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Abstract: Accurate geometric modeling of blood vessel lumen from 3D images is crucial for vessel
quantification as part of the diagnosis, treatment, and monitoring of vascular diseases. Our method,
unlike other approaches which assume a circular or elliptical vessel cross-section, employs parametric
B-splines combined with image formation system equations to accurately localize the highly curved
lumen boundaries. This approach avoids the need for image segmentation, which may reduce the
localization accuracy due to spatial discretization. We demonstrate that the model parameters can
be reliably identified by a feedforward neural network which, driven by the cross-section images,
predicts the parameter values many times faster than a reference least-squares (LS) model fitting
algorithm. We present and discuss two example applications, modeling the lower extremities of
artery–vein complexes visualized in steady-state contrast-enhanced magnetic resonance images (MRI)
and the coronary arteries pictured in computed tomography angiograms (CTA). Beyond applications
in medical diagnosis, blood-flow simulation and vessel-phantom design, the method can serve as a
tool for automated annotation of image datasets to train machine-learning algorithms.

Keywords: blood vessels; lumen quantification; centerline; deep learning; 3D images; B-splines;
NURBS; tubular objects

1. Introduction

Vascular diseases, characterized by either blocked or excessive blood supply to or-
gans and tissues, are among the most serious health challenges globally [1], leading to
life-threatening conditions including stroke or heart attack. They are associated with
abnormalities in blood vessel lumen geometry, such as stenoses caused by pathological
deposition of atherosterotic plaque inside the vessel [2]. The diagnosis and treatment of
vascular diseases requires accurate lumen geometry quantification, in a non-invasive way
where possible [3]. Three-dimensional imaging is the main technique used to acquire
quantitative information about the vasculature [4]. Example modalities include magnetic
resonance angiography (MRA) which can be either blood-flow-dependent (time-of-flight
(TOF) or phase contrast angiography (PCA)) or flow-independent [5,6]. An invasive al-
ternative is computed tomography angiography (CTA) [7]. Vasculature images can be
nonenhanced or contrast-enhanced (CE), which involves injecting a contrastive substance
into the blood circulatory system [8]. Vascular ultrasonography (US) is another imaging
technique with good potential [9]. However, modeling the US image formation requires
different theoretical treatment [10] to that applicable to MR and CT volumes. Further
discussion of US imaging lies beyond the scope of this paper.

Parametric evaluation of the shape of the blood vessel lumen requires identification
and quantification of 3D image regions representing the relevant part of the circulatory
system. This is not a trivial task, for several reasons. Firstly, the vasculature exhibits a
complex tree-like structure of highly curved branches of different diameters [11,12] (p. 9).
These diameters range broadly, from 30 mm in the aorta and vena cava to as small as 30 µm
in venules and arterioles [13]. At the same time, the spatial resolution of imaging systems
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is limited. For instance, in clinical scanners, the spatial resolution is limited to cuboids
(voxels) with a minimum sidelength of 0.2 mm. Thus, the thin regions of vessels are heavily
blurred in the image, and the thinnest of them are not visible. To enhance the resolution,
various technical solutions are employed to reduce the voxel volume [14,15]. However, this
causes a decrease in the signal collected from each voxel, and as a consequence increases
the impact of random noise as a component of the image intensity. The presence of random
noise increases the uncertainty of assessing intensity levels inside the lumen, the vessel wall,
and the surrounding background, adversely affecting the lumen geometry measurements
(Appendix A). Image artifacts further complicate vessel image analysis.

Typically, the vessels of interest are closely surrounded by other arteries, veins and
tissues. Thus, the background region features uneven image intensity and the spatially
blurred signals from different regions overlap (Figure 1). Moreover, the intensity inside
the vessel walls is not constant. The plaque depositions, especially those that are calcified,
exhibit different physical properties to the blood or to the contrastive medium [16]. Un-
der these conditions, classical, numerically efficient segmentation through thresholding
becomes highly inaccurate. These factors make the task of vessel quantification in 3D
images especially challenging for radiologists. Manual vessel delineation in 3D images
is tedious, time-consuming, and error-prone [17]. Its adequacy depends much on the
reader’s experience and their level of fatigue. There is a strong need to develop automated
techniques for accurate, fast, and objective vascularity evaluation from volumetric image
data [18].

Figure 1. Example 15 × 15-pixel cross-sections of coronary artery segments in CAT08, pixel size
0.45 × 0.45 mm.

Numerous methods of lumen segmentation and quantification have been proposed
over the last few decades [17–19]. Research in this area has further intensified with the
development of deep learning as an approach to image segmentation [20,21]. There are
two main approaches to vascular structure quantification in 3D images [22,23]:

• Three-dimensional segmentation-based quantification;
• Model-fitting-based 2D lumen cross-sections quantification along an approximate

centerline.

The result of direct 3D image segmentation is another image. In its basic form, this
image is a grid with the same spatial resolution as the original volume, where the nodes
(e.g., the centers of the voxels) are attributed binary intensity values. Some of these voxels
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are marked by a label indicating that they represent the lumen. All the others are labeled
as background. The boundary of the lumen region, which is smooth and continuous
in the physical space, is discretized during image acquisition and so it remains after
segmentation. For random boundary location in space, the variance of the discretization
error can only be reduced by increasing imaging resolution (Appendix A) usually at the
price of increased noise.

Thus, when binary segmented, the lumen surface exhibits a stair-like or voxelized
form. It requires additional spatial smoothing for visualization or to build a geometric
model for blood flow simulation. However, part of the information about the actual course
of this continuous surface, which is needed for faithful reconstruction, is lost in the bi-
nary segmentation step, when the continuous intensities are replaced by two-level values.
From this point of view, image segmentation, although intuitive, is an unnecessary pro-
cessing step. Moreover, some segmentation algorithms involve time-consuming iterative
calculations [24,25].

Here, we focus on the second approach to estimating lumen geometry parameters,
from 3D image cross-sections. These cross-sections are computed as 2D images on planes
perpendicular to the vessel centerline, which is approximated by a smooth curve in 3D
space [26]. Various algorithms for the centerline extraction are available [27,28]. Normal
vectors to the centerline define the cross-section planes. The cross-section images are
obtained through 3D discrete image interpolation and resampling. The center of the
cross-section image grid is usually set to lie on the centerline. The contours of the lumen
are delineated, either semi-manually [29] or automatically [26]. For automated contour
delineation, a 2D image formation model is defined. This model accounts for image
smoothing by an equivalent scanner impulse response, either one-dimensional along radial
lines [26,30] or two-dimensional over the image plane [31], as well as for the random noise.
The effect of smoothing, naturally featured by imaging sensors, plays an important role
in the chosen approach. Namely, smoothing converts distances between image points
and the lumen edge to image intensity variations. Thus, more relevant information is
available (in the transition region around the edge) compared to voxelwise thresholding
(Appendix A). The model is fitted with the use of the least-squares (LS) algorithm. This
involves long-lasting iterative minimization of a nonlinear error function and is likely to
become stuck in its local minima, depending on the initial parameter values.

We use LS fitting as a reference method and apply the convolutional neural network
(CNN) driven by 2D cross-section images for fast estimation of the model parameters [31,32].
The contours found at predefined increments along the centerline arc are lofted to build
the geometric models, e.g., for visualization (Figure 2). Lofting is a technique used in
computer-assisted design programs to create 3D surfaces or solid objects [29]. They are
formed from sequences of cross-section curves—the contours of the lumen, in our case.

