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Abstract: With the advent of 6G Narrowband IoT (NB-IoT) technology, IoT security faces inevitable
challenges due to the application requirements of Massive Machine-Type Communications (mMTCs).
In response, a 6G base station (gNB) and User Equipment (UE) necessitate increased capacities to
handle a larger number of connections while maintaining reasonable performance during operations.
To address this developmental trend and overcome associated technological hurdles, this paper
proposes a hardware-accelerated and software co-designed mechanism to support streaming data
transmissions and secure zero-trust inter-endpoint communications. The proposed implementations
aim to offload processing efforts from micro-processors and enhance global system operation per-
formance by hardware and software co-design in endpoint communications. Experimental results
demonstrate that the proposed secure mechanism based on the use of non-repeating keys and imple-
mented in FPGA, can save 85.61%, 99.71%, and 95.68% of the micro-processor’s processing time in
key block generations, non-repeating checks, and data block transfers, respectively.

Keywords: hardware acceleration; information security; Internet of Things; one-time password;
one-time pad; zero-trust network

1. Introduction

With the development of 6G technology applications, the future Internet of Things
(IoT) will face an increasing number of endpoint devices that need to simultaneously trans-
mit data to each other. For example, applications integrating edge and fog computing with
the Internet of Intelligence may require the use of Virtual Network Functions (VNFs) [1],
in which there are many concerns about information security during the transmission
process [2,3]. At this point, a significant challenge for research and industry is whether IoT
endpoint devices can provide sufficient transmission efficiency and adequate security mea-
sures to handle the simultaneous data transmission required by various IoT applications.
Given the diverse nature of IoT applications and the need for simultaneous transmission
among a large number of endpoints, this paper is based on the Double OTP (D-OTP)
proposed in [4], and then furthermore provides a zero-trust network architecture, namely
the One-Time Password Pad Process (OTP3). This aims to realize a secure mechanism
for transmitting asynchronous streaming signals between IoT device endpoints. Com-
pared to pure software design, utilizing hardware acceleration can significantly enhance
system performance.

This research was inspired by these reports. Ref. [5] mentioned that a smartwatch
designed for children has been found to have cybersecurity vulnerabilities, enabling hackers
to steal the children’s location. Moreover, the Mirai zombie virus [6], known for large-scale
attacks on IoT devices, primarily targeted home routers, network cameras, and smart TVs
at the time. Subsequently, eleven new variants of the virus were discovered, notably one
that targeted wireless projection servers used in offices. This event serves as a reminder
that hackers can infiltrate corporate networks and steal business secrets through insecure
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commercial devices. Furthermore, in an analysis reported by the National Aeronautics and
Space Administration (NASA) [7], their Jet Propulsion Laboratory (JPL) was breached by
hackers using a Raspberry Pi device as a pivot point. The hackers successfully invaded
the laboratory, stealing critical data, making it one of the most prominent cybersecurity
events worldwide in recent years. It was known that Industrial Information System (IIS)
or Industrial Control System (ICS) of the enterprise organization had been attacked and
might be extorted by hackers for a high ransom [8,9], and thus security will become the
most mainstream development initiative.

In the post-5G era, the concept of information security protection through methods in-
cluding zero-trust are rapidly gaining prominence [10]. The zero-trust network requires IoT
devices to ensure their own security. However, due to the limited computing capability and
hardware resources of IoT devices, conventional IoT devices often fail to provide adequate
self-security. This vulnerability becomes more pronounced when considering the future
threat of quantum computing. The advancement in the Internet of Things will be acceler-
ated by the 5G system [11] and the coming 6G technology, which includes considerations
about whether enough security measures can be provided when utilizing NB-IoT (Narrow
Band-Internet of Things) technology [12] to meet the application requirements of Massive
Machine-Type Communications (mMTC) [13]. It is evident that the opportunities in the
IoT landscape are rapidly growing. However, this growth also raises security concerns
for devices and applications. At this point, a significant challenge for research, educa-
tion, and industry is whether IoT endpoint devices can simultaneously provide adequate
transmission efficiency and comprehensive security measures [14].

Facing this issue and challenge, this paper is based on the functionality and design re-
quired for the proposed OTP3 operation process, which aims to realize a secure mechanism
suitable for transmitting asynchronous streaming signals between IoT device endpoints.
This mechanism adopts a fog computing architecture [1]. The cloud server is responsible
for control plane operations and necessary management settings related to transmission
security, such as key exchange, with various endpoint devices (i.e., fog nodes). Each
endpoint device conducts routine processing tasks like data compression/decompression,
encryption/decryption, and transmission/reception in the data-plane. This approach
significantly reduces the storage and computational burden on the server. In terms of
system implementation, the design and management functionalities need to be updated
and flexible in the control plane, so development will primarily utilize a software-centric
approach. Additionally, in the data-plane, considering the routine, repetitive, and cyclic
nature of data-flow processing, Field-Programmable Gate Array (FPGA) will be employed
for necessary hardware data stream processing pipelines to ease the computational load on
the device’s micro-processor (µP).

In addressing the security requirements of zero-trust IoT devices in future 6G com-
munication, the primary contribution of this paper is the attainment of theoretical un-
breakability based on one-time pad [15] through the proposed secure mechanism. A
one-time pad is one in which a key can only be used once (i.e., non-repeating) for data
encryption, which is proven by Shannon [16] to possess theoretical un-breakability. Nev-
ertheless, the computational intensity of the non-repeating check poses a challenge for
conventional pure software implementations. Consequently, the proposed secure mecha-
nism incorporates purpose-designed hardware accelerators to offload the computational
intensity from the software executed by the micro-processor. As a result, the integration
approach of the micro-processor and hardware accelerators in the FPGA, encompassing
system design architecture, execution flow, and bus components of the micro-processor,
accelerators, and other essential controllers, will be elucidated in the Section 4 “Design
Implementation”.

This paper is structured as follows: Section 2 provides an explanation of the back-
ground of zero-trust networks, IoT security architecture, and the proposed mechanism.
Section 3 introduces the research methodology, encompassing the applied cipher algorithm,
security method, and operational process. Section 4 delves into the system design and
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implementation. In Section 5, experimental results are analyzed. Finally, Section 6 presents
a discussion and the conclusion.

2. Background

This section begins by outlining the motivation behind enhancing IoT security for
stream data transmission. We then delve into an exploration of the background of zero-
trust network architecture, with related security issues and challenges. Additionally, we
highlight the constraints associated with conventional IoT designs and implementations,
with a specific focus on comparing various existing hardware-accelerated processing tech-
niques. Finally, we provide an overview of the functions in prior work which serves as the
foundation for this research.

2.1. Motivation to Improve IoT Security for Stream Data Transmission

Common IoT devices include various sensors such as sound, image, gas, pressure,
temperature, and motion sensors, providing applications for environmental monitoring,
disaster prevention, rescue operations, and so on. Considering the sensors mentioned
above, if used in applications like calculating water, electricity, and gas flow, fleet route
monitoring, data analyses in production lines, illegal logging detection in forests, and
collection of biomedical signals from patients, which involve sensitive, confidential, and
private data, the need for a secure transmission mechanism providing information security
is crucial in such applications. We observed a common characteristic among these sensors,
which is that they mostly provide continuous output in the form of streaming signals.
Therefore, integrating real-time encryption and decryption into the processing of streaming
signals is expected to enhance their effectiveness and efficiency. It is evident that the
opportunities for IoT security are rapidly growing. Consequently, the following will
sequentially explain the research background and current developments related to IoT
security, as well as the approach taken in this paper.

2.2. Zero-Trust Network Architecture and Future IoT Applications

As shown in Figure 1, a zero-trust system, such as the NB-IoT architecture, typically
consists of endpoint devices (such as various sensor nodes), network equipment (such
as IoT gateways and 6G base stations), core networks, and cloud application servers.
Users can access endpoint devices directly via the network or indirectly access data sent
to the cloud server through the endpoint devices. Accordingly, these endpoint devices
are not always subject to the control of a firewall and VPN server, making the concept
of zero-trust network an effective solution to address this security concern. In line with
this, the US National Institute of Standards and Technology (NIST) introduced the SP800-
207 zero-trust architecture guidelines in 2019 [17], urging enterprises to adopt zero-trust
information security strategies to combat threats like ransomware attacks. Furthermore,
the US federal government mandated that all government agencies must transition to a
zero-trust architecture for their security strategies by the end of 2024 [18].

