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Abstract: Optical coherence tomography angiography (OCTA) offers critical insights into the retinal
vascular system, yet its full potential is hindered by challenges in precise image segmentation.
Current methodologies struggle with imaging artifacts and clarity issues, particularly under low-light
conditions and when using various high-speed CMOS sensors. These challenges are particularly
pronounced when diagnosing and classifying diseases such as branch vein occlusion (BVO). To
address these issues, we have developed a novel network based on topological structure generation,
which transitions from superficial to deep retinal layers to enhance OCTA segmentation accuracy.
Our approach not only demonstrates improved performance through qualitative visual comparisons
and quantitative metric analyses but also effectively mitigates artifacts caused by low-light OCTA,
resulting in reduced noise and enhanced clarity of the images. Furthermore, our system introduces a
structured methodology for classifying BVO diseases, bridging a critical gap in this field. The primary
aim of these advancements is to elevate the quality of OCTA images and bolster the reliability of
their segmentation. Initial evaluations suggest that our method holds promise for establishing robust,
fine-grained standards in OCTA vascular segmentation and analysis.

Keywords: medical image processing; optical coherence tomography angiography; retinal vessel
segmentation; retinal vein occlusion

1. Introduction

Optical coherence tomography angiography (OCTA) has emerged as a revolution-
ary non-invasive imaging technique, providing unparalleled visualization of retinal and
choroidal microvasculature at capillary-level resolution. This exceptional capability of
OCTA allows clinicians to assess the health of blood vessels, making it a critical tool for
diagnosing and monitoring various ocular diseases, including diabetic retinopathy, age-
related macular degeneration, and glaucoma [1–3]. By capturing depth-resolved perfusion
information, OCTA can reveal subtle vascular changes associated with these conditions
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earlier and with finer precision compared to traditional angiographic methods. The seg-
mentation of OCTA images, therefore, plays a vital role in the medical field, enabling
detailed analysis and assessment of vascular health. However, the segmentation process
often encounters challenges such as uneven luminance and inconsistent layering in the
images, necessitating the development of sophisticated frameworks like BiSTIM for precise
vascular segmentation in OCTA images.

Initial studies have also hinted at the utility of OCTA in detecting vascular biomarkers
for neurological conditions like Alzheimer’s disease [4–7]. However, realizing the full po-
tential of OCTA technology has been hampered by the challenges in analyzing the massive,
multi-dimensional datasets it produces. OCTA scans consist of multiple cross-sectional
B-scans at the same retinal location that are repeated over time. These B-scans are affected
by the electronic noise of high-speed CMOS sensors, reducing the signal-to-noise ratio and
resolution of OCTA images, and even causing OCTA image artifacts due to the non-uniform
response [8]. Therefore, advanced algorithmic processing of the variations in the B-scans
can extract blood flow information to reconstruct volumetric angiograms. Although native
OCTA data is 3D, technical constraints often necessitate flattening OCTA images into 2D
en face projections centered on vitally important retinal layers like the superficial capillary
plexus (SCP) and deep capillary plexus (DCP) (Figure 1). This compression leads to a loss
of depth information and obscures intricate three-dimensional relationships between inter-
connected vascular trees. Furthermore, precise manual segmentation of retinal vasculature
from OCTA images is tremendously labor-intensive, time-consuming, and prone to human
errors, underscoring the need for automated computational approaches.

SCP

DCP

SCP

DCP

Ⅰ

Ⅱ

(a) (b) (c) (d)

Figure 1. Comparison of OCTA images: (a) Rows 1 and 2 represent the DCP and SCP layers from
RVO disease and their corresponding masks (b). (c) Rows 1 and 2 represent the DCP and SCP layers
from HCRVO disease and their corresponding masks (d).