Past works that followed the modeling approach incorporate circular or elliptical
cylinders as abstract geometric objects that represent the vessel lumen in the image space.
In fact, the actual shape of the lumen contours significantly deviates from these idealized
figures (Figure 2). This happens in particular in the vessels narrowed by atherosclerotic
plaque [33]. The novelty of our method lies in using B-splines—parameterized curves that
accurately represent the natural lumen shapes in normal and pathological vasculature—as
part of the image formation model. Although B-splines have been used previously for
blood vessel contouring [34,35], they were fitted to the approximate, spatially discretized
surface of the lumen region in binary segmented 3D image. In our approach, the fitting
process takes place in the image at full bit depth intensity instead of in the discretized
spatial domain. Innovatively, the lumen contour parameters are estimated by a neural
network, providing increased speed and robustness compared to LS fitting. The use of
B-splines makes our method compatible with the isogeometric approach [36] to image
analysis, test object (physical phantoms) design and computational blood flow simulation.
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Figure 2. Visualization of the PAVES b14 branch of vein–artery lumen based on contours obtained
with different LS-identified image formation models, (A) B-spline contours, (B) circular lumen
boundaries, (C) overlay of the surfaces in (A,B).

2. Materials and Methods

To illustrate the properties and capabilities of the proposed lumen modeling method,
the following real-life and synthetic images were used:

• Lower-extremities MRA volumes available within the PAVES Grand Challenge [37];
• Contrast-enhanced CTA of coronary arteries collected and annotated by a team of

researchers at the Erasmus Medical Center in Rotterdam [38], provided within the
framework of the MICCAI 2008 Coronary Artery Tracking Challenge (CAT08) [28];

• Computer-synthesized cross-section images generated for purposes of this research.

These datasets are characterized in the following subsections.

2.1. PAVES MR Dataset

Steady-state MR contrast-enhanced volumes, available as part of the PAVES dataset,
are high spatial resolution images which, in principle, allow evaluation of the shape of
the artery lumen, e.g., for the purpose of identifying stenosis. However, these images take
several minutes to acquire. During this rather long time, both the arteries and veins become
filled with the gadolinium-based contrast medium. As a result, the intensities of these
regions show similar values, making the arterial regions difficult to identify and distinguish
from the neighboring veins. The arteries are smaller in diameter, and their cross-sections
are close to circular, except for pathological stenosed vessels featuring wall-thickening.
On the other hand, veins typically have oval shapes and are located in pairs next to an
artery (Figure S1). Thus, the cross-sections of artery–vein complexes do not exhibit circular
shapes. They are non-circular, although their boundaries are smooth. As highlighted
in [39], veins can be used by surgeons to “bypass” a blocked artery, provided they are of the
correct diameter and length. Therefore, delineating veins and arteries in high-resolution
GdCE (gadolinium contrast-enhanced) MR images is a valid medical image processing
task, formulated as a Grand Challenge [37].

The research problem defined in this example is to evaluate the suitability of the
proposed method to delineate boundaries of the veins and arteries, given their steady-state
GdCE MR volume. The PAVES dataset 5 was selected for this purpose, as the clinical
significance of its properties was demonstrated in [39]. To obtain the cross-sections, the
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centerlines of the blood vessel regions were extracted and smoothly approximated by
application of the following 3D image preprocessing steps [26]:

• Multiscale “vesselness” filtering [27,40] to enhance the blood vessels regions [41];
• Vesselness map thresholding to obtain binary lumen representation;
• Binary region thinning to produce a skeleton;
• Skeleton parsing [42] to identify the blood vessel tree branches between bifurcations;
• Approximating the skeleton branches by a differentiable function in 3D (to initialize

their centerline).

Figure 3A shows a maximum intensity projection on the axial plane of the PAVES
dataset 5 TWIST (subtracted time-resolved acquisition) volume, for left volunteer extremity.
The arrow indicates a stenosis in the anterior tibial artery. The above preprocessing algo-
rithm was applied for the TWIST 3D image. The parsed skeleton is illustrated in Figure 3B.
The tibial artery segment b14 was selected for further analysis, among other vessel-tree
branches enumerated by the skeleton parsing algorithm.

Figure 3. (A) Maximum intensity projection for PAVES dataset 5, showing TWIST (subtracted time-
resolved acquisition) volume on the axial plane, left volunteer extremity. The arrow indicates a
stenosis in the anterior tibial artery. (B) Binary skeleton of the blood vessels, after parsing. The tibial
artery branch was assigned code b14. (C) Mosaic of 112 numbered cross-sections of the tibial artery,
taken at 0.5-mm intervals along the centerline. An example of a coronal slice MRI of the volunteer’s
right leg is shown in Figure S1.
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Tangent vectors to the smooth vessel centerline curve were computed at a number of
consecutive points at distances of about 0.5 mm from each other. Together with the binormal
vectors, these tangent vectors define the Frenet-Serret frame at each point. This frame often
becomes rotated around the tangent vector, causing an undesirable twist in the surface of an
elongated object. A rotation minimizing frame algorithm [43] was then used to compute the
vessel local coordinate systems 0xy, in which the 2D lumen cross-sections were calculated
by resampling the MR volume. These image preprocessing and analysis algorithms were
implemented in both Matlab (version R2022B) and Python (version 3.10.13). The codes are
available on request.

Examples of the cross-sections are presented in Figure 3C, in the form of a mosaic of
15 × 15-pixel images, where the pixel size is 1.0 mm × 1.0 mm. The consecutive lumen
cross-sections show minimal twist. Basically, a cross-section contains a dark background
where there is no tissue filled with blood, a medium-intensity vein region, and a bright
artery blob with the highest concentration of the contrastive medium. As shown in the
upper five rows of Figure 3C, the healthy arteries feature circle-like cross-sections. However,
the atherosclerotic occlusions cause narrowing of the vessel lumen (row six, right half) and
reduce the intensity of the artery region. As an effect of collateral blood circulation, the
width of the artery lumen may be restored down the vessel, as can be seen in rows nine to
fifteen (Figure 3C).

2.2. CAT08 Coronary CTA Dataset

We applied the proposed lumen modeling method to 3D images of a training set
made available by the Rotterdam Coronary Algorithm Evaluation Framework [38,44,45].
It was designed for the development of algorithms for lumen segmentation, as well as
detection and quantification of coronary artery stenoses, and provided in the MICCAI
2008 Coronary Artery Tracking Challenge (CAT08). There are 48 datasets available in the
Rotterdam Challenge data repository. In 18 of the datasets, anatomical segments of the
arteries (specified in [44]) have been manually annotated by three experts. These 18 sets
constitute the CAT08 training set. For 78 of the training set segments, expertly annotated
contours of the arteries cross-sections are available. We used this information, together with
the corresponding 3D images, to train the CNN estimator and as a reference for testing. It is
worth noting the three observers needed approximately 300 h to complete their annotation
of the data [38].

The CT images of the Rotterdam dataset were acquired with different scanners over a
period of one year, for a number of patients under observation for cardiac diseases. The
average voxel size for the whole dataset is 0.32 mm × 0.32 mm × 0.4 mm. We clipped the
CT volume intensity to [−300, 800] HU (Hounsfield units) and normalized it to [0, 1]. The
volumes were resampled on the planes of marked contours, to obtain lumen cross-sections
centered at the centerline points.

Figure 1 shows example cross-sections of a few segments in the CAT08 dataset, com-
puted for a sampling interval of 0.45 mm. Segments seg01 and seg02 are consecutive
anatomical parts of the right coronary artery (RCA). However, the sections of these seg-
ments presented in Figure 1 belong to different datasets and differ in appearance quite
significantly. The contrast for the 25 images of seg01 is much higher and the area of its
lumen region does not change as much as the lumen region for the 33 sections of seg02.

Thresholding would not be useful for lumen region segmentation of seg02. The lumen
diameter noticeably decreases along the 20 sections of seg04 (from left to right, row by
row) and approaches subpixel values in the bottom row. At the same time, bright regions
in the background dominate the image content. The contrast of images in seg06 is good.
The lumen region is well defined and its shape is close to circular. However, it shows a
significant blur, similar to all other images. This property, originating in the limited spatial
resolution of the CT scanners, leads to high uncertain localization of lumen boundaries,
especially in noisy images.
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Segments seg07 and seg08 form consecutive parts of the left anterior descending artery
(LAD). The first section (the leftmost in the upper row) of seg07 is closest to the heart, the
last section (rightmost in the lower row) is the immediate neighbor of the first section in
seg08. The sections in the upmost row of seg08 exhibit a reduced lumen area and bright
image spots in the sixth and seventh sections, apparently caused by atherosclerotic plaque.
If they become part of the lumen model as a result of image analysis, postprocessing will
be needed to detect and quantify them. seg12 is the first obtuse marginal artery (OM1). Its
lumen is well distinguished from the immediate background. However, a significant area is
occupied by black triangular-shaped regions where the normalized intensity is close to zero
(−300 HU or less in the scanner-acquired CT volumes). The typical cross-section shape of
the vessel lumen marked by the observers is neither circular nor elliptical (Figure 4).