In reference to “Figure 3: Zero Trust Access process” from the Network and Security
Strategy published by the Government of Canada [19], devices initially need to submit
access requests to an authentication service. Upon validation of the request, the devices
can proceed with the requests, initiating the data-flow session through an encrypted micro-
segmented tunnel that remains active only for the duration of the session. Additionally,
based on the concept of zero-touch in the zero-trust network [10], security in the network
devices such as gateways, base stations, and core networks will no longer be trusted. In
this scenario, the security mechanism for network access must be provided by the IoT
devices themselves.

As depicted in Figure 1, a pair of communicating zero-trust devices consists of a
camera and a Raspberry Pi, situated in separate private networks. In order to initiate
a data-flow session, the communicating devices must send a request to the “Zero-Trust
Server” through the control plane over the public network. Upon approval of the request,
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a secure “Zero-Trust Access Virtual Tunnel” is established. Subsequently, the 6G gNB
facilitates the forwarding of video stream data via the data plane. This mechanism allows
the creation of two or more “Zero-Trust Access Virtual Tunnels” for multiple paired zero-
trust devices between two distinct private networks or within the same private network.
Accordingly, the key blocks used for communication must be synchronously updated by
the communicating paired devices. In this way, during the data transmission process, there
is no need for additional protection through the network devices, effectively realizing the
zero-touch concept required by the zero-trust network.
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Figure 1. Potential applications of zero-trust network devices with 6G NB-IoT endpoint devices.

As Figure 2 shows, concerning data processing in the IoT, in contrast to cloud comput-
ing where data is sent from scattered devices to centralized ones (such as cloud servers),
the fog computing architecture handles data in a relatively decentralized manner, with data
computation and storage located closer to the network edge. In this architecture of edge
computing collaborating with cloud and fog, since the data transmission process can bypass
or avoid the existing core network system, it can reduce core network resource usage, lower
transmission latency, enhance transmission speed, and improve user experience. However,
because the system management of the existing core network may be bypassed during
data exchange and due to the interconnection of a large number of low-cost IoT devices,
this IoT transmission architecture based on cloud and fog computing raises concerns about
information security. For more information regarding the implementations of security
mechanisms and data-flow processes, the following sub-sections in Section 3 “Research
Methodology” will provide the details.
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2.3. Limitations in Conventional IoT Protocols and Architectures

Regarding the limitations of traditional IoT architectures, based on previous research
findings in [4], these include the ability to transmit data collected by sensors to the Internet
through an NB-IoT User Equipment (UE) of sensor hub, as shown in Figure 3. The data is
sent using the Constrained Application Protocol (CoAP) transport protocol, and messages
are exchanged through the Internet with the application cloud server [20]. CoAP, defined
by the Internet Engineering Task Force (IETF) [21], is a lightweight transport protocol
used for data exchange at the application layer of devices with constrained resources,
such as IoT terminal devices. However, the CoAP protocol includes the ability to use
Datagram Transport Layer Security (DTLS) for encrypted data transmission. However,
this NB-IoT sensor hub utilizes a low-cost 8-bit micro-processor [22], with an operating
frequency of only 16 MHz and a program storage capacity of only 64 Kbytes. In such
resource-constrained device applications, achieving assured transmission security is indeed
a challenge beyond mere transmission functionality.
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Accordingly, the highly demanding yet more challenging issues for developing the
NB-IoT communication system are as follows:

1. The first issue to address is the efficiency of the micro-processor’s execution. Scholars
in study [23] concluded the following: “Applying our model, we identified the
cryptographic operations being the main cost factor”. In other words, cryptographic
operations, in the absence of hardware accelerator support, are the main performance
cost that must be borne. This might be difficult for low-cost IoT devices to handle
additional computational burdens and power consumption requirements, especially
for achieving the desired continuous streaming data transmission functionality in
this paper.

2. The second issue is the operation mode of CoAP, which is a client–server architec-
ture. In other words, to achieve network transmission functionality between device
endpoints, all data transmission processes must go through CoAP proxy servers.
Moreover, all application layer data forwarded by the proxy must be received and
decrypted by the server before being encrypted and sent out again. During these
processes, numerous information security concerns arise. For example, plaintext data
used when establishing connections between devices and servers may be intercepted.
Furthermore, proxy servers are easily targeted for hacker attacks [24].

To provide security functionalities for IoT devices, manufacturers are increasingly
aware of the need to begin investing in this area. However, due to the diverse types of
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devices and varying security setup options, the lack of global standards for device and
application-layer security poses significant challenges in securing the application layer
of devices. This has left device manufacturers and IoT deployment companies confused
and hesitant. To solve this problem, a leading cybersecurity company, Trend Micro, has
introduced Trend Micro IoT Security (TMIS) 3.0, an IoT device protection software [25].
TMIS is a security solution that can run on Raspberry Pi [26], designed for embedded IoT
devices communicating externally using Internet Protocol (IP). TMIS monitors and protects
these devices to guard against various potential risks, including data theft and ransomware
attacks. Given its system’s hardware resource requirements, TMIS is clearly not suitable for
running on our used NB-IoT UE Sensor Hub, as shown in Figure 3. Furthermore, upon
further investigation, we understand that the TMIS solution provided by Trend Micro does
not offer complementary hardware acceleration support. Therefore, careful consideration
is needed regarding the computational resources of the micro-processor that the software
requires to run on IoT devices, especially for routine data encryption and decryption
operations that this paper addresses. For more detailed information regarding the use of
CoAP protocol in the IoT sensor system, please refer to the previous work [4] with respect
to this paper.

2.4. Development of IoT Security Mechanisms with Hardware Accelerators

Regarding IoT security approaches with hardware acceleration support, ARM has
initiated a project named Beetle [27]. We noticed that the True Random Number Gener-
ator (TRNG) module provided by the platform is connected to the Cortex-M3 processor
through the AXI/AHB bus. Therefore, when executing the Transport Layer Security (TLS)
protocol [28], the micro-processor can indirectly choose to utilize the assistance of the
TRNG hardware module to enhance network security performance. Furthermore, ARM
has introduced the Platform Security Architecture (PSA) [29] to bring a unified approach
to IoT security in the industry. In comparison to ARM’s approach of providing hardware
acceleration modules for buses to the micro-processor, this paper proposes an innovative
method based on achieving secure transmission of “streaming signals” as the application
goal. According to the limitations of the above-mentioned methods, we directly place
the hardware security module within the “data stream processing pipeline.” This further
increases the data processing throughput per unit time and reduces the software computa-
tional burden on the micro-processor. In addition to the solution provided by ARM, the
current state of achieving IoT security 0n the market is in a state of diverse opinions and
approaches. This also highlights a potential severe talent gap crisis in future IoT security
needs. Facing this issue and challenge, this paper outlines the architectural approach for a
security mechanism suitable for transmitting “asynchronous streaming signals between
IoT device endpoints.”

Additionally, the research challenges of applying FPGA to accelerate the processing of
endpoint communications and secure mechanisms are summarized as follows: Mujahid and
Ullah introduced a partial pattern classification system employing Content-Addressable
Memory (CAM) on FPGA [30]. Similarly, in this paper, CAM is utilized to accelerate the
comparison process of key blocks. Chaudhry et al. present an approach that leverages
serverless computing to integrate Multiaccess Edge Computing (MEC) and Virtual Net-
work Function (VNF) at the system level [31]. They further investigate improving resource
utilization by leveraging FPGA-enabled MEC servers for a high-definition real-time video
streaming application. In contrast to the FPGA-enabled MEC servers, the proposed OTP3

mechanism is implemented in an IoT device. Goswami et al. present a SNOW 3G crypto
processor architecture, a stream cipher algorithm used for 4G LTE, designed for security ap-
plications with a focus on area, power, and efficiency [32]. The distinction with regard to the
proposed mechanism lies in OTP3’s goal of supporting secure streaming data transmissions
for zero-trust inter-endpoint communications in future 6G networks. Szymanski presents
deterministic packet switches (D-switches) used in the control-plane of Software-Defined
Networking (SDN) [33]. The difference with the proposed mechanism is that OTP3 deals
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with stream data encryption in the data-plane. Both mechanisms share common objectives,
emphasizing the potential for cost reduction, energy efficiency, and high capacity, as seen
in previous research [34,35].

