in Figure 3d. However, since feature normalization employs
different parameters for different frequency components, the self-adaptive method does
not offer significant improvements in this case. The reason for choosing adaptive global
normalization is that it can amplify the information of low-amplitude components while
preserving the importance differences among different components. In general, frequency
components with higher amplitudes tend to carry more significance in the spectrum. By
using adaptive global normalization, the neural network can appropriately scale the am-
plitudes of all components, thereby ensuring the preservation of significance differences
among various frequency components. But feature normalization does not consider the
varying importance levels of different frequency components based on their amplitudes.
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Figure 3. Comparison of proposed self-adaptive normalization and some common normaliza-
tion methods.

2.3. Anomaly Detection Process

Figure 4 shows a complete gas turbine anomaly detection process, including data
acquisition, spectra alignment, data normalization, training neural networks, and con-
structing anomaly indicators. The neural network adopts the β-VAE using a progressive
training method, which is called Degressive Beta Variational Autoencoder (DBVAE) in this
paper in order to differentiate from the original β-VAE. The anomaly indicator uses the
reconstruction error adjusted according to the working condition information, which can
achieve better performance on data under time-varying operation conditions.

The β-VAE was initially proposed and applied in the field of computer vision [32],
and then its disentangling ability was discussed [33]. In this study, we adopted the model
architecture of β-VAE and employed a similar progressive training approach. Compared to
conventional autoencoder (AE), this model has higher robustness. The loss function of the
ordinary β-VAE is as follows:

L(θ, ϕ; x, z, β) = Eqϕ(z|x)[log pθ(x|z)]− βDKL
(
qϕ(z|x)||p(z)

)
(11)
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where the first item in the formula is reconstruction error and the second item is Kullback–
Leibler loss (KL loss), which is the KL divergence between the distribution of the latent
variable and the Gaussian distribution. In β-VAE, the latent variables are not learned
directly as values, but rather as distributions. The KL divergence between the distribution
used for sampling the latent variables and the Gaussian distribution represents the amount
of information contained in those latent variables. A higher KL divergence indicates a
greater amount of information captured by the latent variables. The KL loss in β-VAE
introduces an information bottleneck in the model. The parameter β controls the strength
of this bottleneck. A higher value of β imposes a stronger constraint on the bottleneck,
resulting in a more compact representation of the latent variables. Conversely, a smaller
value of β relaxes the constraint and allows for more expressive latent variables.

Figure 4. Flowchart of the proposed gas turbine anomaly detection method process.

The progressive training method for DBVAE starts with a relatively large initial value
of β during the early stages of training to encourage disentanglement of the latent variables.
As the training progresses, the value of β is gradually decreased, allowing the model to
improve the reconstruction accuracy of the input data. The strategy for adjusting the β
value is as follows:

β = b× 0.5iter×d (12)

where iter represents the number of training iterations, and b and d are two parameters that
are used to control the initial value and the rate of decrease for β, respectively. This training
strategy allows the latent variables of the model to be activated one by one, rather than
increasing the information content of all latent variables simultaneously. This prioritization
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of learning important features and ignoring minor information helps make the learned
features more stable and reduces interference, thereby improving the model’s robustness.

Anomaly detection tasks using models with an encoder–decoder structure generally
use the mean square error (MSE) of the model input data and output data to determine
the degree of anomalies. However, in this task, the vibration amplitude varies with the
rotational speed, and the MSE values can differ between different operating conditions.
Generally, data with larger amplitudes correspond to larger MSE values. In order to mini-
mize the interference caused by this phenomenon, we propose a multi-category anomaly
index (MCAI), which is obtained by adjusting the MSE values according to the categories.
MCAI is calculated by the following equation:

MCAIi =
MSEi − µn

σn
− c (13)

where i is the index of data, n is the category of the i-th data, µn and σn are, respectively,
the mean and standard deviation of all MSE in category n from the validation set. c is the
minimum MCAI value of the training set and validation set, which is used to adjust the
MCAI value to a positive scale.

While rotational speed is not the sole indicator of the operating condition of the
engine, manual classification based on actual operating conditions would be the best choice.
However, in practical industrial applications, it may be difficult to manually classify data
based on operating conditions. In such cases, the clustering method is a good alternative
approach. Since the rotational speed comprises relatively simple, one-dimensional data, the
clustering method directly adopts the classical k-means clustering algorithm [34], which has
a good effect and fast convergence. The number of clusters in the k-means algorithm can
be determined by comparing the silhouette coefficient [35] of different clustering results.