Figure 4. Example contours marked by the three observers on coronary artery sections in the CAT08
dataset. Cross-sections were interpolated to 60 × 60 pixel resolution to make their appearance similar
to the example shown in Figure 4 of [38]. The pseudocolor palette was used to enhance the visibility
of the intensity variations.

All the image nonidealities pointed out in the previous paragraph make lumen mod-
eling a difficult task. In our numerous experiments, the LS model fitting method failed
in the case of too many CAT08 arterial branches, as background regions were of locally
higher intensity than the lumen. On the other hand, the proposed parameterized B-spline
lumen contour model can be robustly identified by a feedforward CNN, which will be
demonstrated in the Results section.

2.3. Image Formation Model and the Synthetic Dataset Generation

We assumed the blood vessel cross-section image centered at any point (ξ, η, ζ) in
the 3D space is a convolution of the function f (x, y), which represents the lumen and its
background, with h(x, y) − the imaging system effective impulse response (point spread
function PSF):

F(x, y) =
∫ ∞

−∞

∫ ∞

−∞
f (u, v)h(x − u, y − v)dvdu (1)

where (x, y) are image coordinates on the cross-section plane. The function h(x, y) in (1)
combines the effects of the 3D image scanner impulse response and interpolation neces-
sary for computing the cross-section intensity from the 3D image via resampling. This
assumption, though idealized, is relevant to most practical situations [46].

We further assume the function f (x, y) is constant within the lumen region, sur-
rounded by a background of different but also constant intensity. These assumptions are
often not met, as mentioned before with regard to the coronary artery CE CTA images. We
will demonstrate in the Results section that CNN-based lumen geometry restoration is
robust to image intensity variations in the regions of interest.

We considered equidistant sampling on a Cartesian grid of points (although other
sampling strategies are possible to tune the estimator properties):

(xs
i , ys

j ) = (i∆s, j∆s), i, j ∈ {−N, . . . , 0, . . . , N} (2)
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where ∆s denotes the sampling interval. The cross-section image size is (2N + 1)× (2N + 1).
The image intensity at (i, j) is the sampled convolution (1) multiplied by lumen intensity
step b and added to the background intensity a:

I(i, j) = a + bF(i∆s, j∆s). (3)

The lumen section boundary at each centerline point (ξk, ηk, ζk), k ∈ {0, . . . , K − 1} is
described in this paper by a closed (periodic) B-spline curve which encloses the higher-
intensity lumen region Ωk in R2:

fk(x, y) =
{

1 for (x, y) ∈ Ωk
0 for (x, y) /∈ Ωk

(4)

The in-plane blur in our model is assumed to be an isotropic Gaussian [46–48], where
w is a parameter:

h(x − u, y − v) =
1

2πw2 exp
(
− (x − u)2 + (y − v)2

2w2

)
. (5)

The lumen contour is approximated by a parameterized curve lying on the plane
of the vessel cross-section. For this purpose, we selected a B-spline curve [49,50], which
is a smooth, piecewise polynomial allowing stable, locally controlled approximation of
real-world data. To define a curve of this kind, it is necessary to specify a sequence of
M + 2, M > 0, real numbers, the knots

(t1, t2, . . . , tM+n), ti ≤ ti+1 (6)

which define the curve segment boundaries, M > 0, and n as the B-spline degree. At
the boundaries (internal knots), the segments are joined together to satisfy continuity
constraints. We use third-degree polynomials, meaning that the first and second derivatives
are continuous along the curve arclength.

The closed B-spline of degree n is controlled by M + n + 1 points Ci, such that the first
control point C0 overlaps with the last one in the sequence. For any t within the B-spline
segments, the curve points can be computed as [51]

B(t) =
M+n

∑
i=0

CiBi,n(t) t0 ≤ t ≤ tM+1 (7)

The B-spline (7) is a linear combination of degree n basis B-splines Bi,n. These can be
defined recursively using the de Boor algorithm [49]

Bi,0(t) =
{

1 if ti ≤ ti+1
0 otherwise

(8)

Bi,j+1(t) =
t − ti

ti+j − ti
Bi,j(t) +

ti+j+1 − t
ti+j+1 − ti+1

Bi+1,j(t) (9)

To compute the cross-section model intensity (3), one needs to specify the boundary of
the lumen region Ω in (4). This is described by a B-spline curve controlled by a sequence
of points that have to be defined. In our approach, the control points for a cross-section
centered at the vessel centerline are located on the radial lines extruding from the image
center at D angles:

ϕi =
2πi
D

, i ∈ {0, . . . , D − 1}. (10)

The distance in physical space from the image center to the ith control point Ci is
Rdi∆s, i ∈ {0, . . . , D − 1}. R is a scale factor (fixed for the image of given size) and
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d = (d0, d1, . . . , dD−1) is a vector of adjustable B-spline parameters. The coordinates of the
control points are computed as

Ci = Rdi∆s(cos(ϕi), sin(ϕi)) i ∈ {0, . . . , D − 1}. (11)

Based on our experience with blood vessel images of various modalities, the w param-
eter of the PSF in (5) does not change significantly within an image. Therefore, a constant
value of w is assumed and measured separately, e.g., via analysis of appropriate edge
blur. Then, there are altogether P = D + 2 adjustable parameters p = (a, b, d). Combining
expressions from (1)–(11), one obtains

I(i, j; p) = a + bF(i∆s, j∆s, d). (12)

where F(x, y) given by (1) is multiplied by the parameter b (the intensity pulse corre-
sponding to the lumen region) and added to the background intensity a. Geometrical
interpretation of the elements of vector d is provided in Figure 5A, for D = 8. The lumen
is represented in (4) by a set of points of unit intensity (the shaded area in Figure 5B), sur-
rounded by the background points with intensity equal to zero (the white area in Figure 5B).
Figure 5C shows a low-resolution image obtained as a result of sampling a blurred version
of the ideal image depicted in Figure 5B.

Figure 5. (A) Geometry of an eight-parameter B-spline curve normalized to the scale factor R. (B) Ideal
lumen region in the cross-section image space. The shaded area represents the constant-intensity
lumen region Ω. (C) Low-resolution noiseless image of the lumen on its background.

Considering the complex shape of the region Ω, no closed-form expression for the inte-
gral (1) appears to be available. To compute 2D images for the training and testing datasets,
we evaluated the right-hand side in (1) numerically, with a Python implementation of the
OpenCV (version 4.6.0) library. A synthetic dataset comprising 10,000 images was created.
The synthetic dataset was considered in two versions: noiseless and noisy. The noise
addition procedure is described in the Results subsection devoted to the PAVES dataset.

2.4. Least-Squares Model Fitting for the PAVES Dataset

The aim is to estimate the parameter vector p̂ = (â, b̂, d̂), given an acquired 2D digital
image Ia(i, j) of the lumen cross-section of known R, w, and ∆s. This image is the input
to the CNN, which approximates the mapping from the image space to the parameter
space. We will compare the performance of two approaches to parameter vector estimation:
least-squares (LS) model fitting and prediction by a convolutional neural network [31].
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Using the former method, the lumen contour parameters can be estimated by minimizing
the sum of squared differences between the acquired and modeled image samples:

p̂ = arg

(
min

p

N

∑
i=−N

N

∑
j=−N

[Ia(i, j)− I(i, j; p)]2
)

. (13)

The Scipy (version 1.11.4) Python module was used to perform minimization of the
sum-of-squares in (13).