2.5. One-Time Password, One-Time Pad, and D-OTP

A one-time password is a password that is valid for only one login session on a
computer or for a single data transfer over a network [36]. Through implementation of a one-
time password ecosystem, the static symmetric-key authentication-related shortcomings
of the public key can be avoided. In real applications, OTP can be repeating, due to
the limited length of numbers. Furthermore, a one-time pad is one in which a key can
only be used once (i.e., non-repeating) for encrypted operations [15]. One-time pad is an
encryption method in classical cryptography and has been reported by Shannon [16] to
be theoretically unbreakable. In the previous research [4], we proposed and implemented
our own proposed key update mechanism, which can automatically execute both one-time
password (for changing password) and one-time pad (for non-repeating key) in IoT devices
as a network communication pair, namely D-OTP. However, a limitation was the poor
communication latency overhead, incurred through application of the D-OTP mechanism.
Therefore, a hardware accelerated processing is required, as introduced in this paper. As
they are introduced, these challenges will be explicitly addressed within our proposed
design, and a comprehensive insight into this design methodology is presented in the
forthcoming section.

2.6. Methods for Implementing Streaming Data Encryption

In the selection of data encryption methods, stream cipher is a type of symmetric-key
encryption algorithm, meaning both encryption and decryption parties use the same key.
During encryption, a key stream is generated using a pseudorandom number generator, and
this key stream is sequentially encrypted with a plaintext data stream to obtain a ciphertext
data stream. In terms of design, the stream cipher method is relatively straightforward,
allowing real-time transmission effects during network transmission. It is generally limited
in its application to streaming data transmission, such as audio and video, and typical
stream cipher algorithms include RC4 and eStream [37,38]. On the other hand, block
cipher is also a type of symmetric-key encryption algorithm. The difference is that block
encryption requires the plaintext data to be divided into several equally sized blocks before
performing matrix operations on the master key and the first plaintext block to obtain a
ciphertext block. It also simultaneously generates the round key needed for the calculation
of the next set of plaintext blocks. Due to its relatively complex operational design and
higher computing performance requirement, block cipher can be used for streaming data
transmissions, but is more suitable for transferring file data. Typical block cipher algorithms
include DES and AES [39,40]. After comparing the advantages and disadvantages of stream
cipher and block cipher, this study chooses stream cipher as the encryption method to
implement the proposed mechanism in this paper.

2.7. Discussion on the Security of Stream Cipher Algorithms

In terms of network transmission security, as far as we understand, vulnerabilities
that may be exploited in the system primarily exist in the standards and protocols of the
applied encryption algorithms. Taking RC4 as an example, it is a stream cipher algorithm
that has become part of some commonly used standards and protocols. For instance, it
has been included in the IEEE 802.11 standard [41], pertaining to the network link layer
protocols Wired Equivalent Privacy (WEP) and Wi-Fi Protected Access (WPA) [42]. It has
also been incorporated into the IETF-RFC standard, relating to the network transport layer
protocols Secure Sockets Layer (SSL) and Transport Layer Security (TLS). Due to concerns
about potential vulnerabilities [43], IETF-RFC-7465 announced the discontinuation of the
use of the RC4 encryption algorithm in TLS [44]. However, based on our understanding,
the vulnerabilities that may be exploited in the system primarily lie within the operations
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of encryption protocol (i.e., WEP), rather than the applied encryption algorithm itself (i.e.,
RC4). Therefore, this paper focuses on using the RC4 algorithm just as a Pseudo Random
Number Generator (PRNG), coupled with the OTP3 non-repeating key mechanism to
realize an efficient streaming encryption mechanism suitable for the IoT environment. The
relevant results will be explained in the Section 5 “Experimental Results” and Section 6
“Discussion and Conclusions”.

3. Research Methodology

This section introduces the proposed OTP3 operational process as a mechanism that
aligns with the principles of zero-trust network access.

3.1. Methods Proposed for Enhancing IoT Data Transmission Security

Stream encryption is a symmetric-key encryption algorithm, where both encryption
and decryption parties use the same key. The sender utilizes this key as a seed for a Pseudo
Random Number Generator (PRNG) [45] to generate a key stream. This key stream is then
sequentially used to encrypt a plaintext data stream, resulting in a ciphertext data stream.
The receiver can decrypt the data if they possess the same key. Building upon traditional
encryption methods, our research introduces a method for secure IoT communication,
referred to as D-OTP, based on the previous work [4].

D-OTP combines two aspects: “Operation Password” and “Encryption Key”, briefly
explained as follows: (1) The “Operation Password” refers to a method for users to utilize
to gain system access. One-Time Password (hereafter referred to as OTP password) is
a single-use password used by the user during login. OTPs are widely used security
authentication tools, commonly seen in financial, telecom, and online gaming transactions,
and the applications applied in [46]. (2) The “Encryption Key” includes critical data used for
computational operations with plaintext data to obtain ciphertext data within the system.
One-Time Pad (hereafter referred to as OTP-key) is a key that can only be used once during
encryption operations, and OTP-key is a classical encryption algorithm in cryptography
and is proven by Shannon [16] to possess theoretical un-breakability. For zero-trust network
device access, this paper’s innovation lies in further integrating OTP password and OTP-key
with the “process of hardware accelerated stream data encryption”, namely the One-Time
Password Pad Process (OTP3), which aims to fulfill the future stringent confidentiality
requirements for zero-trust secure data transmission [47]. The detailed specification of
OTP3 will be further explained in the following section.

3.2. Security Guarantee Scheme and Operation of OTP3

The proposed zero-trust stream data encryption mechanism is based on the advantages
of integrating “One-Time Password (OTP password)” and “One-Time Pad (OTP-key)” for
“processing secure stream data transmission”, named OTP3. This will meet the following
three requirements for meeting the un-breakable security guarantee by Shannon [16]:
(1) the key must be generated randomly, (2) promise that the key is not reused, and
(3) ensure secure distribution of the key to both encryption and decryption endpoint
devices. Accordingly, the operation flow of OTP3 is introduced as follows:

As Figure 4 shows, the OTP3 operation process includes several steps, and each step
is briefly described in sequence, as follows: Step 0: The User presets an identical Serial
Number (SN) to both Device A and Device B as a communication pair, and the used SN is
essentially non-repeating in other communication pairs, as defined in the previous work
of D-OTP [4]. Step 1: The Server intends to have Device A receive the streaming signal
detected by its paired Device B. Step 2: The server generates a non-repeating OTP password,
as introduced in [4]. Step 3: The server uses public network encryption technologies (such as
SSL/TLS) and symmetric-key exchange techniques like the classic Diffie–Hellman (DH) [48]
to transmit this OTP password to the paired devices A and B. Step 4: Devices A and B each
generate non-repeating OTP keys capable of meeting cryptographic security standards
using this OTP password and the preset SN. Step 5: Device B continues to encrypt the
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streaming signal it inputs using these OTP keys. Step 6: Device B continues to transmit
the encrypted ciphertext generated by the encryption process to Device A via the public
network (no need for further encryption during the process). Step 7: Device A continues to
decrypt the network data it inputs using these OTP keys. Step 8: Until the transmission is
completed, stopped, or an external intrusion signal is detected, the OTP password and OTP
keys used for this transmission are discarded, and the process returns to Step 1 to prepare
for the start of another transmission.
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It is worth noting that, in Step 6, during the transmissions between Device A and
Device B, there is no additional encryption operation required by any network equipment
(such as gateway, router, and core network). Accordingly, the proposed OTP3 mechanism
is aligning with the principle of zero-trust network access.

3.3. Security Implications of OTP3

The security implications can be analyzed in the setup plane, control plane, and data
plane, as introduced below:

3.3.1. Setup Plane

Referring to Figure 1, the zero-trust network system essentially comprises a “Zero-
Trust Server” and multiple zero-trust devices, each equipped with at least one “Zero-Trust
Device Module”, as depicted in Figure 2. During device deployment, users can preconfigure
two modules with identical Serial Numbers (SNs) to form a communication pair, ensuring
that the used SN does not repeat in other communication pairs (refer to Step 0 in Figure 4).
In operations, the SN is employed to generate a non-repeating key for each transmission
(refer to Step 3 in Figure 4). Unlike traditional Pre-Shared Key (PSK) methods, the SN serves
as an initial PSK but is not transmitted over the public network. In practice, the SN is stored
in a Read-Only Memory (ROM), making it accessible only by directly reading the ROM
in the device module. Moreover, even if the SN of a specific zero-trust module becomes
known to a third party, the one-time use principle prevents its utilization in compromising
other device modules.