In the study of retinal vascular diseases, many previous studies have shown that
changes in the DCP are critical. These changes include ischemia and reperfusion in the
DCP area, as well as the formation of new blood vessels, which have a significant impact
on the final prognosis of the disease [9]. Due to the non-invasive and high-resolution
characteristics of OCTA technology, we are able to visually observe the capillary network
in the macular area. In addition, OCTA can perform independent analysis of the SCP
and DCP. However, despite this, OCTA still faces some challenges in measuring Foveal
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Avascular Zone (FAZ) areas, such as data differences produced by equipment from different
manufacturers and disputes over boundary segmentation methods. Currently, the use
of OCTA to analyze the measurement data characteristics of the blood vessels in retinal
vascular diseases has important clinical value. However, there is still a lack of sufficient
research work on the automated diagnosis of retinal vein occlusion (RVO) disease and
hemicentral retinal vein occlusion (HCRVO) disease based on OCTA images.

To address the limitations inherent in OCTA imaging and to harness its full clinical po-
tential, our approach involves treating repeated scans as paired data. Despite the inherent
differences in scanners, these repeated scans from the same eye typically exhibit similar
anatomical features, albeit with varying artifacts and independent noise interference. To en-
hance the prior information in the segmentation structure, we have developed a Biological
Information Signal Transduction Imaging Framework (BiSTIM), which employs a subpath
structure constraint module. Additionally, we have designed a Proteomic-Inspired Topo-
logical Segmentation (PrIS-TS) module with a novel directional loss function. This module
is specifically tailored to extract robust vascular representations in OCTA images, adeptly
handling the complexity of different structural layers and branches. This segmentation
module is particularly effective in encouraging the preservation of topological structures
across various levels and branches. Furthermore, to mitigate common imaging artifacts
such as projection shadows, we introduce a Bio-Luminescence Adaptation for Artifact
Mitigation (BLAAM) module.

The rationale behind the selection of the BLAAM and STA modules is rooted in
the specific challenges posed by OCTA imaging. The BLAAM module was conceived to
address the issue of uneven brightness, a prevalent artifact in OCTA images, by eliminating
noise associated with luminance irregularities. Similarly, the STA module was developed to
ensure the accuracy of segmentation in the overarching capillary networks of OCTA images.
This module is instrumental in maintaining consistency in the segmentation of primary
and branching vascular structures, a critical factor in the accuracy of OCTA imaging.

The main contributions of this work include the following:

1. We design the PrIS-TS module as part of BiSTIM. Deep topological structure supervi-
sion information and information interaction between different branches are utilized
to enhance the topological structure information in the segmentation process to obtain
the segmentation results.

2. A subpath structure constraint (STA) module is developed to provide deep supervision
signals to enhance the prior information in the segmentation structure.

3. To mitigate imaging artifacts such as shadows and improve the clarity of OCTA
images acquired under low-light conditions and various high-speed CMOS sensors,
we introduce a bioluminescence-based technique.

4. We collected 614 OCTA images from RVO and HCRVO. Experimental evaluation on
two OCTA retinal vessel segmentation datasets, RVOS and OCTA-500, demonstrates
the effectiveness of the proposed BiSTIM.

2. Related Works
2.1. Segmentation Methods in OCTA

Several previous studies have deeply explored the application of deep learning tech-
niques in OCTA vascular segmentation. For instance, Morgan and his team [10] utilized
the U-Net [11] architecture for the segmentation of vessels and retinal FAZ in surface SVP
images from two scanners. Similarly, Mou and colleagues [12,13] proposed an attention
module specifically designed for vascular segmentation and applied it to OCTA images.
These innovative methods have opened up new possibilities for detailed and accurate
vascular segmentation in OCTA images. Li and his team [14] proposed a unique method
capable of directly outputting 2D vascular maps and FAZ segmentation from 3D OCTA
images—a noteworthy innovation with potential implications for accurate OCTA-based
diagnosis and treatment plans. The segmentation of 3D vessels from 3D OCTA volumes
was investigated by Hu and his team [15]. Concurrently, a method for segmenting vessels



Sensors 2024, 24, 774 4 of 18

from 2D OCTA images and estimating the depth information of segmented vessels for 3D
vascular analysis was introduced by Yu and colleagues [16].