2.5. Quantitative Evaluation of Contours Similarity

The lumen contour is defined by a closed continuous curve on the cross-section plane
in a physical space. For numerical analysis, it is represented by a finite set of discrete point
− vertices of a polygon chosen to approximate the curve. We will use the term “contour” to
refer to its discrete version. We applied two measures to evaluate the discrepancy between
contours. Consider the contours A and B, comprised of |A| and |B| points, respectively,
resampled to A′ and B′. The mean distance between them is defined as

mDist(A, B) =
1

|A|+ |B|

(
∑

a∈A
inf
a∈A

d(a, B′) + ∑
b∈B

inf
b∈B

d(b, A′)

)
(14)

where d(x, Y) is a set of Euclidean distances between a given point x and each of the points
in set Y. In our experiments, we interpolated the contours being compared such that their
cardinality was |A| = |B| = 100 and |A′| = |B′| = 500.

The second measure was the Dice Similarity Coefficient (DSC), computed for the sets
A and B. These sets denote all the points of a common contour plane that lie inside the
contour A and B, respectively. The DSC is defined as

DSC =
2|A ∩ B|
|A|+ |B| . (15)

In our numerical experiments, the sets A and B were approximated by all the points
of a high-resolution image (e.g., 800 × 800 points, coplanar with the contours), which were
within a polygon defined by the points A and B, respectively.

2.6. CNN-Based B-Spline Model Parameter Estimation

In the proposed method, the CNN plays a role of a nonlinear regressor. Its input
is a lumen cross-section image. It predicts the values of the image model parameters
at the output. A feedforward network was trained to predict the B-spline parameter
vector d. The architecture is shown in Figure 6. Three 2D convolution layers are followed
by a flattening layer and by four fully connected layers. The three convolutional layers
feature 3 × 3 kernels, with a kernel number equal to 8 for each layer, “same” input padding
type, and ReLU nonlinear activation function [52]. The flattening layer transforms the
multichannel 2D feature maps into vectors. The vectors are then processed by three fully
connected layers with 64, 32, and 16 neurons, respectively, and ReLU activation. The
output layer estimates the 10 elements of vector d and features a linear activation function.
In total, the network has 119,290 trainable parameters and was implemented in keras
(version 2.13.1).

Network training was performed with the mean squared error as the cost function,
optimized using the Adam algorithm [53]. Mini-batches of 64 examples were used during
training. The maximum number of training epochs was set to 500, but an early stopping
algorithm was employed to stop training before overfitting occurred. The early stopping
patience parameter was set to 15 epochs.

The synthetic dataset was used to train the network for prediction on the PAVES
dataset. For the test set, 10% of the data was excluded, which yielded 9000 examples. The
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validation set used in the early stopping algorithm was extracted from the training set as
its 20% fraction.

Figure 6. The neural network architecture used in the described experiments.

The CAT08 dataset used for neural network training, validation, and testing has
652 examples. Of these, 66 (10%) were excluded for the test set, and the rest were split
into training and validation sets in the same proportion of 90:10. Targets in the form of
B-spline-approximated expert contour annotations were separated into three sets—one for
each expert. The training procedure was repeated for each expert’s target set, yielding three
trained models.

In summary, five models were trained: two for the PAVES datasets (noiseless and
noisy) and three for the CAT08 datasets. These models are evaluated in the Results.

2.7. Methods and Tools for Statistical Analysis of the Results

The cross-sections of coronary arteries visualized in the CAT08 dataset were annotated
by three observers. Each of them delineated the lumen boundaries, presented as polygons
on cross-section planes. The polygon vertices are available in the dataset. The three trained
CNNs were applied to the same images to generate corresponding lumen contours. For
each test image from the test set of NT = 66 images, two contours were then available,
one marked by an observer and the other predicted by the corresponding CNN instance
(Figure 7).

The image area covered by each contour was computed to give 3 × NT = 198 pairs of
values − AreaObs and AreaCNN , respectively, for the observer and for the CNN. These are
the data points. Since they relate to the same image space, they are paired and match each
other. In the context of this study, the question is whether the two methods of marking the
lumen contour (by the observer and by the CNN) differ [54]. This question can be answered
by a paired statistical test. The choice of a particular test has to be preceded by a test for
the normality of the data populations. D’Agostino and Pearson’s normality test, available
as scipy.stats.normaltest() function in the Scipy (version 1.11.4) library, was applied for this
study. The area measurements failed the normality test. Based on this result, the paired
samples Wilcoxon test was applied to the data, scipy.stats.wilcoxon(). It is a nonparametric
test of the null hypothesis that two samples come from the same population against an
alternative hypothesis, as described and discussed in the Results.



Sensors 2024, 24, 846 12 of 29

Figure 7. Example sixteen images from the CAT08 data test set. Red line: contours marked by an
observer, green line: CNN-predicted contours. (A) Observer 1, (B) Observer 2, (C) Observer 3.

More quantitative information about statistical differences between the methods is
available from the Bland–Altman plot which visualizes both bias and confidence intervals
of the sample differences [55]. Figure 8 obtained with pyCompare library (version 1.5.4) is
an example of such a plot.

All the computations in this work including statistical analyses were performed on
a standard PC computer (Intel Core i5-8300 H, 2300 GHz, 16 GB RAM, NVIDIA GeForce
1050) under Windows 10 Home operating system in miniconda3 Python (version 3.10.13)
programming environment. Occasionally, a laptop or an iPad Pro machines, of similar
performance were used.

The above procedure was applied to the mDist (14) and DSC (15) coefficients which
quantify the distances between contours marked by different methods, e.g., to test whether
the populations of mDist data computed for contours marked by Observer 1 and Observer 2
and the mDist data for contours outlined by Observer 1 and Observer 3 are the same or
different. Those tests are described and discussed in Results.
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Figure 8. Bland–Altman plot for AreaObs1 and AreaCNN1 over the test set. Computed with the
ODR option of the blandAltman() function from the pyCompare library [56] to model and remove the
multiplicative offset between each assay by orthogonal distance regression.

3. Results
3.1. PAVES Dataset
3.1.1. LS Model Fitting to PAVES Data

Prior to delineating blood vessel contours in the PAVES images with the CNN-based
technique, the performance of LS model fitting was evaluated. A twelve-parameter image
formation model (12) was chosen. The adjustable parameters vector comprised (a, b,
d0, . . . , d9) entries, whereas the others were fixed at ∆s = 1.0 mm, R = 11, w/∆s = 0.65. The
solutions were searched in the range [0, 0.3] for a, [0.1, 0.5] for b, and [−0.3, 1.0] for each
element of the vector d. A negative value of di indicates that the corresponding control
point Ci is located on a radial line at the angle (ϕi + π), cf. (10), (11).

We used the minimize() function from Scipy with the SLSQP method. This allowed
the imposition of bounds on the estimated model parameter values. Estimation of the
lumen model parameters for all 113 cross-sections of branch b14 (spaced at distances of
0.5 mm from each other) took about 3 h on an Intel Core i5 PC computer. The results are
shown in Figure 9. As can be seen, there was a high level of consistency in the contour
shape when moving between the consecutive cross-sections. Apparently, no significant
local minima were encountered in this optimization experiment, although a robust starting
point range for the elements of d was found after a few attempts, as [0.2, 0.4] for the
collection of images.

The sections presented in Figure 9 feature a relatively flat background. In contrast, the
intensity of the foreground representing both arteries and veins varies significantly within
an image. Nevertheless, model fitting resulted in stable values of parameters a and b, with
means (standard deviation) equal to 0.10 (0.009) and 0.18 (0.017), respectively.
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Figure 9. Example contours (light green lines) of the vein–artery lumen obtained via LS model
fitting to 15 × 15-pixel odd-numbered (1, 3, . . . ) sections of branch b14 in the PAVES 05 dataset.
Twelve-parameter (a, b, d0, . . . , d9) B-spline lumen model, ∆s = 1.0mm, R = 11, w/∆s = 0.65. The
points marked by a blue “x” symbol indicate the approximate centerline location.