3.3.2. Control Plane

The control plane is dedicated to system management during the operational stage.
Prior to initiating data transmission between two paired zero-trust modules, the modules
are required to seek permission from the “Zero-Trust Server” (refer to Step 1 to 2 in Figure 4).
Upon completing the transmission, the server needs to be notified again (refer to Step 7
to 8 in Figure 4). The zero-trust server maintains a record and monitors the frequency of
grant transmissions within the communication pair to identify any anomalous behavior,
such as brute-force (replay) attacks attempting to compromise the IoT ecosystem. The
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deployment of the control plane in an OTP3 IoT cybersecurity system, as illustrated in
Figure 2, is optional.

3.3.3. Data Plane

The data plane is designated for transfers during the operational stage of the system.
Following the receipt of permission to initiate data transmission, the paired modules
must independently generate a new and non-repeating OTP password, based on their
SN (refer to Step 3 in Figure 4). Throughout the data transmission process, the paired
modules utilize the OTP keys generated by the OTP password (refer to Step 4 in Figure 4)
to perform encryption and decryption operations, respectively (refer to Step 5 to 7 in
Figure 4). It is anticipated that there will be a proliferation of IoT devices in the future,
and the designed data plane of OTP3 allows devices to directly exchange data through the
zero-trust access virtual tunnel (refer to Figure 1). This approach enables the proposed
OTP3 IoT cybersecurity system (refer to Figure 2) to distribute computing and storage
resources to the endpoint devices, facilitating the switching of datagrams at the network
edge to mitigate data transmission delays. This concept represents a novel realization
of fog computing [1]. Consequently, the data plane is imperative for the proposed OTP3

mechanism and the OTP3 IoT cybersecurity system.

3.4. Practical Deployment Challenges of OTP3

The major deployment challenge of the OTP3 mechanism lies in Step 0 in Figure 4,
where devices A and B are preset with an identical Serial Number (SN) for communication
pairing. During the production or installation of IoT devices, engineers preset a series of
non-repeating OTP Serial Numbers in the hardware of both paired devices A and B at both
ends (e.g., in ROM). While this method requires additional engineering effort, establishing
the pairing during device production is a crucial step toward achieving un-breakability
based on Shannon’s theory [16]. Although the Diffie–Hellman [48] method used in Step 3 is
presently the most commonly employed symmetric-key exchange technique, DH, however,
is susceptible to cracking. With the ongoing advancements in computer processing power,
such as quantum computing, even methods like eSTREAM [38] and Diffie–Hellman [48]
may become vulnerable within a finite computation time. In essence, achieving cryp-
tography security standards means that, with the current level of human technological
prowess, future scientific developments are not limited in this aspect. Hence, to achieve
the un-breakability based on Shannon’s theory [16], considering Step 3, using the OTP
password exchanged on the public network, even if it is cracked and leaked, the OTP
Serial Number preset in Step 0 on the device remains unknown to third parties (as it is not
transmitted via the public network). Consequently, the OTP keys used in the encryption
operation remain secure.

4. Design Implementation

This section commences with an introduction to the design and execution flow of the
IoT device system architecture and data stream pipeline processing outlined in this paper.
Subsequently, it details the integration approach of the micro-processor and hardware
accelerators in the FPGA embedded-system board, as shown in Figure 5.
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4.1. System Design Architecture

The system architectural design is depicted in Figure 6, which, above the light green
arrow symbol, from the “Stream Signal” input to the “Stream Signal” output, encompasses
multiple pipeline data processing units and associated control software programs, con-
trolled by the internal micro-processor. Additionally, there is a “Network Interface” linked
to a gateway for Internet data access. Several implemented hardware modules, including
“Phase-Locked Loop (PLL)”, “Input/Output Buffers”, “NIC Controller”, and “Memory
Controller” are utilized functional components provided in the FPGA design library [50].
Additionally, the self-designed hardware modules are indicated by blue and red boxed
sections. The blue boxes represent functions including implemented high-speed “Signal
Sampling” and “Signal Emitting”, and a “Scatter–Gather Direct Memory Access (SG-DMA)
Controller” attached to the system bus, behind which the green box encompasses the
“Micro-Processor (µP)” executing the related software control programs. Next are the
“Configuration Status Registers (CSRs)” providing functional setting and execution status
for the software control required by the designed hardware modules. Furthermore, the red
boxes include modules of “Key Stream Generator”, stream data “Encryption Encoding”,
and “Decryption Decoding”. In the subsequent sub-section, the system execution flow of
data processing in the designed architecture of Figure 6 will be introduced.
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4.2. System Execution Flow

In Figure 7, The processing flow of input stream signals is depicted by the green dashed
arrow, as shown above in Figure 6. When the device begins to receive stream signals, the
“Key Stream Generator” continuously generates OTP keys for real-time data encryption.
The encrypted datagrams (i.e., ciphertext) are temporarily stored in the “Input FIFO Buffer.”
This buffer can be configured to issue an interrupt signal to the micro-processor when it
reaches a fill of half-full, near-full, or full capacity. The micro-processor then controls the
SG-DMA controller to transfer the encrypted datagrams from the “Input FIFO Buffer” to
the external memory on the system board. Conversely, datagrams from the Internet are
first stored in the external memory, then the micro-processor can control the SG-DMA
controller to move the encrypted datagrams (i.e., ciphertext) from the external memory to
the “Output FIFO Buffer.” Subsequently, the datagrams are decrypted using the generated
OTP keys and then emitted as stream signals.
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Compared to merely utilizing software [51] or simulation [52] for computation and
processing, the distinctive feature of this study lies in the integrated design of hardware
and software. This effectively alleviates the computational burden on the micro-processor,
enabling real-time streaming data encryption and decryption on IoT devices. Next, com-
ponents of the FPGA system bus (depicted on the left side of Figure 6), encompassing the
micro-processor, fundamental controllers, and application-specific key accelerators, will be
expounded upon in the forthcoming sub-section.

4.3. FPGA Bus Components

The system was implemented using the Intel Platform Designer [53] on an FPGA chip,
as shown in Figure 8. An Intel Nios II micro-processor (µP) [54], synthesized on the FPGA,
was utilized. The software was developed in the C language. Both the FPGA configu-
ration file and micro-processor program were stored in the Serial Configuration Device
(EPCS) Read-Only Memory (ROM), also known as bootloaders. A hardware “Timer” was
integrated into the FPGA, enabling the micro-processor to retrieve precise timestamps for
performance evaluations. The hardware timer operates simultaneously, without requiring
additional processing in the micro-processor. Additionally, the system had TCP/IP protocol
support and a network interface for remote control and data access.

To benchmark the performance against the “Key Stream Generator” in the pipeline
data processing flow, the system designed the algorithm serving as the bus controller of
Key Stream Generator (KS-Generator) controller. In particular, a Register-based Content-
Addressable Memory (Reg-CAM) is used to accelerate the generation of the non-repeating
key stream blocks. Lastly, a Scatter–Gather Direct Memory Access (SG-DMA) controller was
designed using Verilog and synthesized as a system component connected to the system
bus. These controllers allow the micro-processor to access relevant configuration and status
registers, facilitating hardware and software cooperation. Specifically, the implemented
controllers of Reg-CAM and SG-DMA are introduced as follows:
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4.3.1. Register-Based Content-Addressable Memory

Based on our understanding and the previous research [4], it is known that the tradi-
tional Non-Repeating PRNG (NR-PRNG) implemented solely in pure software cannot meet
the efficiency requirements for real-time stream processing as proposed in this paper. Upon
investigation, one feasible approach is to utilize Content-Addressable Memory (CAM)
for data comparison by hardware acceleration [30]. Unlike traditional memory where
the processor inputs an index address and the memory outputs the data byte stored at
that location, CAM operates differently. In CAM, the processor inputs a data byte and
determines whether this input data are already stored in the memory, outputting the result
of the match operation. CAM implemented in FPGA can be categorized into two types:
Register-based CAM (REG-CAM) and RAM-based CAM (MEM-CAM) [55]. We have
integrated this REG-CAM module as part of the system bus (as indicated in the green
box in Figure 8), providing the REG-CAM with a bus interface for the micro-processor to
access its relevant control and status registers. This allows the micro-processor to input key
stream blocks generated by the KS-Generator controller (as shown in the other green box in
Figure 8) into the REG-CAM controller. Thees input data are then checked to determine if
the key stream block has been used before. If it has, another key stream block is generated
and tested until a non-repeating and usable key stream block is obtained. This key stream
block is then stored to be used for encryption with the plaintext data stream, as elaborated
in the subsequent Section 5 “Experimental Results”.

