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Abstract: Edible insects have been recognised as an alternative food or feed ingredient due to their
protein value for both humans and domestic animals. The objective of this study was to evaluate the
ability of both near- (NIR) and mid-infrared (MIR) spectroscopy to identify and quantify the level
of adulteration of cricket powder added into two plant proteins: chickpea and flaxseed meal flour.
Cricket flour (CKF) was added to either commercial chickpea (CPF) or flaxseed meal flour (FxMF)
at different ratios of 95:5% w/w, 90:10% w/w, 85:15% w/w, 80:20% w/w, 75:25% w/w, 70:30% w/w,
65:35% w/w, 60:40% w/w, or 50:50% w/w. The mixture samples were analysed using an attenuated
total reflectance (ATR) MIR instrument and a Fourier transform (FT) NIR instrument. The partial
least squares (PLS) cross-validation statistics based on the MIR spectra showed that the coefficient of
determination (R2

CV) and the standard error in cross-validation (SECV) were 0.94 and 6.68%, 0.91
and 8.04%, and 0.92 and 4.33% for the ALL, CPF vs. CKF, and FxMF vs. CKF mixtures, respectively.
The results based on NIR showed that the cross-validation statistics R2

CV and SECV were 0.95 and
3.16%, 0.98 and 1.74%, and 0.94 and 3.27% using all the samples analyzed together (ALL), the CPF
vs. CKF mixture, and the FxMF vs. CKF mixture, respectively. The results of this study showed the
effect of the matrix (type of flour) on the PLS-DA data in both the classification results and the PLS
loadings used by the models. The different combination of flours (mixtures) showed differences in the
absorbance values at specific wavenumbers in the NIR range that can be used to classify the presence
of CKF. Research in this field is valuable in advancing the application of vibrational spectroscopy as
routine tools in food analysis and quality control.

Keywords: insect; flour; infrared; NIR; MIR; classification

1. Introduction

The nutritional value of plant proteins depends on their botanical origin, as well as
technological processes or transformations, which can be determined by either the use
of biological (e.g., enzymatic treatment) or physical methods (e.g., extrusion) [1–3]. In
addition to the nutritive value and amino acid content, the digestibility of the protein is also
an important quality parameter that is considered when evaluating the quality of different
sources of alternative proteins [4,5].

Edible insects have been recognised as an alternative food or feed ingredient due to
their high protein content for both humans and domestic animals [1–5]. The use of these
ingredients in both foods and feeds has increased due to their unique chemical composition,
nutritive value, and functional properties [5,6]. Edible insects can be consumed as whole
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insects; however, they might be rejected by the consumers, particularly as insects are
usually associated with vectors of diseases and perceived as a health risk by humans [7,8].
Therefore, processing the insects (e.g., drying, milling, and extrusion) into flour, powders,
or pellets has been associated with an increase in consumer acceptability [9,10].

The utilization of insects as alternative sources of protein has increased, where the
number of research and development projects on these food ingredients has been steadily
growing in recent years [9–11]. It has been reported that edible insects have been used as in-
gredients in wheat bread fortification (e.g., mealworms, buffalo worms, and crickets) [9–11]
and as functional ingredients to improve the biological and nutritional value of traditional
and gluten-free breads, as well as to increase the protein content of muffins [9–12]. It has
been also reported that the incorporation or mixing of insect flour with cereals and other
starchy ingredients can create characteristic aroma notes or improve the texture of the foods,
such as increasing the hardness of the end product or improving the consistency of the
flour [9–12]. However, insect flour can also contain chitin and chitosan that can contribute
positively to inhibiting the growth of some microorganisms present in the food matrix,
although the presence thereof could result in the over analysis of the protein content [9–12].
In recent years, the consumers’ concerns about the safety and origin of the food ingredients
and food products have intensified due to several issues that have disrupted the food sup-
ply and value chains; one such issue was the adulteration of milk powder with melamine
in China to increase the protein content of milk powder [13,14]. Consequently, the need to
develop and implement systems to guarantee the safety of foods is necessary for both the
consumers and the food manufacturing industry. Several techniques and methods have
been evaluated or proposed by several research groups to address these issues.