The d parameters spanned the range [−0.1, 1.0]. Negative values were found for
parameter d6 in sections 12–18 only, where the contour closely approaches the image center.
An example illustration is shown in Figure 10 for section 14. The angle of the radial line for
d6 takes the value −36◦, while it would be 144◦ for positive values. The fitting experiment
was repeated a few times for different values of R. In the case of images where the lumen
region was completely included in the image, with a reasonable margin in the background,
e.g., sections 35–55, the values of d linearly scaled with 1/R. An increase in R causes
a proportional decrease in all the elements of d. This property is not observed in areas
where the lumen region goes beyond the image edge, such as in sections 97–112, e.g., in the
neighborhood of the vessel bifurcations.

Scatter plots of pairs of vector d elements are presented in Figure S2. Only those in-
volving d6 occupy the range of values close to 0 or slightly negative. The plots demonstrate
a clear correlation between the parameters. Some visual patterns can also be identified,
suggesting the possibility of using these parameters as features for the classification of
contour shapes.

Figure 2 shows lumen surface visualizations of branch b14 in PAVES data, LS-estimated
with B-splines and circular-cross-sections image formation models. Clearly, the circularity
assumption is not appropriate in the case of the PAVES data. It is, however, applicable
and gives accurate lumen quantification in the case of artificially designed objects, such as
physical phantoms for MR scanners calibration [31].
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Figure 10. (A) B-spline contour example for Section 14 of branch b14 in PAVES 05. (B) B-spline
geometry and synthesized image. The control points are marked by numbered red dots. Control
point C6 is located on the radial line at angle −36◦ (instead of 144◦), which indicates a negative value
of d6. The LS-identified d vector for this image is (0.5, 0.23, 0.50, 0.25, 0.58, 0.54, −0.08, 0.40, 0.77, 0.57).

3.1.2. Generation of Synthetic Images for CNN Training

To train the neural network to estimate lumen contour parameters for the PAVES data,
we computed synthetic images. The 12-parameter model (12) was used for this purpose.
The parameter values were randomly drawn from a uniform distribution over [0, 0.2]
for a and [0.2, 0.3] for b. The 10 parameters in d were drawn from the range [0.0, 1.0] and
treated as a circular sequence, smoothed with a simple lowpass filter [0.15, 0.7, 0.15]. This
step introduces correlation into the d vector, to simulate their bonds to the contour shape.
The value of one in ten parameters was randomly drawn from the range [−0.2, 0.1], with
probability 0.25 (corresponding to the observed rate of negative d values in PAVES data).
This takes account of concave contours. Details concerning their structure are presented in
Figure S3.

3.1.3. CNN-Estimated B-Spline Model for PAVES Data

The neural network was first trained on the synthesized noiseless images in the
training set. Figure 11 shows a histogram of the error in B-spline parameters estimation
over the test set. This error has a normal distribution and its mean is practically zero—the
network does not introduce any bias. This applies to individual parameters as well. The
standard deviation was approximately 0.02.

Figure 11. Histogram of the differences between CNN-estimated and true values of B-spline parame-
ters over the test sets of 1000 images. Training sets size: 8100 images. (A) noiseless case, CNN trained
for 154 epochs and (B) noisy case, CNN trained for 204 epochs.

Figure 12 contains example images from the noiseless synthetic test set with two lines
superimposed on them. The turquoise line is a randomly generated contour used for image
computing with the use of expressions from (1)–(12), whereas the red curve represents
the contour corresponding to B-spline parameters predicted by the CNN. The input to the
CNN was the corresponding image in each case. As can be seen, the two lines overlap
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basically, indicating excellent accuracy of the CNN predictions. This was confirmed by the
very small values of mDist and practically unit values of DSC measures applied to the two
contours over the synthetic test set.

Figure 12. Examples of noiseless images of the test set, synthesized with the use of randomly
generated B-spline parameters. Contours computed from ground-truth parameters and their CNN-
predicted estimates are drawn using turquoise and red lines, respectively. Turquoise lines are
practically invisible as they are closely matched by the red ones.

The CNN trained on the synthesized noiseless images was applied to the cross-sections
of branch b14, visualized in PAVES MR volumes. For each cross-section, the network pre-
dicted a set of B-spline parameters which was used to compute coordinates of the estimated
lumen contour points. Example results are shown in Figure 13A. There is generally good
agreement between the contours obtained with the use of the proposed method and the LS
model fitting. However, spurious bright objects present in the background, e.g., in the right-
most image in the upper row, “attract” the CNN contour, which as a result departs from
the LS-identified curve. This deviation can be attributed to the CNN’s training on idealized
images, with constant values for intensity inside the lumen region and in the background.
During this training, the network did not acquire any information about possible spatial
variations in image intensity. More realistic training examples are therefore needed.

Figure 13. Example sections of PAVES b14 branch, taken at random. Turquoise lines: lumen contours
obtained via LS model fitting. Red lines: contours computed using B-spline parameters predicted by
CNN trained on synthesized noiseless images (A) and noisy images (B).

To accommodate image intensity variations over the training dataset, we added patch
samples of random fractal-like texture to the synthesized noiseless images. The texture
patterns and intensity were chosen to visually resemble the properties of PAVES cross-
sections (Figure 14). The created images were collected to constitute a synthesized noisy
training set and test sets (10,000 examples in total).
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Figure 14. (A) Example Section 27 of PAVES b14 branch with LS-predicted lumen contour. One can
note random intensity variations. (C) Sample of GIMP-generated fractal-like texture, visually similar
to patterns observed in the PAVES data. (B) The image in (C) added to a noiseless image synthesized
using the contour marked by the light green line.

The neural network was trained on synthesized fractal-noise images. Figure 11B shows
a histogram of the error in the estimation of B-spline parameters over the synthesized noisy
test set. Similarly to the noiseless case, the error has a normal distribution and its mean
value is close to zero (cf. Figure 11). However, its standard deviation is a few times larger.
At this expense, the contours are less dependent on the intensity variations and, visually,
approximate the true boundaries better (see Figure 13B where the CNN trained on the
noisy dataset was used to predict contour parameters of PAVES sections).

3.2. CNN-Based Modeling of Artery Lumen in CAT08 Dataset

Our first attempt to find the lumen contour of the blood vessels visualized in the CAT08
images involved LS-fitting of the image formation model by numerical minimization
of the goal function (13). The parameter vector comprised twelve elements: a and b
for background and lumen intensities, respectively, and d = (d0, . . ., d9) for the contour
shape. Despite numerous trials tuning the meta-parameters of the optimization routine,
no satisfactory result was obtained. After time-consuming computations, the optimized
contours were located far from the observers’ markings. This approach to CAT08 non-
circular lumen quantification was therefore abandoned. To train the CNN for contour
shape quantification, we assumed the parameters a and b in the image formation model
would not be estimated (although they could be if needed [31]). The CNN was then trained
to ignore the natural variation in background and lumen intensities in the training cross-
section images. The training examples comprised pairs of 2D cross-section images (with
their middle points positioned at the geometrical centers of contours marked by the three
observers on the common plane), and the B-spline parameters of the marked contours.

A contour marked by an observer is available in the CAT08 dataset as a set of (xi, yi)
coordinates, i ∈ {0, . . . , Q} of discrete points, where Q is the coordinate count for different
contours. To obtain the B-spline parameters for a contour, we used numerical minimization
of the mean distance (14), where A is the observed contour and B is a B-spline curve. The
course of the B-spline curve was controlled by the entries for the parameter vector d. This
process took a fraction of a second per contour executed with a Carnet plus (version 1.8.0)
Python library installed on an Apple iPad Pro tablet (11inch, 3rd generation, iPadOS 17.2),
resulting typically in mDist ≊ 0.01 at optimum values of d, Figure 15, right panel. Figure 15
shows two of the worst results (the left and middle plots). As can be seen, the contour
similarity is still excellent for the task at hand.