4.3.2. Scatter–Gather Direct Memory Access

Moreover, the SG-DMA controller (as shown in the blue box in Figure 8) comprises an
internal CSR, which the micro-processor can access to control SG-DMA operations as drawn
in Figure 9. Upon receiving a start command from the micro-processor, the dispatcher
fetches a descriptor, based on priority. These descriptors contain essential information for
the read and write controllers to execute memory access for a specified length of a data
block. An SG-DMA task involves the continuous execution of multiple descriptors. This
functionality allows SG-DMA to effectively gather several small scattered data blocks into
a larger data stream within a contiguous memory space, forming a substantial datagram,
which can then be transmitted to the network’s physical layer (PHY).

The execution flow of an SG-DMA task is illustrated in Figure 10. For a fair com-
parison, the system time is recorded by a hardware timer (as a controller attached to the
system bus shown in Figure 8 and described in Section 4.3. FPGA Bus Components). The
performance calculation is from “Task Start” to “Task End” in Figure 10, including the
total execution time, which consists of time required for programming the descriptors,
starting the dispatcher, transferring data blocks, and executing the interruption of services.
Moreover, test datagrams are first initialized as a sequential number (0, 1, 2, 3, . . .), as the
assigned length of memory transfer by the micro-processor from a source address of the
memory. After completion of the SG-DMA execution, the data at the destination address
were verified to validate the correctness of execution. For more information regarding the
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performance metrics, the following sub-sections in Section 5 “Experimental Results” will
provide the details.
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5. Experimental Results

Building upon the system design architecture introduction, this section begins by
conducting a performance analysis of the data stream pipeline with hardware processing. It
then elaborates on the integration of the micro-processor and hardware accelerators within
the FPGA. The experimental results first highlight individual software and hardware
computations and subsequently engage in a discussion regarding the performance of
software and hardware co-design.

5.1. Performance Analyses of Hardware Processing

During the experiment, the “Key Stream Generator” first utilized the micro-processor
to execute the RC4 algorithm, which was designed in pure software using the C language.
Measurement of experimental data revealed that the initialization of the S-Box memory
content took approximately 616 µs. Subsequently, generating ten thousand 8-bit key stream
blocks required about 30,597 µs. As shown in the experimental results in Figure 11, in
comparison, the “Key Stream Generator” designed in Verilog language took approximately
25.78 µs from reset to generating the first key stream block. This time is mainly used for
initializing the content of the S-Box memory.dis
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Figure 11. Initialization of S-Box memory and starting key stream generation for activating a hardware
stream generator.

The operating frequency of the FPGA development board used in this system is
50 MHz (i.e., 20 ns per clock cycle), indicating that the “Key Stream Generator” requires a
startup time of 1289 clock cycles (=25.78 µs/(20 ns/cycle)). Figure 12a shows that, utilizing
the “HW Generator”, the initialization of the S-Box memory content only requires 4.19%
(25.78 µs/616 µs) of the time needed by “Pure µP” processing when that computation is
performed by the micro-processor alone.
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Figure 12. (a) Performance comparison depicted in percentage on the y-axis of pure software
(Pure µP) processing and hardware key stream generator (HW Generator) on the x-axis for S-Box
memory initialization. (b) Consecutive generation of multiple key stream blocks after activating the
HW Generator.

After the system startup, as shown in Figure 12b in the solid blue box (a zoomed-in
portion of key stream block generation from the previous Figure 11), a key stream block can
be generated every 5 clock cycles of 100 ns (=20 ns × 5 = 100 ns = 100,000 ps), at the shortest.
Accordantly, to generate ten thousand key stream blocks, it would take 50,000 clock cycles
or an operating time of 1000 µs (100 ns × 10,000). Figure 13a evaluates the real system
performance for generating ten thousand key blocks by “Pure µP” and “HW Generator”,
respectively. It illustrates that the “HW Generator” consumes only 3.27% (1000/30,597) of
the time required by “Pure µP” processing.

This sub-section illustrates the performance enhancement achieved through hardware
processing of the “Key Stream Generator”, yet the key blocks generated by it could be
repeated. The reuse of key blocks raises the risk of encrypted data being compromised,
as discussed in the conventional cipher methods in Sections 3.1 and 3.2. The significant
contribution of this paper lies in achieving theoretical un-breakability, as proven by Shan-
non [16], through the proposed OTP3 secure mechanism, which requires non-repeating key
blocks for data encryption. However, the non-repeating check is computationally intensive
in the proposed OTP3 secure mechanism, as detailed in Sections 3.3 and 3.4. Accordingly,
the subsequent subsection will present experimental results to address this issue.
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Figure 13. Performance comparisons of pure software (Pure µP) processing between (a) hardware
generator (HW Generator) and (b) hardware and software co-design approach (µP + HW Accelerator)
for generation of ten thousand key stream blocks.

5.2. Performance Analyses of Hardware and Software Co-Design

In comparison to the hardware generator of key stream blocks discussed in the previ-
ous section, we have also implemented the “KS-Generator” controller shown within the
green box in Figure 8 on the FPGA system bus, using a hardware and software co-design
approach (µP + HW Accelerator). This allows the micro-processor (i.e., µP in Figure 8) to
read the results of the operation results from the “KS-Generator” controller. Figure 13b
shows that generating ten thousand key stream blocks in the “µP + HW Accelerator”
manner takes an average time of 4402 µs, which is only 14.39% (4402 µs/30,597 µs) of the
average time required by “Pure µP” (30,597 µs) as indicated in Figure 14a. In other words,
this approach can save over 85% of the micro-processor’s processing time.
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for ten thousand NR-KBs.

Furthermore, to accelerate the processing speed of NR-PRNG for real-time stream pro-
cessing, the performance of implemented REG-CAM controller introduced in Section 4.3.1
was evaluated. As shown in the experimental results in Figure 14b, when the micro-
processor employs the REG-CAM controller (µP + HW Accelerator) to operate ten thou-
sand key stream blocks for duplication checking, it takes 27,601 µs. This is only 0.29%
(27,601 µs/9,371,161 µs) of the time (9,371,161 µs) required by pure software (Pure µP).
The significant performance enhancement is attributed to the fact that as the number of
generated key blocks accumulates, new key blocks must be compared to all previously
used blocks. This leads to an increasing time to obtain a valid Non-Repeating Key Block
(NR-KB). In this scenario, as the quantity of generated blocks accumulates, the use of
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REG-CAM for a hardware-accelerated comparison becomes even more effective compared
to the time-consuming software-only approach.

Next, to evaluate and demonstrate the performance of applying the implemented SG-
DMA, we selected setting a different Data Block Size (DBS) for each operation of memory
access. The DBS is a unit of burst memory access length used by the designed SG-DMA.
That is, a memory read is continual for the assigned DBS, and then a memory write is also
continual for the same DBS. Accordingly, the SG-DMA controller will support a First-In
First-Out (FIFO) buffer to temporarily store the access data from a source memory address
and then transfer them to another destination memory address. In experiments, we selected
DBSs of 64, 128, 256, 512, and 1024 bytes. For a fair comparison, to transfer the same amount
of data of 8192 bytes, the number of burst transfers for DBSs of 64, 128, 256, 512, and 1024
bytes are 128, 64, 32, 16, and 8 times, respectively. As Figure 15a shows, they are denoted as
DBS:64, DBS:128, DBS:256, DB:512, and DBS:1024, respectively.
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In Figure 15a, the throughput of DBS:64 is 6.66 MB/s, which is the lowest throughput
performance in this experiment. Next, the throughput of DBS:128 is 9.64 MB/s, which
is higher than that of DBS of 64 bytes (i.e., DBS:64). It is notable that the throughput of
DBS:1024 is 15.83 MB/s, which is the best performance in this experiment. Overall, we
observed that the memory accesses with a larger data block size came out with a better
throughput performance. This is reasonable, because in addition to the memory access
time between source and destination addresses and the bus turn-around time between
transfers of data blocks, the SG-DMA execution overheads for each burst transfer for a
DBS additionally include the programming efforts of µP, such as descriptor configurations,
interrupt services executions, and so on. To transfer 8192-byte data in the memory, the
number of burst transfers of DBS:1024 is 8 times, which is less than 128 times of DBS:64.
Accordingly, the SG-DMA execution overhead of DBS:1024 (with 8 times of transfers)
is less than that of DBS:64 (with 128 times of transfers). Consequently, the throughput
performance of DBS:1024 overcame that of DBS:64 by around 238% (=15.83/6.66 × 100%).