However, research on retinal vessel (RV) segmentation in OCTA images is relatively
scarce due to the lack of publicly available OCTA image datasets with annotated vascular
information. Despite this, the emergence of public datasets has sparked interest in deep
learning-based RV segmentation methods [17,18]. For example, Ma and his team [18]
developed a two-stage baseline network called OCTA-Net and applied it to their ROSE
dataset, which was the first publicly available OCTA dataset with pixel-level annotations
and manual RV segmentation and grading. Although some datasets are available, one of
the major challenges faced in RV segmentation is the variation in thickness, especially at
thin vessel endings, which display low contrast. In response to this challenge, Lee and
Yeung [19] proposed a Supervised Vessel Segmentation Network (SVS-Net) for detecting
varying sizes in retinal vein occlusion (RVO) OCTA images while preserving most of the
vascular details and large non-perfusion areas. This method exemplifies the ongoing inno-
vation in the field of OCTA image segmentation, especially in overcoming the challenges
posed by the complexity of these images.

2.2. Direction Segmentation Low-Light Scenes

In topology studies, pixel connectivity is employed to depict the association between
adjacent pixels. This is a classical image processing technique, extensively used for charac-
terizing topological properties. In deep learning-based image segmentation, connectivity
has found novel applications. Segmentation networks based on connectivity utilize connec-
tion masks as labels. These masks are defined as eight-channel masks, where each channel
represents the association of a pixel in the original image with its neighboring pixel in a
specific direction. These neighboring pixels belong to the same category. Connection masks
were first introduced and applied in image segmentation. This concept was subsequently
expanded by other researchers and integrated into their work, including showcasing the
bidirectional nature of pixel connectivity in saliency detection and cross-modal connection
data fusion in simulated radar videos. Meanwhile, the effective modeling of connectivity
has been demonstrated in various applications, such as remote sensing segmentation,
path planning, and medical image segmentation. Despite significant advancements in this
domain, we found that the rich directional information in connection masks is yet to be
fully leveraged.

In another study, the researchers constructed a new dataset, called the LOL dataset [20],
by adjusting exposure times. They also designed RetinexNet, which occasionally produces
unnatural enhancement effects. The authors of KindD [21] addressed this issue by intro-
ducing certain training losses and adjusting the network structure. In [22], the authors
proposed Deep-UPE, where an illumination estimation network was defined to enhance
low-light inputs. Another study [23] proposed a recursive network and a semi-supervised
training strategy. In [24], the authors proposed EnGAN, designing a generator that focuses
on enhancement under unpaired supervision. The authors of SSIENet [25] built a decom-
position framework for the simultaneous estimation of illumination and reflectance. In [26],
the authors proposed ZeroDCE, heuristically constructing a curve with learned quadratic
parameters. Recently, Liu et al. [27] established a Retinex-inspired unfolded framework
through an architecture search. Despite these deep networks being meticulously crafted,
they are often unstable, struggling to consistently deliver superior performance, especially
when facing unknown real scenes and blurred details.

3. Method

Our proposed Biological Information Signal Transduction Imaging Framework (BiS-
TIM) comprises two main modules: the Proteomic-Inspired Topological Segmentation
(PrIS-TS) module and the Bio-Luminescence Adaptation for Artifact Mitigation (BLAAM)
module. As illustrated in Algorithm 1, this demonstrates the specific algorithmic process
for OCTA image segmentation. As illustrated in Figure 2, this system takes two specific
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layers from OCTA images—the superficial capillary plexus (SCP) and deep capillary plexus
(DCP)—as inputs. These two layers of microvascular networks are distributed in different
areas of the retina and are responsible for providing nutrients. It is noteworthy that due to
the structural and functional differences between the SCP and DCP, they may show varying
degrees of damage in certain eye diseases such as retinal vein occlusion (RVO) and the
highly complex hemicentral retinal vein occlusion (HCRVO). This poses specific challenges
and problems for OCTA image analysis, including but not limited to the accurate segmen-
tation of vascular networks, the detection of blood flow changes, and optical interference
and image distortion. In addressing these challenges, our framework specifically aims to
segment two classes of pixels: those representing the vascular structures and those repre-
senting the background. This distinction is crucial for the accurate analysis and diagnosis
of the aforementioned conditions.