Slightly better results in terms of lower mDist values were obtained with NURBS
contours [49,50], mainly for highly curved lines such as those shown in Figure 15 on the left
and in the middle. This was achieved with the use of an geomdl library (version 5.3.1) at the
expense of an increased number of model parameters (the node weights). No significant
fit accuracy was observed for most lumen contours extracted from low-resolution images,
which were rather smooth. The use of NURBS was therefore deemed unnecessary for the
data analyzed in this particular project.
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Figure 15. Three examples of fitting B-spline curves to observer-marked contours (CAT08 data), to
find B-spline parameters for CNN training. Dashed red line: contour marked by an observer, green
line: B-spline curve. The numbers in boxes indicate the corresponding mDist value.

The artery cross-section images from each observer were fed into the CNN as input.
The B-spline parameters found for the observer-marked contour were used as the target in
the training process described in the Materials and Methods section. Thus, three CNNs
were trained on the CAT08 dataset. A typical histogram of the differences between CNN-
estimated and observer-contour-related values (for Observer 1) is shown in Figure S4. As
can be seen, the estimation error is similar to those described above for the CNN trained on
synthesized images.

Figure 16 shows a graphical representation of typical mean values and standard
deviations of the mean absolute error (MAE) for the CNN-predicted d vector elements over
the test set. The mean values of MAE oscillate around 0.035. The scale factor chosen for this
experiment was R = 10 and the sampling interval was ∆s = 0.45 mm. The mean values of
MAE over the test set are approximately equal to 0.16mm and their standard deviations
are less than 0.20 mm. The distance of B-spline control points from the common center
point can thus be determined with subpixel accuracy.

Figure 16. Plot of the mean values and standard deviations (numbers in brackets) of mean absolute
differences between CNN-estimated and Observer 3 contour-related B-spline parameters over the
test set of 66 images (CAT08 data). CNN trained on 527 images for 199 epochs.

The contours marked by the observers and identified by the CNN are depicted in
Figure 7, which shows examples of cross-sections sampled from the test set. Despite
variations in the shape and size of the contours, there is consistent visual similarity between
the curves marked by each observer and identified by the corresponding CNN. It may also
be noted that the shape of the observer-marked contours on a given image differs in some
cases for different observers, see, e.g., slices 11 and 12 (fourth and fifth from the left in the
lower rows). Figure 17 illustrates the differences for section 11. The mDist (14), DSC (15),
and image area inside the contours were computed to quantify similarities and differences
(Table 1). These measures are complementary. mDist reflects the smallest absolute distances
between contour points and does not depend on the number or size of the contours. DSC
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expresses overlap between areas enclosed by the contours, divided by the sum of the areas.
As such, it can take large values for small-area lumen sections which are deformed or
shifted only. The area is an absolute measure of contour size and does not reflect its shape.

Table 1. Descriptors of observer-marked and CNN-predicted contours in Figure 17. †: Obs1 vs.
CNN1, ‡: Obs2 vs. CNN2, ∗: Obs3 vs. CNN3.

Obs 1 Obs 2 Obs3

mDist, mm 0.203 † 0.209 ‡ 0.119 ∗

DSC, − 0.870 † 0.871 ‡ 0.901 ∗

AreaObs, mm2 7.81 7.61 5.39
AreaCNN , mm2 9.15 9.35 4.64

As can be seen from Table 1, the CNN was in a better agreement with Observer 3 than
with the other experts: mDist was almost two times smaller, DSC was larger by ca. 0.03,
and the contour area differed by about 14%—compared to 20% and 23% for Observers 1
and 2, respectively. On the other hand, the average area for Observer 3 and its neural
network model was only 60% of the average of those marked by the other two experts and
the CNNs trained on their data. Interestingly, in agreement with the observers, all three
CNNs learned to recognize a lower-intensity region close to a bright spot as the lumen area,
see, e.g., cross-section 11 in Figure 7. This is not incidental, as there are other cross-sections
with this feature in the test set which were correctly delineated by the CNN in this way.

Figure 17. Left column: Comparison of contours marked by the three observers and computed with
the corresponding CNN-predicted B-spline parameters for cross-section 11 in the test set (CAT08
dataset 05, segment 07, Section 5). (A) Observer 1, (B) Observer 2, (C) Observer 3. Middle column:
Geometric illustration of mDist calculation. Right column: Image regions used to compute the DSC.
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Analysis of Experimental Results for CAT08 Dataset

The values of mDist and DSC coefficients were computed for all 66 images in the
test set. Figure 18 shows the violin plots for each observer–observer pair. The statistical
distribution is not normal, as was confirmed by D’Agostino and Pearson’s normality test
applied to all six samples presented in the figure. The median values, listed in Table 2, are
marked on the plots with horizontal lines.

Figure 18. Violin plots of mDist and DSC descriptors of differences between contours marked by
different observers on CAT08 images (interobserver differences).

To compare the mDist and DSC coefficients computed for contours marked by differ-
ent observers on the same image sections (Figure 18), the paired samples Wilcoxon test was
conducted. The results for all six combinations of samples rejected the H0 hypothesis that
the paired samples represent the same distribution. Most likely, each mDist sample comes
from a different distribution and the distributions of DSC samples are also different from
each other. These results indicate significant differences between the lumen contour shapes
inferred by the observers from the cross-section images. The corresponding sample median
and mean values are listed in Table 2.

Table 2. Median/mean values of mDist and DSC descriptors of shape differences between contours
marked by different observers on the same images in CAT08 over the test set.

Obs1 vs. Obs2 Obs1 vs. Obs3 Obs2 vs. Obs3

mDist, mm 0.422/0.462 0.440/0.527 0.334/0.380
DSC, − 0.813/0.771 0.809/0.743 0.841/0.832

The paired samples Wilcoxon test applied to observer-CNN mDist (Figure 19) failed to
reject the H0 hypotheses that the samples Obs1-CNN1 paired with Obs3-CNN3 come from
the same distribution, and that Obs2-CNN2 paired with Obs3-CNN3 come from the same
distribution. However, it rejected the H0 hypothesis (p-value = 0.013 with a significance
level of α = 0.05) for Obs1-CNN1 paired with Obs2-CNN2. The Wilcoxon test did not reject
the H0 hypothesis in the case of paired Obs-CNN samples of the Dice coefficient DSC. Then,
only one of the six tests indicated a significant difference between the sample distributions
of the discrepancies between the CNN-predicted and observer-delineated contours.

Given that the mDist median values (and mean values) were smaller for the observer–
CNN (Table 3) estimates than for the observer–observer contour shape estimates (Table 2),
one can conclude that the average distance between the CNN-predicted contours and
the contours marked by the observers is statistically smaller than the distance between
the contours marked by different observers on the same image. Similarly, the median
(and mean) values in Table 3 for DSC are larger than those in Table 2. Thus, the contour
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shapes drawn by the observer were closer to the shape of the curves predicted by the
corresponding CNN than to the shape of contours delineated by an other observer.

Figure 19. Violin plots of mDist and DSC descriptors of differences between contours marked by
observers on CAT08 images and computed from CNN predictions (trained on the corresponding
observer data) over the test set.

Table 3. Median/mean values of mDist and DSC descriptors of shape differences between observer-
marked and CNN-predicted contours for CAT08 images over the test set.

Obs1 vs. CNN1 Obs2 vs. CNN2 Obs3 vs. CNN3

mDist, mm 0.284/0.333 0.336/0.405 0.298/0.335
DSC, − 0.876/0.844 0.849/0.837 0.878/0.851

Figure 20 shows violin plots for AreaObs and AreaCNN contour descriptors. The sample
median and mean values are listed in Table 4. Table 5 presents the results of related paired
Wilcoxon tests. The p-values for inter-sample tests (first three rows in the table) show a
very similar pattern. The H0 hypothesis was rejected for Obs2 paired with Obs3 and the test
failed to reject it for Obs1 paired with Obs2. This concerns both observer-marked contours
and the CNN-produced values. The test for Obs1 paired with Obs3 failed with regard to
observer contours and rejected the H0 for the CNN contours. However, the p-values of the
two tests (second row in Table 5) are close to the significance threshold α = 0.05.

Figure 20. Violin plots for AreaObs and AreaCNN in the test set.
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Table 4. Median/mean values for the contour area marked by observers AreaObs and predicted by
CNNs AreaCNN over the test set drawn from the CAT08 repository.