Apart from the performance comparisons among different DBSs of SG-DMA, we
furthermore transferred the 8192-byte data using pure µP programming (i.e., without
SG-DMA) from the source to the destination addresses that are identical to those of the
SG-DMA experiments in the previous sub-section. As Figure 15b shows, the throughput
performance of the memory access by pure µP is a small value of 0.51 MB/s, which
is less than the average throughput of 11.81 MB/s of SG-DMA. That means that only
4.32% ([0.51 MB/s]/[11.81 MB/s]) processing time of pure software (Pure µP) is required
for µP, with the help of the SG-DMA controller. Accordingly, this experimental result
demonstrates and validates the fact that a hardware accelerator (i.e., SG-DMA) for memory
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data movements is absolutely necessary for NB-IoT devices to generate the number of
Transport Blocks (TBs) for accessing the 6G gNB.

In summary, this sub-section illustrates the performance advantages gained through
the utilization of the hardware and software co-design approach (i.e., µP + HW Accelerator)
in the proposed OTP3 secure mechanism. This enables the micro-processor (µP in Figure 8)
to retrieve the key block generated by the “KS-Generator” controller, then performs a
check on the generated key block using the REG-CAM controller (c.f. Section 4.3.1) to
determine its repeating status. If the key block has not been used, it is stored for subsequent
encryption with a plaintext data stream block. Finally, the micro-processor manages the
SG-DMA controller (c.f. Section 4.3.2) to transfer the encrypted datagrams from the “Input
FIFO Buffer” (c.f. Figure 6) to the external memory, preparing them for transmission to the
Internet through the network controller. The system design architecture and execution flow
are detailed in Sections 4.1 and 4.2, respectively.

6. Discussion and Conclusions

In the future, with the increasing prevalence of NB-IoT and 6G networks, a multitude
of IoT devices will be directly connected to the Internet using these technologies. These
devices may not fall under the conventional internal network’s control, giving rise to a new
set of information security challenges. Consequently, this study’s primary innovations and
contributions can be summarized as follows:

• This paper introduces an FPGA-based implementation of a zero-trust secure stream
data transmission system. It is designed for the transmission of inter-endpoint stream-
ing signals, aligning with the fundamental principles of zero-trust networks.

• To prevent eavesdropping on transmitted information, this paper innovatively com-
bines the principles of one-time passwords and one-time pads, creating the operational
flow known as the One-Time Password Pad Process (OTP3) for secure transmissions
between paired IoT devices.

• To tackle the substantial computational burden on the micro-processor, this paper
introduces a mechanism in processing key block generations, non-repeating checks,
and data block transfers for the stream pipeline and hardware accelerators.

• This hardware-accelerated and software co-designed approach effectively alleviates the
workload on the micro-processor, thereby enhancing the overall system performance.
Experimental results demonstrate remarkable throughput performance enhancements
compared to traditional design schemes.

By harnessing the distinctive transmission characteristics and specific environments of
IoT, such as the uninterrupted streaming signal exchange between devices and the preset
two devices as a communication pair, this paper introduces OTP3. It is a secure mechanism
tailored for transmitting streaming signals between IoT device endpoints within the zero-
trust network framework. The implementation is carried out on an FPGA, incorporating
hardware processing modules that facilitate real-time data stream pipeline processing.
Empirical results affirm its efficiency in encryption processes and its capacity to handle
substantial volumes of transmitted data within the data-plane of the Fog Computing archi-
tecture. Furthermore, the FPGA designs implemented in this system can be translated into
an Application-Specific Integrated Circuit (ASIC), resulting in reduced production costs
and lower power consumption for large-scale manufacturing. This represents a significant
advantage for IoT devices, compared to methods employing Graphics Processing Units
(GPUs), which are also utilized for accelerating data processing. Designing the proposed
OTP3 operation flow with related functional components using both ASIC and GPU ap-
proaches necessitates substantial engineering effort. However, it is worthwhile undertaking
this task, as conducting a more comprehensive comparison will be instrumental in validat-
ing the performance of the proposed solution, contributing to the next phase of advanced
progress in this research.

Another future endeavor involves a collaborative design with a Quantum Key Dis-
tribution (QKD) key exchange method [56], like the pioneering BB84 QKD protocol [57].
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This approach allows two parties to establish a shared encryption key through a quantum
channel, known as a QKD link [58]. In the event of an eavesdropper’s attempt to intercept
the key, quantum principles will enable the communicators to detect such intrusion. QKD
offers a solution to the security challenges posed by the Diffie–Hellman (DH) algorithm [48],
used for public key exchange on the Internet, particularly in anticipation of future threats,
including those associated with Quantum Computing. Therefore, further empirical valida-
tions in real-world scenarios, particularly under diverse and challenging conditions, are
worth pursuing as future works with respect to this paper.
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ASIC Application-Specific Integrated Circuit
BB84 A Quantum Key Distribution Scheme by Bennett and Brassard in 1984
CAM Content-Addressable Memory
CoAP Constrained Application Protocol
CSR Configuration Status Registers
DBS Data Block Size
DES Data Encryption Standard
DH Diffie–Hellman
D-OTP Double OTP
DTLS Datagram TLS
EPCS Serial Configuration Device
FIFO First-In First-Out
FPGA Field-Programmable Gate Array
gNB Basestation of 5G
GPU Graphics Processing Unit
HW Hardware
ICS Industrial Control System
IETF Internet Engineering Task Force
IIS Industrial Information System
IoT Internet of Things
IP Internet Protocol
JPL Jet Propulsion Laboratory
KS-Generator Key Stream Generator
M2M Machine-to-Machine
MEC Multiaccess Edge Computing
MEM-CAM RAM-based Content-Addressable Memory
mMTC Massive Machine-Type Communications
NASA National Aeronautics and Space Administration
NB-IoT Narrow Band Internet of Things
NIC Network Interface Controller
NIST National Institute of Standards and Technology
NR-KB Non-Repeating Key Block
NR-PRNG Non-Repeating PRNG
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OTP One-Time Password
OTP3 One-Time Password Pad Process
PHY Physical Layer
PLL Phase-Locked Loop
PRNG Pseudo Random Number Generator
PSA Platform Security Architecture
QKD Quantum Key Distribution
RC4 Rivest Cipher 4
Reg-CAM Register-based Content-Addressable Memory
ROM Read Only Memory
SG-DMA Scatter–Gather Direct Memory Access
SDN Software-Defined Networking
SN Serial Number
SSL Secure Sockets Layer
TB Transport Block
TCP Transmission Control Protocol
TLS Transport Layer Security
TMIS Trend Micro IoT Security
UE User Equipment
VNF Virtual Network Function
WEP Wired Equivalent Privacy
WPA Wi-Fi Protected Access

References
1. Ye, Q.; Zhuang, W.; Li, X.; Rao, J. End-to-End Delay Modeling for Embedded VNF Chains in 5G Core Networks. IEEE Internet

Things J. 2018, 6, 692–704. [CrossRef]
2. Sedjelmaci, H.; Ansari, N. Zero Trust Architecture Empowered Attack Detection Framework to Secure 6G Edge Computing. IEEE

Network 2023, 1–13. [CrossRef]
3. Ajakwe, S.O.; Kim, D.S.; Lee, J.M. Drone Transportation System: Systematic Review of Security Dynamics for Smart Mobility.

IEEE Internet Things J. 2023, 10, 14462–14482. [CrossRef]
4. Tsai, W.C.; Tsai, T.H.; Wang, T.J.; Chiang, M.L. Automatic Key Update Mechanism for Lightweight M2M Communication and

Enhancement of IoT Security: A Case Study of CoAP using Libcoap Library. Sensors 2022, 22, 340. [CrossRef] [PubMed]
5. Cimpanu, C. Cheap Kids Smartwatch Exposes the Location of 5000+ Children, ZDNet, CBS Interactive, 25 November 2019.

Available online: https://www.zdnet.com/article/cheap-kids-smartwatch-exposes-the-location-of-5000-children/ (accessed on
10 November 2023).

6. Mirai (Malware), Wikimedia Foundation, Inc. Available online: https://en.wikipedia.org/wiki/Mirai_(malware) (accessed on 10
November 2023).