3. Experimental Results and Analysis
3.1. Dataset Description

The effectiveness of the proposed method is validated using a set of vibration data
collected from a real gas turbine. The signal is captured using a data acquisition unit with
an acceleration sensor installed in the horizontal of the inlet casing as shown in Figure 5.
The data were sampled at a frequency of 51.2 kHz with a sampling interval of 3 s. Each
sample consists of a vibration signal of 0.32 s, resulting in a sample length of 16,384. The
dataset comprises eight test runs. Figure 6 illustrates the variations in the low-pressure
compressor’s rotational speed during the first test run, with the subsequent seven test runs
exhibiting similar patterns. The speed value in Figure 6 is normalized by dividing it by
the maximum speed value, and it is only used to show the trend of change in working
conditions. During the fifth operational run, an incident of Foreign Object Damage (FOD)
occurred due to the ingress of small metal fragments into the low-pressure compressor. The
suddenness of FOD makes it unpredictable. The magnitude of this failure was so minor
that it did not even affect the normal operation of the combustion turbine, and, due to the
low level of the failure, resulted in its features being masked by the changing operating
conditions. The complexity inherent in these factors renders the detection of such failures
exceptionally challenging. The dataset initially contained 64,977 samples, and after filtering
out the data during shutdown periods, a total of 55,082 usable samples remained. Among
these samples, there are 33,963 samples representing healthy operating conditions and
21,119 samples representing abnormal operating conditions. In the subsequent experiments,
the first test run dataset consisting of 6963 samples will be used as the training set, the
second test run dataset consisting of 6983 samples will be used as the validation set for
model adjustment and anomaly indicators, and the remaining data will be used as the
test set.
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Figure 5. The mounting position of the acceleration vibration sensor is indicated by the red box.

Figure 6. The change in low-pressure air compressor rotational speed in the first test run.

3.2. Validation and Comparison

To validate the effectiveness and superiority of the proposed method, a comparison
was made with traditional feature extraction methods for anomaly detection. Specifically,
20 time-domain and frequency-domain features were extracted using traditional feature
extraction techniques. The extracted time-domain features include mean, absolute mean,
variance, standard deviation, peak, root mean square, root mean square amplitude, kurtosis,
skewness, crest factor, peak-to-peak, average energy, clearance factor, waveform factor, and
impulse factor. The extracted frequency-domain features include spectral centroid, mean
frequency, root mean square frequency, standard deviation frequency, and spectral entropy.
The extracted time-domain and frequency-domain features, along with the rotational speed,
totaling 21 features, were used to train the DBVAE network. All neural network models
in this paper are constructed using TensorFlow 2.6 and trained utilizing NVIDIA GeForce
GTX 1050 Ti. The Adam optimizer was employed with a learning rate of 0.001. The initial
beta value b was set to 0.01, and the β decay rate d was set to 0.001. The network was
configured with eight latent variables, and both the encoder and decoder consisted of two
hidden layers with 32 neurons each. The obtained results of anomaly detection are shown
in Figure 7. The results show that the anomaly index seems increase slightly after the
occurrence of the fault compared to before. However, the differences are not significant,
and there are some instances where higher anomaly values may be attributed to operating
conditions outside the range of the training set. As a result, it is difficult to determine
the exact time of the fault occurrence or even confirm whether a fault has occurred in the
engine. Figure 8 shows some of the extracted features, and the features are greatly affected
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by the change in rotational speed. In the figure, the last three tries have some distributional
differences from the previous data. Although the distribution of the features before and
after the failure is different under specific operating conditions, especially under high
operating conditions, the overall distribution of the features after the failure is still within
the range of the pre-failure distribution, which is why it is difficult to detect the anomaly.

Figure 7. The results of using the DBVAE model for anomaly detection with traditional time-domain
and frequency-domain features.

Figure 8. Visualization of three prominent features in traditional features: root mean square, skewness,
and shape factor.

When employing full-spectrum data for anomaly detection, the neural network’s
parameter count is reduced by removing high-frequency components that lack effective
information from the obtained spectra. Consequently, the resultant length of each spectrum
is 6400. The spectra are then aligned with the parameter γ set to a value of 10, and the final
length of the data samples used for training the neural network is reduced to 640. In order
to obtain data of the same length, the data without spectra alignment were reduced in a 10:1
ratio using the method of calculating the square root of the sum of squares for every 10 data
points. It is noteworthy that the computational time for the individual spectrum with this
process is approximately 3.09 ms, while the time for spectrum alignment is about 3.49 ms,
indicating little difference between the two methods. However, as the data scale increases,
the computation time for spectrum alignment grows linearly due to the challenges in
vectorized operations, highlighting its computational disadvantage. Nevertheless, in real-
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time anomaly detection scenarios, where processing large volumes of data simultaneously
is rarely encountered, this disadvantage is practically inconsequential.