Obs 1 Obs 2 Obs 3

AreaObs, mm2 2.90/4.79 2.83/4.71 2.23/4.12
AreaCNN , mm2 3.73/5.83 4.18/5.68 3.26/4.82

Table 5. p-values of the paired Wilcoxon test for AreaObs and AreaCNN coefficients over the test set
drawn from the CAT08 repository.

Observer CNN Observer vs. CNN

Obs1 vs. Obs2 0.775 0.751 −
Obs1 vs. Obs3 0.085 0.034 −
Obs2 vs. Obs3 3.5 × 10−5 1.9 × 10−5 −

Obs1 vs. CNN1 − − 1.4 × 10−8

Obs2 vs. CNN2 − − 1.2 × 10−7

Obs3 vs. CNN3 − − 9.7 × 10−9

Rows four to six in Table 5, containing p-values for paired tests of CNN and observer
contours, indicate that the tests rejected the hypothesis that the samples of the coefficients
AreaCNN and AreaObs were drawn from the same distribution. Indeed, the Bland–Altman
plots show that the mean values of the differences are substantial (see an example for
AreaObs1 paired with AreaCNN1 in Figure 8), even if detrending options are applied (Table 6).

Table 6. Mean values (in mm2) of the differences between paired AreaObs and AreaCNN coefficients
over the test set drawn from the CAT08 repository. Columns ‘None’, ‘Linear’, and ‘ODR’ correspond
to detrending options used in pyCompare() to compare the distributions [56].

’None’ ’Linear’ ’ODR’

Obs1 vs. CNN1 −1.04 −0.20 −0.11
Obs2 vs. CNN2 −0.98 −0.76 −0.33
Obs3 vs. CNN3 −0.70 −0.93 −0.65

The contour shape is encoded in B-spline parameters d (Section 2.3). As expected,
the area inside the contour carries additional information about the contour size. This
information should be explicitly included in the goal function of the CNN training. This
step in the optimization of the CNN architecture and training strategy lies beyond the
scope of this article and will be the subject of future research.

4. Discussion

This study has demonstrated that the integration of B-splines with advanced deep
learning techniques significantly enhances the precision and reliability of blood vessel
lumen modeling from 3D images. Based on two publicly available datasets, PAVES and
CAT08, B-spline-approximated lumen contours were used in the image formation model to
quantify the non-circular shape of blood vessels with subvoxel accuracy. Such accuracy
cannot be obtained using existing circular or elliptical approximations.

The experimental results obtained for the PAVES dataset demonstrated good agree-
ment between the B-spline parameters estimated by the CNN and those computed with
the use of LS model fitting. It was shown that the differences can be reduced by proper
augmentation of the synthesized images used for the CNN transfer training. Unfortunately,
the PAVES dataset does not contain any reference information. No radiologists’ annota-
tions are available, so there are no ground-truth contours to compare with those related to
B-spline parameters found in the course of LS model fitting or CNN-based prediction. Still,
the dataset was useful to demonstrate that the proposed lumen quantification approach,
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based on the image formation model, can be successfully applied to highly non-circular
blood vessel cross-sections. Moreover, we demonstrated the possibility of both obtaining
reasonable contours for real-life MR images with the use of a transfer-trained CNN and
making the CNN predictions robust to spatial intensity variations by adding fractal texture
patterns to the training images. Optimizing the augmentation strategy will be the topic of
future research.

A ground-truth reference is available within the CAT08 dataset quantified with our
method. Due to the complexity of CT images of coronary artery cross-sections, LS model
fitting does not provide the expected stability. Even with the use of troublesome constrained
optimization, it finds local minima too often and the fitting results depend heavily on the
initialization points. In contrast, the CNN can be trained to ignore image nonidealities
(e.g., bright objects in the background) and produce lumen contours which are consistent
with the observers’ delineations. Of course, it is also much faster than human experts. Its
application to image annotation would relieve the radiologist of this task.

Our experiments show that the CNN can be trained to mimic an individual observer’s
style of contour marking. There was good agreement between the shapes of CNN- and
observer-produced contours. The CNN reproduced the interobserver variability very
well. This raises the question of the ground truth. Future work is planned to design and
implement realistic digital and physical phantoms of known tubular geometry and blood
distributions. These phantoms will be used to simulate and acquire images, which will
then be evaluated by both radiologists and CNNs. The aim is to conduct a quantitative
comparison of the respective contour delineations with the phantom properties.

There is a significant difference between the CNN and LS algorithms in terms of
the computation time needed. When implemented on a moderate-performance PC (In-
tel Core i5 plus NVIDIA GeForce 1050), the CNN predicts the contour parameters in
microseconds per image, compared to about 100 s for the iterative nonlinear LS program.

The CNN trained to predict the lumen model parameters has a simple architecture
(Figure 6) and a relatively small number of adjustable weights. Its training on a dataset
of 500 images requires only about 2 min on a standard laptop computer (MS Windows
11 Pro, Intel Core i5, 2400 GHz) with no GPU acceleration. Implementing the neural
network is straightforward and does not present any major technical challenges. The
proposed solution is much less computationally demanding than the majority of popular
CNN applications.

Presumably, the efficiency of the proposed approach stems from the CNN being guided
by the centerline while processing image samples. The CNN receives direct information
about the distance of the sampling points to the lumen boundary. This information is
clear-cut and encoded in the sampled intensity. Such a priori knowledge is built into our
method. The CNN has only to approximate the inverse mapping from the intensity space
to the point coordinates space, which is expected to be smooth (Appendix A).

5. Conclusions

Accurate geometric modeling of blood vessel lumen from 3D images is crucial for
vessel quantification, as part of the diagnosis, treatment, and monitoring of cardiovascular
diseases. It is a challenging task, given the complex geometry and internal structure of
normal and pathological blood vessels, their widely varying diameters, and the limited
capabilities of imaging sensors and scanners. The arteries and veins are composed of highly
curved branches, interleaved in a space filled with various organs and tissues.

Manual vessel delineation by radiologists is time-consuming, tedious, and error-prone.
The development of automated techniques for lumen quantification has been the subject of
intensive research over the last few decades. Research has taken two main directions: 3D
segmentation-based lumen quantification and model-fitting-based 2D lumen cross-section
quantification along an approximate centerline. Binary segmentation introduces discretiza-
tion errors, which may be critical for lumens with small diameters. Some segmentation
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algorithms require time-consuming iterative calculations. Therefore, we have followed the
second approach.

Unlike other centerline-based methods, which assume a circular or elliptical vessel
cross-section, the proposed method employs parametric B-splines combined with image
formation system equations to accurately localize highly curved lumen boundaries. The
parameters of this model are estimated using a feedforward convolutional neural network
driven by full bit depth image samples on planes orthogonal to the centerline. This is
in contrast to known B-spline-based lumen models which are identified from coarsely
outlined binary regions in segmented images. The need for segmentation is avoided.
Superior modeling accuracy of highly curved lumen boundaries in datasets comprising
real-life MR and CT images is demonstrated.

The CNN, which has a rather straightforward architecture, can be trained on either
computer-synthesized or expert-annotated images within just minutes using a standard
desktop or laptop computer equipped with a standard graphics processor. The trained
network predicts the parameter values in microseconds, compared to the minutes per
image needed for alternative LS model fitting methods. High speed is thus one more
advantage of the proposed estimator.

Due to its high speed, high accuracy and robustness, the proposed method can have an
impact on and appear significant to medical diagnosis and research. It could be of great help
to radiologists in their routine work. Also, the trained CNNs can be used for automated
annotation of images in large datasets needed for the development of data-driven artificial
intelligence solutions for healthcare. As the high accuracy of the vessel wall reconstruction
is crucial for faithful blood flow simulation, this research area can benefit from using CNNs
and B-splines for lumen modeling.
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MAE Mean Absolute Error
MRA Magnetic Resonance Angiography
NURBS Non-Uniform Rational B-splines
PSF Point Spread Function
RMS Root-Mean-Square
SNR Signal to Noise Ratio

Appendix A

This appendix presents the rationale behind the choice of model-based as opposed
to segmentation-based approach to lumen geometry quantification, cf. Introduction. The
main sources of errors in estimating the position of lumen edges from digital images
are characterized. For clarity of presentation, the 2D image formation model defined in
Materials and methods is reduced here to one-dimensional signal—the parameterized
image intensity profile along a radial line 0x.