7. Cybersecurity Management and Oversight at the Jet Propulsion Laboratory, Office of Inspector General, NASA, June 18, 2019.
Available online: https://oig.nasa.gov/docs/IG-19-022.pdf (accessed on 10 November 2023).

8. TSMC Details Impact of Computer Virus Incident, Taiwan Semiconductor Manufacturing Company Limited, Hsinchu, Taiwan,
R.O.C. 5 August 2018. Available online: https://pr.tsmc.com/system/files/newspdf/THHIANTHTH/NEWS_FILE_EN.pdf
(accessed on 10 November 2023).

9. Ransomware Group Claims to Have Breached Foxconn Factory, by Eduard Kovacs, 1 June 2022, SecurityWeek. Available online:
https://www.securityweek.com/ransomware-group-claims-have-breached-foxconn-factory/ (accessed on 10 November 2023).

10. Nguyen, V.L.; Lin, P.C.; Cheng, B.C.; Hwang, R.H.; Lin, Y.D. Security and Privacy for 6G: A Survey on Prospective Technologies
and Challenges. IEEE Commun. Surv. Tutor. 2021, 23, 2384–2428. [CrossRef]

11. Study on Cellular Internet of Things (CIoT) Support and Evolution for the 5G System (5GS), 3GPP Technical Specification 23.724
Version 16.1.0 (Release 16), June 2019. Available online: https://www.3gpp.org/ftp//Specs/archive/23_series/23.724/23724-g1
0.zip (accessed on 27 January 2024).

12. Standards for the IoT. Available online: https://www.3gpp.org/news-events/3gpp-news/iot-r14 (accessed on 10 November
2023).

13. Service Requirements for Machine-Type Communications (MTC), 3GPP Technical Specification 22.368 Version 17.0.0 (Release
17), April 2022. Available online: https://www.3gpp.org/ftp/Specs/archive/22_series/22.368/22368-h00.zip (accessed on 27
January 2024).

14. Biral, A.; Centenaro, M.; Zanellan, A.; Vangelista, L.; Zorzi, M. The Challenges of M2M Massive Access in Wireless Cellular
Networks. Digit. Commun. Netw. 2016, 1, 1–19. [CrossRef]

15. Bellovin, S.M. Frank Miller: Inventor of the One-Time Pad. Cryptologia 2011, 35, 203–222. [CrossRef]
16. Shannon, C.E. Communication Theory of Secrecy Systems. Bell Sys. Tech. J. 1949, 28, 656–715. [CrossRef]

https://doi.org/10.1109/JIOT.2018.2853708
https://doi.org/10.1109/MNET.131.2200513
https://doi.org/10.1109/JIOT.2023.3266843
https://doi.org/10.3390/s22010340
https://www.ncbi.nlm.nih.gov/pubmed/35009882
https://www.zdnet.com/article/cheap-kids-smartwatch-exposes-the-location-of-5000-children/
https://en.wikipedia.org/wiki/Mirai_(malware)
https://oig.nasa.gov/docs/IG-19-022.pdf
https://pr.tsmc.com/system/files/newspdf/THHIANTHTH/NEWS_FILE_EN.pdf
https://www.securityweek.com/ransomware-group-claims-have-breached-foxconn-factory/
https://doi.org/10.1109/COMST.2021.3108618
https://www.3gpp.org/ftp//Specs/archive/23_series/23.724/23724-g10.zip
https://www.3gpp.org/ftp//Specs/archive/23_series/23.724/23724-g10.zip
https://www.3gpp.org/news-events/3gpp-news/iot-r14
https://www.3gpp.org/ftp/Specs/archive/22_series/22.368/22368-h00.zip
https://doi.org/10.1016/j.dcan.2015.02.001
https://doi.org/10.1080/01611194.2011.583711
https://doi.org/10.1002/j.1538-7305.1949.tb00928.x


Sensors 2024, 24, 853 21 of 22

17. Zero Trust Architecture, NIST SP 800-207, Computer Security Resource Center, National Institute of Standards and Technology,
August, 2020. Available online: https://csrc.nist.gov/pubs/sp/800/207/final (accessed on 10 November 2023).

18. Moving the U.S. Government Toward Zero Trust Cybersecurity Principles, Memorandum for the Heads of Executive Departments
and Agencies, Executive Office of The President, 26 January 2022. Available online: https://www.whitehouse.gov/wp-content/
uploads/2022/01/M-22-09.pdf (accessed on 10 November 2023).

19. Network and Security Strategy, Network and Security Architecture, Digital Enablement, Chief Technology Officer Branch,
Government of Canada, 12 April 2021. Available online: https://www.canada.ca/en/shared-services/corporate/publications/
network-security-strategy.html#toc6-1 (accessed on 7 January 2024).

20. The Constrained Application Protocol (CoAP), Request for Comments: 7252, Internet Engineering Task Force (IETF), June 2014.
Available online: https://tools.ietf.org/html/rfc7252 (accessed on 10 November 2023).

21. Internet Engineering Task Force, Internet Society. Available online: https://ietf.org/ (accessed on 10 November 2023).
22. STM8L052R8, STM8 8-Bit MCUs, STMicroelectronics. Available online: https://www.st.com/en/microcontrollers-

microprocessors/stm8l052r8.html (accessed on 10 November 2023).
23. Gallenmüller, S.; Schöffmann, D.; Scholz, D.; Geyer, F.; Carle, G. DTLS Performance—How Expensive is Security? arXiv 2019,

arXiv:1904.11423.
24. Arvin, S.; Narayanan, V.A. An Overview of Security in CoAP: Attack and Analysis. In Proceedings of the 2019 5th international

Conference on Advanced Computing & Communication Systems (ICACCS), Coimbatore, India, 15–16 March 2019; pp. 655–660.
25. IoT Security: How to Protect Your IoT Devices in OT Systems, Endpoint and Network Solutions with Proven Technology, Trend

Micro Incorporated. Available online: https://www.trendmicro.com/en_be/business/solutions/iot/iot-security.html (accessed
on 10 November 2023).

26. Raspberry Pi, Raspberry Pi Foundation. Available online: https://www.raspberrypi.org/ (accessed on 10 November 2023).
27. Beetle IoT Evaluation Platform, Arm Limited. Available online: https://developer.arm.com/Tools%20and%20Software/Beetle%

20IoT%20Evaluation%20Platform (accessed on 10 November 2023).
28. The Transport Layer Security (TLS) Protocol Version 1.3, Request for Comments: 8446, Internet Engineering Task Force (IETF),

August 2018. Available online: https://datatracker.ietf.org/doc/html/rfc8446 (accessed on 10 November 2023).
29. Platform Security Architecture (PSA), Arm Limited. Available online: https://www.arm.com/en/architecture/security-features/

platform-security (accessed on 10 November 2023).
30. Mujahid, O.; Ullah, Z. High Speed Partial Pattern Classification System Using a CAM-Based LBP Histogram on FPGA. IEEE

Embed. Syst. Lett. 2019, 12, 87–90. [CrossRef]
31. Chaudhry, S.R.; Palade, A.; Kazmi, A.; Clarke, S. Improved QoS at the Edge Using Serverless Computing to Deploy Virtual

Network Functions. IEEE Internet Things J. 2020, 7, 10673–10683. [CrossRef]
32. Goswami, S.S.P.; Trivedi, G. FPGA Implementation of Modified SNOW 3G Stream Ciphers Using Fast and Resource Efficient

Substitution Box. IEEE Embed. Syst. Lett. 2023, 15, 238–241. [CrossRef]
33. Szymanski, T.H. The “Cyber Security via Determinism” Paradigm for a Quantum Safe Zero Trust Deterministic Internet of Things

(IoT). IEEE Access 2022, 10, 45893–45930. [CrossRef]
34. Szymanski, T.H. Supporting Consumer Services in a Deterministic Industrial Internet Core Network. IEEE Commun. Mag. 2016,

54, 110–117. [CrossRef]
35. Szymanski, T.H. Security and Privacy for A Green Internet of Things. IEEE IT Prof. 2017, 19, 34–41. [CrossRef]
36. Lamport, L. Password Authentication with Insecure Communication. Comm. ACM 1981, 24, 770–772. [CrossRef]
37. Call for Stream Cipher Primitives, ECRYPT. Available online: http://www.ecrypt.eu.org/stream/call/ (accessed on 10 November

2023).
38. ECRYPT II, European Network of Excellence in Cryptology II. Available online: https://www.ecrypt.eu.org/ecrypt2/documents/

D.SYM.10-v1.pdf (accessed on 10 November 2023).
39. Coppersmith, D. The Data Encryption Standard (DES) and its Strength Against Attacks. IBM J. Res. Dev. 1994, 38, 243–250.