To address these problems, our segmentation module uses a method based on a
deep supervision feature module to extract multi-scale deep features from both the SCP
and DCP layers and generate topological structure supervision information for the next
stage. Furthermore, our directional proteomics pathway sequencer module performs
deep structural feature extraction and topological structure supervision signal generation
for these two retinal layers, thereby enhancing the comprehensive analysis of retinal-
layer lesions and providing more accurate and detailed segmentation and diagnosis of
vascular networks. Figure 2 shows the modules comprising our BiSTIM and the flow of the
mask generation.

(a) Proteomic-Inspired Topological Segmentation Module 

(b) Bio-Luminescence Adaptation for Artifact MitigationOCTA

Layers

P1 P2 P3 P4

M1 M2 M3

E1 E2 E3 E4 E5

M4

G

Encoder Block Perception Block Meta Block Topology Decoder

Luminescent Distribution Integration Module Auto-Regulatory Calibrated Interface

y Zt T T-1 y Z

Illumination EstimationSelf-Calibrated Module

Topology
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Deep 

Signal
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Light Augmented Segmentation

Sum
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Augment Module 

Figure 2. Illustration of our proposed BiSTIM. The PrIS-TS in (a) uses deep topological structure
supervision information and information interaction between different branches to enhance the
topological structure information in the segmentation process to obtain the segmentation results.
The BLAAM in (b) can standardize the input OCTA image and optimize segmentation through
adaptive photometric residual learning.
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Algorithm 1 Algorithm for OCTA image segmentation

1: Input: OCTA image I
2: Output: Segmentation of retinal vessels and capillaries
3: Get feature maps via ResNet50 as Fl
4: Upsample the last feature map F5 as Faux
5: Slice the channel direction and excitate the subpath topology through the STA module

to generate a new feature map FSTA as a deep signal
6: Supervise the genomic signal feature interpreter to segment retinal vessels and capillaries
7: Equalize the luminosity of the segmentation results and remove artifacts and noise

through the BLAAM module to segment retinal vessels and capillaries

3.1. Proteomic-Inspired Topological Segmentation (PrIS-TS) Module

OCTA images can reveal complex structures of the retinal FAZ and capillary net-
works on a microscopic scale. These capillary networks mainly consist of vessels and
fine-branching vessels, with more intricate branching structures extending from these
primary vessels. Many existing studies overlook a salient feature of OCTA images: their
relatively stable topological structure. To fill this gap in the research, we were inspired by
proteomics and focused our investigation on the stable topological structures at different
levels within OCTA images.

We have developed a Proteomic-Inspired Topological Segmentation (PrIS-TS) module.
This module accepts OCTA images at various levels as input and incorporates a dedicated
multi-branch structure to continually reinforce the topological properties of the capillary
networks. More specifically, this module comprises two main branches: the directional
proteomic pathway sequencer branch and the genomic signal feature interpreter branch.
The pathway sequencer branch is responsible for extracting deep features from multiple
scales. Simultaneously, the pathway sequencer branch interacts with the feature interpreter
branch to continually reinforce the topological stability of capillary networks during the
segmentation process.

3.1.1. Directional Proteomic Pathway Sequencer

In complex image segmentation tasks, the extraction of structural priors and directional
information is a crucial step. The method we propose addresses the shortcomings of
traditional image segmentation methods in this regard by extracting structural priors
from the intermediate features of the encoder and compressing and obtaining directional
information through directional embedding. This novel approach offers a new solution for
image segmentation.

Extraction of Structural Priors.
In our method, the extraction step of structural priors involves using the channel

directional information in the connectivity mask to directly acquire techniques for unique
directional embedding. This process can roughly supervise the intermediate features of
the encoder and compress the channels of the auxiliary connectivity output. As shown
in Figure 3, we represent the encoder’s output as Fl , where l denotes the lth layer of the
encoder. Specifically, Fl is the deep feature extracted by the encoder, which comprises five
layers. We utilize a pretrained ResNet50 as the encoder, and the output of this encoder is
denoted as Fl , with l representing the layer number in the encoder, where the maximum
value of l is 5. In the implementation of our model, we upsample the final encoder output
F5 to the input size to obtain the preliminary output, referred to as Faux. During the
calculation of the loss, this preliminary output is supervised to learn the connectivity masks.
The structural priors are extracted by the STA module, which consists of direction prior
extraction, channel-wise slicing, and subpath topology excitation.