In this experiment, the model is configured with 32 latent variables, and both the
encoder and decoder have two hidden layers with 64 neurons each. The optimizer used
is Adam with a learning rate of 0.001. The parameter b is set to 0.01, and the parameter
d is set to 0.001. Figures 9 and 10 show the anomaly detection results obtained without
and with spectra alignment, respectively. Additionally, Figure 11 shows the training curves
of the two models. The alarm threshold is determined based on the validation set and
is set to three times the 95th percentile of the anomaly index in the validation set. In
Figure 9, on the whole, it can be observed that the anomaly index shows a slight increase
after the occurrence of the fault. However, it is difficult to determine the occurrence of the
fault from the graph. In Figure 10a, the anomaly occurs at the 33,964th data point, and
the alarm is triggered at the 35,845th data point, which is approximately 1.5 h after the
occurrence of the fault. The false alarm rate is about 0.15%. Indeed, given the relatively
mild severity of the fault, its impact on the engine’s operation was minimal. The detection
of the fault occurred during an internal bore inspection conducted after the engine had
been in continuous operation for a certain duration. In comparison to the aforementioned
scenarios, the proposed method was able to detect the anomaly earlier. There are two main
reasons for the delay in the alarm after the occurrence of the fault. Firstly, the fault had a
relatively low severity, and some operating conditions, especially low rotational speed, did
not exhibit significant anomalies in the vibration data. Secondly, the limited training data
coverage contributed to the issue. The training data covered a narrow range of operating
rotational speeds, and data points with speeds outside the training range resulted in higher
anomaly indexes. To reduce false alarms, a higher threshold was set for the alarm, leading
to a delay in detection. The difference in rotational speed between the data points with
high anomaly scores and the data in the training set is shown in Figure 10b . The two red
circles on the right correspond to the high-anomaly regions in Figure 10a. The two green
circles on the left represent the rotational speed of the corresponding operating conditions
in the training set. With a larger training dataset that covers a wider range of rotational
speeds, the false alarm rate of this method can be further reduced. Moreover, it would
enable faster detection and alarm for faults with higher levels of anomaly.

To quantitatively evaluate the efficacy of both spectra alignment and self-adaptive
normalization, the AUC (Area Under Curve) value is employed as the comparative metric.
The AUC value is defined as the area beneath the Receiver Operating Characteristic (ROC)
curve. The ROC curve’s horizontal axis represents the false positive rate, while the vertical
axis represents the true positive rate. The AUC value ranges from 0 to 1, with higher
values signifying superior performance in distinguishing between healthy and anomalous
data. An AUC value of 1 indicates an ideal classifier capable of completely segregating
healthy and anomalous data, while an AUC value of 0.5 implies performance equivalent to
random guessing.

Figure 9. The results of using the DBVAE model for anomaly detection without spectra alignment.
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Figure 10. The results of using the DBVAE model for anomaly detection with spectra alignment and
rotational speeds corresponding to partial data.

Figure 11. Training curves of the DBVAE models for anomaly detection with and without spectra
alignment.

In Table 1, clustering MCAI is obtained by adjusting the MSE by using the clustering
result of k-means; manual MCAI is obtained by adjusting the MSE based on the manual
classification of the operating conditions. Manual MCAI shows better performance than
clustering MCAI, but the difference is minimal. This implies that in scenarios where
the manual classification of operating conditions poses challenges, employing clustering
methods as an alternative can yield comparable outcomes. Comparing the results with and
without spectra alignment, it can be observed that spectra alignment greatly improves the
effectiveness of anomaly detection in all cases. Comparing the six normalization methods
after spectra alignment, it can be seen that self-adaptive global normalization performs
the best when using the effective MCAI. Self-adaptive instance normalization is the next
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best option, while global normalization performs the worst. Table 1 suggests that the
self-adaptive normalization method significantly improves the global normalization and
also provides some improvement over instance normalization, while feature normalization
was almost unaffected. Compared to feature normalization methods, self-adaptive global
normalization, while aiming to enhance the neural network’s ability to capture information
from low-amplitude components to the greatest extent possible, preserves the amplitude
differences between various frequency components. Although low-amplitude components
may also contain valuable information, it is evident that the significance of high-amplitude
components is more pronounced. The retention of this differential information is why self-
adaptive global normalization achieves optimal effectiveness with the assistance of spectra
alignment. However, despite the remarkable effectiveness of self-adaptive normalization,
its computational speed is slightly slower compared to the conventional 0–1 normalization
method, primarily due to the use of piecewise functions in the data transformation process.
In the processing of one hundred thousand data points, self-adaptive normalization takes
0.0185 s, while conventional 0–1 normalization takes 0.0184 s. However, with a dataset size
in the order of ten million, the respective times are 2.84 s for self-adaptive normalization
and 1.60 s for conventional 0–1 normalization. Therefore, in cases where the dataset is
relatively small or when prioritizing method effectiveness, self-adaptive normalization
can be employed. However, in situations where the dataset is large and there is a higher
demand for computational efficiency, feature normalization should be preferred.

Table 1. AUC values obtained from anomaly detection using DBVAE model.