It is well known that the estimation of the proximate composition (e.g., proteins,
starches, and carbohydrates) of a food ingredient or product provides limited information
about the quality as well as other characteristics of the food, including its safety [13–16].
Additionally, the determination of the proximate composition of a food ingredient or prod-
uct does not necessarily reflect the actual level of, for example, protein, which may be
enhanced with insect protein (containing high levels of chitin), resulting in the adulteration
or contamination of the sample [13–16]. The other techniques used by the food manufactur-
ing industry to assess the composition of this type of foods including high-performance
liquid chromatography (HPLC), gas chromatography (GC), mass spectrometry (MS), or
even the use of sensory analysis [13–16].

Vibrational spectroscopy methods, such as near- (NIR) and mid- (MIR) infrared and
Raman spectroscopy, have been recognized by the feed and food industries as practical
analytical methods, as they provide the users and consumers with not only with a fast
and inexpensive method, but also with a non-destructive alternative to monitoring and
quantifying composition, functionality, and safety (e.g., adulteration, contamination, and
fraud) [16–20]. As mentioned, food safety and security have become an important topic for
consumers, as the addition of contaminants to foods, exacerbated by food fraud issues, can
have important health and nutrition implications for humans [16–20]. Both the feed and
food manufacturing industries are also interested in guaranteeing the safety of the feeds
and food ingredients, as well as their products [16–20]. This is of especial importance in the
current market, as the demand for alternative sources of proteins has increased recently.

A significant advantage of vibrational spectroscopy techniques is the ability to target
food safety concerns along the supply and value chains [16–20]. These techniques have been
used to detect and quantify the presence of contaminants, such as allergens, mycotoxins,
pesticides, and heavy metals, and as traceability tools to monitor the fraudulent provenance
of different plant protein ingredients and products [16–20]. Overall, ensuring the safety
of both the alternative source- and plant-based protein foods is crucial to prevent adverse
health effects and maintain consumer confidence in this type of staple food [16–20].

The utilization of vibrational spectroscopy (e.g., MIR and NIR) to evaluate and detect
the presence of insects’ contaminants either as whole insects or fragments in cereals, such as
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wheat, rice, and sorghum, is not new [21–24]. More recently, infrared (IR) spectroscopy has
been reported to assess and quantify the content of protein in insect-based energy bars [25].

Both MIR and NIR spectroscopy provide reliable and efficient means of monitoring and
evaluating the occurrence of potential adulteration or contamination throughout the supply
chain, thereby contributing to maintaining the integrity of the supply chain [26–30]. The use
of these techniques allows for the determination of spectral fingerprints or signatures that
can be used for authenticating and identifying food ingredients and food products [26–30].
They can also be used to verify the origin of plant-based protein ingredients by preventing
adulteration and ensuring that the products meet the claimed standards and labelling
requirements stated by the regulators [26–30]. This is particularly important as the plant-
based protein industry continues to expand, and there is a need to maintain transparency
and trust in the market [26–30].

Although, both MIR and NIR spectroscopy have demonstrated their potential to assess
the adulteration and contamination of different types of binary mixtures across various food
ingredients and products (e.g., cereals), there is still a shortage of research that examines
the influence of the matrix on the IR spectra and the classification results in mixtures of
insects with different plant and cereal flours [20]. The utilization of IR spectroscopy has been
widely recognized as a valuable tool by the manufacturing food industry due to its ability to
provide an initial level of screening not only about the chemical composition of the samples,
but also about other characteristics, including the level of intentional contamination [26–30].
This advantage has been explored by researchers and the food manufacturing industry
along the supply and value chains, enabling more costly methods to be used more efficiently
on the suspect samples. In addition, these techniques can be easily implemented by the food
manufacturing industry during the processing, transport, and storage of food ingredients
and products [26–30]. Whereas the measurement of the chemical composition of food
ingredients is highly desirable to optimize the processing of alternative proteins, the
utilization of IR spectroscopy as a qualitative screening tool provides the means to monitor
and detect the presence of adulterants or defects, or even fraud [26–30]. Consequently,
the incorporation of IR spectroscopy into the toolbox of analytical methods will allow for
the guarantee of the composition and safety of food ingredients and products, thereby
increasing efficiency and productivity in the food industry, as well as being a means to
protect the consumers.

Therefore, the objective of this study was to evaluate the ability of both near- (NIR)
and mid-infrared (MIR) spectroscopy to identify and quantify the level of adulteration of
cricket powder added to two plant protein (chickpea and flaxseed) meal flours.