Appendix A.1. Errors of Lumen Boundary Estimation from Segmented Image

Consider a small fragment of a cross-section image (Figure A1A) where the lumen
boundary crosses the 0x axis at a point (xe, 0). This point is located somewhere between
two sampling points xi and xi+1, xi+1 > xi. The local radius of the lumen contour is
assumed much larger than the sampling interval ∆s and than the width of the imaging
sensor impulse response domain. The lumen boundary is thus represented here by a
straight vertical line. The image intensity inside the lumen [the shaded area in Figure A1A]
is equal 1, while the background intensity (the white part) is 0. Negligible edge blur and
noiseless case are assumed in Figure A1A, for clarity.

Let us examine the image segmentation through thresholding. The point xi lying in
the high-intensity region is classified as belonging to the lumen, while xi+1 is assigned to
the background. The actual location of the boundary point xe is unknown − it is placed
somewhere between the two (Figure A1A). Now presume the probability of any of its
particular location between xi and xi+1 is the same. If so, it is reasonable to take the average
of x over this interval as an estimate of xe

x(1)e =
1

∆s

∫ xi+1

xi

xdx = xi +
∆s

2
. (A1)

The error of x(1)e is

ϵ
(1)
e (x) = x − x(1)e = x − xi −

∆s

2
, xi ≤ x ≤ xi+1, (A2)

its maximum absolute value is ∆s/2, the average (expected value) is zero, the mean absolute

ϵ
(1)
MAE =

1
∆s

∫ xi+1

xi

|x − x(1)e |dx =
∆s

4
(A3)

and its standard deviation

σ
(1)
e =

√
1

∆s

∫ xi+1

xi

(
x − x(1)e

)2
dx =

∆s√
12

≈ 0.29∆s. (A4)

It follows from (A4) that the only way to increase the precision of the estimator x(1)e is
to decrease the sampling interval ∆s. However, as pointed out in Introduction, this would
deteriorate the image quality in terms of smaller SNR. There are technical and medical
limits of the quality restoration, so there is a minimum practical value of the sampling
interval for imaging devices and, consequently, a minimum attainable standard deviation
σ
(1)
e . Methods of edge estimation with better precision than resulting from (A4) are of great

importance and interest.
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Figure A1. (A) Lumen boundary crossing the 0x axis between sampling points xi and xi+1,
i ∈ {−N, . . . , 0, . . . , N − 1}, noiseless case. (B) Computer-simulated image intensity profile along
the 0x axis. Dashed red lines ended with dots: noisy image samples computed with the use of
(A6) for a = 0, b = 1, xe = 0.8∆s, w = 1.2∆s and σν ≈ 0.032 (SNR = 30 dB). Continuous green
line: image profile (A5) LS-fitted to the noisy samples, computed for optimum parameter values,
a = −0.01, b = 1.01, xe = 0.84∆s and w = 1.27∆s. (C) Root-mean-square values of the model-based

edge estimation error ϵ
(2)
e computed 500 times for each of the 48 combinations of w/∆s and SNR.

Appendix A.2. Errors of Lumen Boundary Estimation by Model Fitting

Taking account of the assumptions of 2D Gaussian impulse response (5) and of large
local radius of the lumen cross-section, one can show that the one-dimensional noiseless
image profile Ix(i) in the vicinity od the lumen edge can be approximated with the use of
the well-known Gaussian cumulative distribution function φ(x) ≡erf(x), as follows

Ix(x) = a +
b
2

[
1 − φ

(
x − xe

w
√

2

)]
. (A5)

The noisy image samples acquired along the 0x axis can be modeled as

Ia(i) = a +
b
2

[
1 − φ

(
i∆s − xe

w
√

2

)]
+ ν(i), (A6)

where ν(i) represents the zero-mean Gaussian random noise of standard deviation σν.
Let q be the parameter vector in (A5), q = (a, b, xe, w). Given the acquired noisy image

samples Ia(i), one can estimate its elements by minimising the sum of squared differences
between the model Ix(i∆s; q) and the corresponding samples

q̂ = arg

(
min

q

N

∑
j=−N

[Ia(i)− I(i∆s; q)]2
)

. (A7)

where q̂ = (â, b̂, x̂e, ŵ). We define the edge location estimator for the model-based approach by

x(2)e = x̂e, (A8)

the third element of the optimum vector q̂ in (A7).
Figure A1B shows an example of simulated noiseles image profile model (A5) fitted to

the noisy image samples (A6). The LS-estimated edge position is x(2)e = 0.84∆s, close to the
true value xe = 0.80∆s. The error of the model-fitting estimator

ϵ
(2)
e (x) = x − x(2)e (A9)
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is 0.04∆s only, whereas the error of the segmentation-based estimator x(1)e would be equal
to (0.5∆s − 0.8∆s) = −0.3∆s in this example. This illustrates the model fitting advantage
− for a given sampling interval the modulus of edge estimation error ϵ

(2)
e can be much

smaller than in the case of ϵ
(1)
e for the segmentation-based estimation.

The subpixel-accuracy property of x(2)e can be explained noting that the edge
blur caused by the impulse response function that fulfills certain conditions [as (5)
does], namely rotational symmetry of h(x, y) and positive-definite monotonic integral
I0(x) =

∫ ∞
0 h(x, y)ydy), [57], unambiguously converts different distances between image

points and the lumen edge to the corresponding image intensity values in [a,b]. Therefore,
more information about the edge position, spread over the image samples, is available and
the edge position can be estimated more accurately.

To further analyse the x(2)e estimator properties, the edge fitting experiment was
repeated for different values of w/∆s ∈ [0.05, 0.1, 0.15, 0.2, 0.25, 0.35, 0.5, 0.75, 1.0, 1.25,
1.5, 2.0] and a few values of Gaussian noise, SNR∈ [20, 25, 30, 40] dB. Given one of the
48 pairs w/∆s and the SNR, the true edge position was taken at random from [0, ∆s] with
uniform probability distribution, and the model was fitted to the noisy samples to produce
the corresponding estimated value of x(2)e . The process of drawing xe, adding the noise and
fitting the model was repeated 48 × 500 times.

The average of ϵ
(2)
e over all 24,000 numerical experiments was 0.003∆s, with a maxi-

mum value of 0.027∆s. Thus, the estimator can be considered practically unbiased. The ϵ
(2)
e

root-mean-square (RMS) values of the error were computed and presented in Figure A1(C).
This error depends on the noise level. Consider a constant w/∆s, e.g., equal to 1. The RMS
error decreases from 0.23∆s to to 0.03∆s, for SNR increasing from 20 dB to 40 dB. Taking
account of (A4), one concludes the estimator x(2)e is much more precise than the x(1)e , even
for the substantial noise level of 20 dB. For noisy images, the precision of the latter would
be even worse than characterized by (A4).

For a given noise level, the RMS error of ϵ
(2)
e attains a minimum in w/∆s, around

w ∈[0.5, 0.7]∆s. This region corresponds to the largest absolute value of the derivative
dφ(x)/d(x) in (A5) and (A6). For such a high-slope profile, any noise-induced average
shift of the sampled intensity requires a little move of φ(x) along 0x to compensate for
the mean intensity change. On the other hand, for larger values of w, the slope is low and
larger horizontal displacement of φ(x) is necessary. Larger displacement increases the ϵ

(2)
e

absolute value. For w tending to zero, the edge profile has even higher slope, however,
the number of available samples with encoded distance to the edge, inside the narrower
transition region, is small. This makes the estimator similar to x(1)e , featuring RMS errors
close to (A4). These are interesting findings of practical value − the parameter w of an
imaging sensor (the width of the impulse response domain) should be neither too small
nor too large, if possible.
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