From the channels of Faux, we can obtain rich and unique directional information. We
then apply Global Average Pooling (GAP) to Faux to compress the size. Next, we map the
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vector to the same dimension as the latent feature map FL ∈ RCFL×HFL×WFL using a 1 × 1
convolution kernel K1:

GAP(Fa) =
1

H × W

H

∑
i=1

W

∑
j=1

Fa(i, j), (1)

Iaux = σ(K2δ(K1GAP(Faux)). (2)

where H and W denote the height and width of the feature map, respectively. K1 ∈ RCF5×Ca ,
Ca is the channel number of Faux, and δ is the ReLU activation. Then, as shown in
Equation (2), we re-encode using a 1 × 1 convolutional kernel K2 and apply the sigmoid
gating function σ to normalize the projection vector.

Since Iaux contains rich element direction information, we define it as a directional
prior. This approach assists our model in better understanding the directional charac-
teristics in the image, thereby improving the model’s performance in complex image
segmentation tasks.

Channel Direction Slicing. In dealing with complex image segmentation problems,
we propose a novel approach—channel direction slicing and subpath topology excitation.
In order to decouple the classification and direction subspaces in the hidden layers as early
as possible, we employ CDS to slice the latent features (F5) and direction priors (Iaux) into
eight parts. Specifically, we represent the tth slice as Ft

5 and Fauxt.
Then, for each pair of these feature-embeddings slices, we construct a subpath.

Within each subpath, we pass the feature slice Ft
5 through a spatial and channel atten-

tion module to capture the long-range and channel-wise dependencies, resulting in Ft′
5 .

Then, we perform an element-wise multiplication of Iauxt with Ft′
5 channel-wise to se-

lectively highlight or suppress features with specific directional information. We then
re-encode the output using a 1 × 1 convolutional kernel Kt

3 and consider this as the residual
output:

Ft
STA = Kt

3(Iauxt · Ft′
5 ) + Ft

5. (3)

Finally, we stack all subpath outputs (Ft
STA) together and re-encode them, resulting in

a new feature map FSTA.

𝑭𝒖𝒙
𝒂

Channel-wise Slicing Sub-path Topology Excitation

Conv

GAP

𝒌𝒖𝒙
𝒂

Topology Prior Extraction
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𝑭𝑺𝑻𝑨
𝒊
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1x1

Self-Attention 

Aggregation
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𝒊 𝑭𝑺𝑻𝑨

Figure 3. Illustration of the proposed STA module, which includes three steps: direction prior
extraction, channel-wise slicing, and sub-width slicing.

Due to the slicing operation, each slice group will contain only partially complete
features. However, differences will arise due to the different reductions in the distinctive
contextual information in the direction and classification features. Specifically, Iaux is a
highly distinguishable directional embedding as it is a low-level linear combination of
unique directional features. Thus, channel direction slicing will result in a significant
reduction in the directional information in each slice. However, F5 contains a set of high-
level but less distinguishable classification features, among which variations are usually
small. Hence, high channel classification correlation and redundancy exist in F5. Therefore,
channel direction slicing will result in a smaller reduction in the highly distinguishable
classification features in Fi

5.
Our approach unevenly partitions the directional and classifying features within

each subpath, thereby emphasizing the dominant features. This facilitates the learning
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of class-specific information on channels where a smaller amount of unique directional
information is stressed while also learning the different unique directional information
between subpaths. Once the subpaths are stacked, the directional information naturally
decouples from the original latent space and embeds into the channels. This innovative
design method not only enhances the accuracy of image segmentation but also provides
a solution based on stable topological structures. It improves model performance and
expands the potential applications in fundus imaging and other medical imaging scenarios.

3.1.2. Genomic Signal Feature Interpreter

In the process of feature decoding, many subtle attributes may be lost. To address
this issue, we have designed a module named the genomic signal feature interpreter.
As shown in Figure 4, the feature interpreter primarily consists of two parts—the dual-
stream branch and the topology decoder—each serving a specific function. The dual-stream
branch can gradually optimize the segmentation of trunks and capillaries in OCTA images
by combining the feature map from the pathway sequencer’s feature map and the deep
topology information from the STA module. Finally, the multiple outputs of the dual-
stream branch are decoded by the topology decoder to obtain segmentation results with
clear trunks and optimized details.
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Figure 4. Illustration of the proposed dual-stream module.