2. Materials and Methods

The addition of cricket flour (CKF) to either commercial chickpea flour (CPF) or
flaxseed meal flour (FxMF) was evaluated. Three different batches of CKF (approx. 1 kg
each) were purchased on the Australian market as cricket protein powder (NSW, Australia).
In addition, three different batches of commercial CPF and FxMF (approx. 1 kg each) were
also purchased from a local supermarket in the Brisbane area (Queensland, Australia).
An aliquot was taken from each of the batches, where binary mixtures were made using
different proportions as reported elsewhere (e.g., 100%, 90%, 80% w/w, etc.) [31]. This
procedure was repeated for the three baches. The CKF contains 60% crude protein (CP),
17% crude fat (CF), and 23% total fibre (TF), while CPF contains 21% CP, 8% CF, and FxMF
18%, and 42% CP and CF, respectively. The addition of small quantities of CFK to either
CPF or flaxseed flour (FxMF) was also evaluated (from 1 to 10%). In this case, mixtures of
CKF with CPF and FxMF were prepared in triplicate.

FT-NIR and FT-MIR spectra of the pure and mixture samples were collected using a
Bruker Tango-R spectrophotometer (average of 64 interferograms collected at a resolution
of 4 cm−1 in the 11,550 to 3950 cm−1 range) and a Bruker Alpha instrument fitted with an
attenuated total reflectance (ATR) platinum diamond single-reflection module (average
of 24 coadded interferograms at a resolution of 4 cm−1 in the 4000 to 400 cm−1 region)
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(Bruker Optics GmbH, Ettlingen, Germany). The cuvettes and ATR cell were cleaned with
a mixture of 70% ethanol in water (v/v) and dried with laboratory Kimwipes® between
sampling. Details about the spectra collection (wavenumber range and data points) can be
found in the previous reports [31,32].

Both the MIR and NIR spectra were exported from the instrument to Vektor Direktor™
(Version 1.1; KAX Group, Sydney, NSW, Australia) using OPUS software (v. 8.5) for
chemometric analysis. Before data analysis and classification, the NIR spectra were pre-
processed using the Savitzky–Golay second derivative (second polynomial order and
21 smoothing points) [33]. Principal component analysis (PCA) and partial least squares
regression analysis (PLS) were used to classify the flour mixture samples according to the
level of adulteration. The PCA and PLS models were validated using cross-validation (leave
one out) [34–36]. The PLS regression models were also evaluated by dividing the data set
into calibration and validation sets using the Kennard–Stone algorithm [37]. In this study,
40 samples were selected to develop the calibration models, while the remaining 20 samples
were used for validation. The K-S algorithm allows for performing data partitioning, where
knowledge of the training (calibration) data set did not affect the test data set (validation),
and the predictive power of the created model subsequently increased [37]. The PLS results
were evaluated using the coefficient of determination in cross-validation (R2

cv) and the
standard error in cross-validation (SECV) [34–36].

3. Results and Discussion
3.1. Mid- and Near-Infrared Interpretation

The spectral properties of the samples are reported in Figure 1 (MIR raw and second
derivatives) (panels A and B). Differences were observed in the MIR spectra in the range
between 3000 and 2700 cm−1 and in the fingerprint region between the 1700 and 600 cm−1

wavenumbers. The main variations were observed at around 3010 cm−1, 2919 cm−1, and
2851 cm−1, which are associated with OH stretching (around 3000 cm−1) and with C-H,
ester groups, and the C-H3 of fatty acids and lipids (2919 cm−1 and 2851 cm−1) [38,39].
The region between 2900 and 2850 cm−1 has also been reported to be associated with
the presence of chitin, a product found at various concentrations in insects [40]. In the
fingerprint region, the main wavenumbers were observed at around 1742 cm−1, which is
associated with the C=O stretching of lipids; 1624 cm−1 and 1517 cm−1 are associated with
amides I and II, respectively [38,39]. The region around 1457 cm−1 is typically associated
with lipids and proteins, whilst 1395 cm−1 is mainly associated with amino acid residues,
1235 cm−1 is associated with amide III, and that between 1100 and 900 cm−1 is associated
with carbohydrates and polysaccharides [38,39]. In addition, in the fingerprint region
between 1200 and 800 cm−1, these absorbances have been reported to be associated with
C-O-C glycosidic linkage, COH bending, and C-C stretching vibrational modes, which are
considered characteristic groups of carbohydrates, sugars, and polysaccharides, respec-
tively [38,39]. The absorbances associated with starch can be also located between 1250 and
800 cm−1, which are related to the presence of the unsaturated bonds in the C=O groups
primarily associated with carbohydrates, as well as unspecific CH2 bending vibrations,
whereas those found in the latter can be attributed to vibrations arising from C-O groups,
which are also observed in carbohydrates [38–40].