Spectra
Alignment Normalization Method MSE Clustering

MCAI Manual MCAI

×

Instance 0.624 0.629 0.627
Self-adaptive Instance 0.526 0.536 0.549

Feature 0.629 0.668 0.675
Self-adaptive Feature 0.630 0.692 0.667

Global 0.521 0.504 0.516
Self-adaptive Global 0.614 0.652 0.639

✓

Instance 0.738 0.773 0.769
Self-adaptive Instance 0.719 0.807 0.810

Feature 0.824 0.886 0.887
Self-adaptive Feature 0.824 0.886 0.890

Global 0.618 0.726 0.743
Self-adaptive Global 0.782 0.898 0.903

To compare the effect of spectra alignment on the enhancement of fully connected and
one-dimensional convolutional layers, DBVAE as well as three other models of classical
encoder–decoder structures were used for validation, and the results are shown in Table 2.
All models have the same optimizer settings and latent variable count as the DBVAE
model discussed in the previous section on processing spectral data. The configuration of
hidden layers in the fully connected networks is consistent with the previous subsection.
The configuration of encoders and decoders in the networks with convolutional layers
is described in Table 3. The β value for β-VAE models is set to 0.01, and the β variation
parameter for DBVAE models is the same as mentioned in the previous section. Overall,
the effects of using spectra alignment are all significantly better than not using spectra
alignment, and the enhancement effect of spectra alignment on the fully connected layer is
better than its enhancement effect on the convolutional layer, with the best effect of DBVAE
using the fully connected layer. This is because, without alignment, the convolutional layers
are able to learn spatial information from the spectrum, resulting in better performance. On
the other hand, after alignment, the data are treated as separate features, and the spatial
information becomes less effective, leading to the convolutional layers performing worse
than the fully connected layers.
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Table 2. AUC values obtained for abnormality detection using 8 models.

Spectra Alignment
Fully Connected Layer Convolutional Layer

VAE β-VAE AE DBVAE VAE β-VAE AE DBVAE

× 0.633 0.632 0.603 0.652 0.633 0.649 0.665 0.684
✓ 0.835 0.872 0.887 0.898 0.832 0.868 0.882 0.879

Table 3. Setting of hidden layers of encoders and decoders using convolutional layer.

Encoder Decoder

Layer Kernel Size Stride Layer Kernel Size Stride

Conv1D 7× 7× 16 2 Conv1DTranspose 3× 3× 32 2
MaxPool1D 2× 2 2 Conv1DTranspose 3× 3× 16 2

Conv1D 3× 3× 16 2 UpSampling1D \ 2
Conv1D 3× 3× 32 2 Conv1DTranspose 7× 7× 1 2

Due to the utilization of experimentally acquired data in the study, it inherently
contains a certain level of noise interference. To assess the proposed method’s resilience to
noise, additional noise of varying intensities was deliberately introduced into the dataset. In
this experiment, spectra alignment and global self-adaptive normalization were employed,
while the parameters of the DBVAE network were configured with the same settings as
described earlier. Figure 12 illustrates the variation curve of AUC values under different
signal-to-noise ratios (SNRs), where a higher SNR corresponds to lower added noise energy.
It can be observed that the AUC value experiences a substantial decrease when the SNR is
10. However, for SNR values greater than 15, the performance degradation of the proposed
method becomes less pronounced.

Figure 12. The variation in AUC values with the intensity of added noise.

4. Conclusions

In order to realize the anomaly detection of gas turbines in time-varying operating
conditions, this paper proposes a data processing framework for improving the perfor-
mance of neural networks. By utilizing spectra alignment, the learning ability of the neural
network on the spectrum data can be effectively improved. Furthermore, the application of
self-adaptive global normalization preserves the characteristics of prominent components
in the spectrum, simultaneously emphasizing the features of weak components, thereby
augmenting the learning efficacy of the neural network. The effectiveness of the proposed
method was verified by a set of gas turbine FOD fault data collected under time-varying
operating conditions. The method proposed in this paper solves the problem of the ineffec-
tiveness of using neural network models to analyze spectral data obtained under different
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rotational speeds. In the experiment, an AUC value of 0.903 was achieved. Moreover, this
method can be extended to other rotating equipment for anomaly detection tasks and fault
diagnosis tasks under time-varying operating conditions.

The effectiveness of the method relies on having enough data that include a wide range
of operating conditions. If the operating conditions to be detected deviate significantly
from the training data, even in the absence of faults, the anomaly indicator may exhibit
higher values, thereby impacting the accuracy of the anomaly detection results. Therefore,
improving the model’s generalization capability to perform well on operating conditions
beyond the training set is a valuable research goal. In addition, it is evident that spectra
alignment exhibits favorable performance primarily in scenarios involving variations in
rotational speed, whereas normalization methods are generally applicable across a broader
range of situations.
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