[CrossRef]
40. Daemen, J.; Rijmen, V. The Design of Rijndael: AES; The Advanced Encryption Standard; Springer: Berlin/Heidelberg, Germany,

2002.
41. IEEE 802.11 Document Server. Available online: https://mentor.ieee.org/802.11/documents (accessed on 27 January 2024).
42. Katz, J.; Lindell, Y. Introduction to Modern Cryptography; Chapman and Hall/CRC: Boca Raton, FL, USA, 2014.
43. Leyden, J. That Earth-Shattering NSA Crypto-Cracking: Have Spooks Smashed RC4. Register 2013, 2, 2013.
44. Popov, A. Prohibiting RC4 Cipher Suites; IETF Document RFC 7465; Internet Engineering Task Force (IETF): Fremont, CA, USA,

2015.
45. Barker, E.; Kelsey, J. Recommendation for Random Number Generation Using Deterministic Random Bit Generators; NIST SP800-90A;

US Department of Commerce, Technology Administration, National Institute of Standards and Technology, Computer Security
Division, Information Technology Laboratory: Washington, DC, USA, 2012.

46. Yang, C.L.; Tampubolon, H.; Setyoko, A.; Hua, K.L.; Tanveer, M.; Wei, W. Secure and Privacy-Preserving Human Interaction
Recognition of Pervasive Healthcare Monitoring. IEEE Trans. Netw. Sci. Eng. 2022, 10, 2439–2454. [CrossRef]

47. Microsoft Zero Trust Guidance Center. Available online: https://learn.microsoft.com/en-us/security/zero-trust/ (accessed on
10 November 2023).

https://csrc.nist.gov/pubs/sp/800/207/final
https://www.whitehouse.gov/wp-content/uploads/2022/01/M-22-09.pdf
https://www.whitehouse.gov/wp-content/uploads/2022/01/M-22-09.pdf
https://www.canada.ca/en/shared-services/corporate/publications/network-security-strategy.html#toc6-1
https://www.canada.ca/en/shared-services/corporate/publications/network-security-strategy.html#toc6-1
https://tools.ietf.org/html/rfc7252
https://ietf.org/
https://www.st.com/en/microcontrollers-microprocessors/stm8l052r8.html
https://www.st.com/en/microcontrollers-microprocessors/stm8l052r8.html
https://www.trendmicro.com/en_be/business/solutions/iot/iot-security.html
https://www.raspberrypi.org/
https://developer.arm.com/Tools%20and%20Software/Beetle%20IoT%20Evaluation%20Platform
https://developer.arm.com/Tools%20and%20Software/Beetle%20IoT%20Evaluation%20Platform
https://datatracker.ietf.org/doc/html/rfc8446
https://www.arm.com/en/architecture/security-features/platform-security
https://www.arm.com/en/architecture/security-features/platform-security
https://doi.org/10.1109/LES.2019.2956154
https://doi.org/10.1109/JIOT.2020.3011057
https://doi.org/10.1109/LES.2023.3298743
https://doi.org/10.1109/ACCESS.2022.3169137
https://doi.org/10.1109/MCOM.2016.7498096
https://doi.org/10.1109/MITP.2017.3680952
https://doi.org/10.1145/358790.358797
http://www.ecrypt.eu.org/stream/call/
https://www.ecrypt.eu.org/ecrypt2/documents/D.SYM.10-v1.pdf
https://www.ecrypt.eu.org/ecrypt2/documents/D.SYM.10-v1.pdf
https://doi.org/10.1147/rd.383.0243
https://mentor.ieee.org/802.11/documents
https://doi.org/10.1109/TNSE.2022.3223281
https://learn.microsoft.com/en-us/security/zero-trust/


Sensors 2024, 24, 853 22 of 22

48. Diffie, W.; Hellman, M.E. New Directions in Cryptography. IEEE Trans. Inform. Theory 1976, 22, 644–654. [CrossRef]
49. Intel DE2-115 Development and Education Board, Terasic Inc. Available online: https://www.terasic.com.tw/cgi-bin/page/

archive.pl?Language=English&CategoryNo=139&No=502&PartNo=2 (accessed on 27 January 2024).
50. Intel FPGA, SoC FPGAs and CPLD, Intel Corporation. Available online: https://www.intel.com/content/www/us/en/

products/details/fpga.html (accessed on 10 November 2023).
51. Malikovich, K.M.; Turakulovich, K.Z.; Tileubayevna, A.J. A Method of Efficient OTP Generation Using Pseudorandom Number

Generators. In Proceedings of the International Conference on Information Science and Communications Technologies, Tashkent,
Uzbekistan, 4–6 November 2019; pp. 1–4.

52. Li, G.; Zhang, Z.; Zhang, J.; Hu, A. Encrypting Wireless Communications on the Fly Using One-Time Pad and Key Generation.
IEEE Internet Things J. 2020, 8, 357–369. [CrossRef]

53. Intel Platform Designer, Intel Corporation. Available online: https://www.intel.com/content/www/us/en/software/
programmable/quartus-prime/qts-platform-designer.html (accessed on 17 November 2023).

54. Nios Processor for FPGAs, Intel Corporation. Available online: https://www.intel.com/content/www/us/en/products/details/
fpga/nios-processor.html (accessed on 10 November 2023).

55. Nguyen, X.T.; Hoang, T.T.; Nguyen, H.T.; Inoue, K.; Pham, C.K. An Efficient I/O Architecture for RAM-Based Content-
Addressable Memory on FPGA. IEEE Trans. Circuits Syst. II Express Briefs 2019, 66, 472–476. [CrossRef]

56. Zhang, H.G.; Ji, Z.X.; Wang, H.Z.; Wu, W.Q. Survey on quantum information security. China Comm. 2019, 16, 1–36. [CrossRef]
57. Bennett, C.H.; Brassard, G. Quantum Cryptography: Public Key Distribution and Coin Tossing. In Proceedings of the IEEE

International Conference of Computers, Systems, and Signal Processing, Bangalore, India, 9–12 December 1984; pp. 175–179.
58. Sasaki, M. Quantum Key Distribution and Its Applications. IEEE Secur. Priv. 2018, 16, 42–48. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/TIT.1976.1055638
https://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&CategoryNo=139&No=502&PartNo=2
https://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&CategoryNo=139&No=502&PartNo=2
https://www.intel.com/content/www/us/en/products/details/fpga.html
https://www.intel.com/content/www/us/en/products/details/fpga.html
https://doi.org/10.1109/JIOT.2020.3004451
https://www.intel.com/content/www/us/en/software/programmable/quartus-prime/qts-platform-designer.html
https://www.intel.com/content/www/us/en/software/programmable/quartus-prime/qts-platform-designer.html
https://www.intel.com/content/www/us/en/products/details/fpga/nios-processor.html
https://www.intel.com/content/www/us/en/products/details/fpga/nios-processor.html
https://doi.org/10.1109/TCSII.2018.2849925
https://doi.org/10.23919/JCC.2019.10.001
https://doi.org/10.1109/MSP.2018.3761713

	Introduction 
	Background 
	Motivation to Improve IoT Security for Stream Data Transmission 
	Zero-Trust Network Architecture and Future IoT Applications 
	Limitations in Conventional IoT Protocols and Architectures 
	Development of IoT Security Mechanisms with Hardware Accelerators 
	One-Time Password, One-Time Pad, and D-OTP 
	Methods for Implementing Streaming Data Encryption 
	Discussion on the Security of Stream Cipher Algorithms 

	Research Methodology 
	Methods Proposed for Enhancing IoT Data Transmission Security 
	Security Guarantee Scheme and Operation of OTP3 
	Security Implications of OTP3 
	Setup Plane 
	Control Plane 
	Data Plane 

	Practical Deployment Challenges of OTP3 

	Design Implementation 
	System Design Architecture 
	System Execution Flow 
	FPGA Bus Components 
	Register-Based Content-Addressable Memory 
	Scatter–Gather Direct Memory Access 


	Experimental Results 
	Performance Analyses of Hardware Processing 
	Performance Analyses of Hardware and Software Co-Design 

	Discussion and Conclusions 
	References