The NIR raw and second-derivative spectra of the samples analysed are shown in
Figure 1, panels C and D, respectively. The main absorbances in the NIR region can be
observed at around 8304 cm−1, which is related to fatty acids, such as oleic acid and linoleic
acid; this has been reported in insects by other researchers [24,40–44]. The 6800 cm−1

wavenumber is associated with O-H groups, corresponding mainly with the water content,
whilst that around 4720 cm−1 is associated with CONH2 and C=O bonded with N-H
groups (e.g., peptides and proteins) [24,40–44]. The bands observed at around 4335 cm−1

and 4261 cm−1 are associated with the presence of aliphatic hydrocarbons (fatty acids)
and lipids, respectively [24,40–44]. The region between 5300 and 5000 cm−1 is also asso-
ciated with the moisture content (5600 cm−1) and with the N–H stretching (asymmetric)
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and N–H in-plane bending combination of CONH2 groups corresponding with proteins
(5168 cm−1) [40–44]. Overall, the information in both the MIR and NIR spectra is attributed
to the moisture, lipid, protein, and starch contents, as well as the concentration of chitin
derived from the exoskeleton of the crickets in the samples analyzed. Therefore, due to the
observed differences in both the MIR and NIR spectra of the mixtures, these data were used
in combination with chemometrics to predict the level of adulteration and are reported in
the following sections.
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Figure 1. Mid-infrared raw (Panel A) and second-derivative spectra (Panel B) and near-infrared raw
(Panel C) and second-derivative spectra (Panel D) of the cricket powder, chickpea, and flaxseed meal
flour, and mixtures analyzed.

3.2. Principal Component Analysis

Figures 2 and 3 show the PCA score plot of the mixture samples analyzed, highlighted
by mixture type (panel A) or by concentration (panel B) using either MIR or NIR spec-
troscopy, respectively. The two PCA score plots showed similar trends, where the main
differences were associated with the type of flour (FxMF vs. CPF) along the first principal
component (PC1), while the samples were clustered by concentration in the mix along PC2.
Overall, both PC1 and PC2 explained 95% and 99% of the variance in the mixture samples
analyzed using either MIR or NIR spectroscopy, respectively. These results highlighted the
influence of the matrix on the spectral properties (MIR and NIR) of the samples analyzed.
The differences between the group of flour/mixture samples can mainly be attributed by
the type of flour used. In addition, the concentration or level of adulteration of the mixture
or the level of cricket powder added to the plant flour (FxMF vs. CPF) influenced the cluster
of samples. Separate PCA analyses were calculated for each of the binary mixtures (FxMF
vs. CKF; CPF vs. CKF) using NIR spectroscopy. In these analyses, the PCA score plots
showed that PC1 explained the effect of concentration in the mixtures rather the differences
between the types of flour used to make the mixtures. In all the cases (both MIR and NIR
spectroscopy), it can be observed that the first PC explained most of the variance in the
data set associated with the addition of CKF (concentration) into the mixture.
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3.3. Partial Least Squares Regression

To better analyse the effects of either the flour type or the concentration utilized to
make the mixtures, PLS regression models were developed using all the samples (ALL), and
then the mixtures of cricket and chickpea (CPF vs. CKF) and cricket and flax seed (FxMF
vs. CKF) flours, separately. The PLS cross-validation statistics for the ALL samples and the
binary mixtures analysed using both MIR and NIR spectroscopy after second derivative
pre-processing are reported in Table 1. All the PLS models developed explained more than
90% of the variability in the data set (R2

CV > 0.90). The results based on MIR showed that
the cross-validation statistics were R2

cv: 0.94 and SECV: 6.68%; R2
cv: 0.91 and SECV: 8.04%;

and R2
cv: 0.92 and SECV: 4.33% for the ALL, CPF vs. CKF, and FxMF vs. CKF mixtures,

respectively. The results based on NIR showed that the cross-validation statistics were R2
cv:

0.95 and SECV: 3.16%; R2
cv: 0.98 and SECV: 1.74%; and R2

cv: 0.94 and SECV: 3.27% for the
ALL, CPF vs. CKF, and FxMF vs. CKF mixtures, respectively. Interesting, the SECV values
were higher in the PLS models using MIR spectroscopy compared with those studied using
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NIR. Similar results were reported by other authors using ATR-MIR spectroscopy to predict
the addition of crickets to whole-grain flour [20] and the contamination of insect meal in
animal feeds using FT-NIR spectroscopy [24,44].

Table 1. Cross-validation statistics for the prediction of the level of cricket addition to either chickpea
or flaxseed flour samples analysed using mid-infrared and near-infrared spectroscopy.

ALL CPF FxMF

NIR

R2
CV 0.95 0.98 0.94

SECV 3.16 1.74 3.27
bias 0.08 0.04 0.03

slope 0.97 0.98 0.96
LV 6 2 3

MIR

R2
CV 0.94 0.91 0.92

SECV 6.68 8.04 4.23
bias −0.08 0.03 −0.08

slope 0.90 0.92 0.92
LV 5 3 1

ALL: all samples; CPF: chickpea flour; FxMF: flaxseed meal; MIR: mid-infrared; NIR: near-infrared; SECV:
standard error in cross-validation; LV: latent variables; R2

CV: coefficient of determination of cross-validation.

Although very good cross-validation statistics were obtained, differences in the PLS
loadings used by each of the models were observed. The highest and common PLS loadings
in the MIR region (Figure 4, panel A) used to predict the addition of CKF into the plant
samples were observed at around 2933 cm−1, which is associated with C-H bonds, ester
groups, as well as with the C-H3 of fatty acids and lipids. The frequencies around 2933 cm−1

have also been associated with chitin. At around 1630 and 1540 cm−1, these frequencies are
associated with the amide I and II groups of protein, respectively [38,39]. Distinctive loading
was observed at around 1780 cm−1 in the models where CKF was added to FxMF flour.

The common and highest PLS loadings in the NIR region (Figure 4, panel B) used
for the determination of the addition of cricket powder to the other flour samples were
observed at around 7137 cm−1 and 6944 cm−1, with similar loading at around 5432 cm−1,
4440 cm−1, and 4256 cm−1. The bands at around 4335 cm−1 and 4261 cm−1 are associ-
ated with the presence of aliphatic hydrocarbons (fatty acids) and lipids [39–41]. While
differences were observed at around 6944 cm−1 and 5980 cm−1, which are associated with
the water content, the other wavenumbers, such as 5264 cm−1 (O-H) and 4832 cm−1, are
associated with CONH2 and C=O bonded withing the N-H groups (e.g., peptides and
proteins). The presence of these bands is typically associated with protein content in the
sample [39–44]. The band at around 4320 cm−1 is associated with C-H stretching and
C-H2 deformation, corresponding with the presence of polysaccharides, mainly the starch
content [40]. The highest loadings were observed at around 5072 cm−1 (N-H combinations
and aromatic amines) and 4512 cm−1 (N-H and N-H2 combinations), which are associated
with protein and aromatic amines [40]. Although the results of this study showed that
both MIR and NIR spectroscopy can detect the level of the adulteration or addition of
cricket powder in CPF or FxMF flour, this study has some limitations to consider before
extending its applicability. A major limitation is the number of samples analysed, as well
as the limited levels of adulteration evaluated. It would be interesting to see, for example,
what the lowest level of cricket powder as an adulterate could be detected by both MIR
and NIR.
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4. Conclusions

The results of this study showed the definable effect of the matrix on the PLS regression
results in both the calibration statistics and the PLS loadings used by each of the models. The
different combinations of flours or artificial mixtures showed differences in the absorbance
values at specific wavenumbers in the MIR and NIR ranges. Nevertheless, both MIR
and NIR spectroscopy could be utilized as an initial screening tool to detect the level of
the addition of cricket powder to plant flour samples along the supply and value chains
of alternative proteins, allowing expensive and specific methods, such as HPLC or GC-
MS or DNA analyses, to be used more efficiently on suspect samples. The utilization of
vibrational spectroscopy methods for the initial screening of the potential contamination
of food ingredients can significantly improve the efficiency and effectiveness of quality
control measures by the food manufacturing industry. Different stakeholders will benefit
from the implementation of this type of approach, where the food ingredients and products
can be easily and economically monitored by the food and feed manufacture industries
along the supply and value chains. The implementation of these types of tools will reduce
the risk of food fraud as well as guarantee both the safety and security of food ingredients
and products. This type of applications will also allow for the development of effective
management tools to monitor and target the adulteration or contamination of feeds and
foods. Overall, research in this field is valuable in advancing the application of vibrational
spectroscopy as routine tools in food analysis and quality control. However, before this
type of application can be implemented, reliable models must be developed, where more
samples and different types of powders and flours should be included for the proper
validation of the models.
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