To optimize the segmentation of the main blood vessels and capillaries in the SCP
and DCP layers using deep topology supervision signals, we designed a feature stream
comprising a spatial stream and a metablock combined with a perception block, which
are responsible for embedding compression and manifold projection, respectively. First,
the metablock decodes the depth topological structure information Ft

STA from the STA
module to obtain dt. Then, the perception block embeds dt into fl retrieved from the
pathway sequencer through manifold projection within the perceptual structure, thereby
realizing multi-level supervised segmentation of microvascular structures and optimizing
the multi-faceted segmentation of the trunk and detail branches. The computational process
is delineated as follows:

d′t = σ(Fl · GAP(Ft
STA)). (4)

To obtain a final segmentation result that combines multiple levels of supervision
signals, we employ a simple topology decoder. Given the presence of multi-level blood
vessels and complex structures in OCTA, the feature interpreter is designed as a multi-level
structure dual-stream network, which achieves multi-layer segmentation of the SCP and
DCP in RVO and HCRVO diseases. Through the use of deep topology result signals, the
optimization of segmentation results is realized under a multi-branch structure.

3.2. Bio-Luminescence Adaptation for Artifact Mitigation (BLAAM)

During the acquisition process of OCTA images by high-speed CMOS sensors, issues
such as artifacts and image blurring often occur, leading to significant discrepancies in the
images in terms of contrast, brightness, and other aspects. In particular, over-exposed or
under-lit images generally degrade image quality, thus adding extra complexity to image
annotation and automatic segmentation tasks.

We propose a new method called Bio-Luminescence Adaptation for Artifact Mitigation
(BLAAM) to address the difficulties in image segmentation caused by uneven brightness.
This method has not only demonstrated significant improvements in capillary segmentation
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but has also yielded noticeable enhancements in visual effects. This technique fills the gap
in existing research on the issue of uneven brightness in OCTA images.

BLAAM incorporates a crucial module, namely the luminescent distribution integra-
tion module. This module can collect the luminous distribution in the image and adaptively
adjust the image to a standardized acquisition effect based on these statistics. Furthermore,
we designed an auto-regulatory calibrated interface, which can calculate the brightness
difference in OCTA images in real time across different time periods.

Consequently, BLAAM offers clinicians a practical tool for overcoming the diagnos-
tic challenges arising from image quality issues, thereby improving the accuracy and
consistency of diagnoses.

3.2.1. Luminescent Distribution Integration Module

The issue of image quality under low-light conditions and various sensors is a com-
mon problem in OCTA datasets. According to the classic Retinex theory, we know there is
a relationship between the observed image y under low-light conditions and the expected
clear image z, which can be expressed as y = z ⊗ x, where x represents the illumination
component. In this relationship, illumination is considered the core constituent that needs
to be primarily optimized in low-light image enhancement. Following the Retinex theory,
we can obtain the enhanced output image by eliminating the estimated illumination com-
ponent. In this process, our method is inspired by [27–29], where phased optimization
of the illumination component was performed. We base our approach on a mapping
Pθ with a parameter θ and approach this task progressively, where the basic unit can be
represented as:

R(xt) :

{
en = Pθ(xn), x0 = y,
xn+1 = xn + en.

(5)

Here, en and xn represent the residual term and the illumination at the n-th stage
(n = 0, . . . , N − 1), respectively. The mapping Pθ is a parameterized operator that learns a
simple residual representation en between the illumination and low-light observation.

This process is inspired by the understanding that the illumination and low-light
observation are similar or have linear connections in most areas. By learning a residual
representation instead of adopting a direct mapping, Pθ substantially reduces the computa-
tional difficulty, enhancing performance and stability, particularly in exposure control. We
adopt a weight-sharing mechanism in Pθ , using the same architecture P and weights θ at
each stage.

We could directly learn an enhancement model given the training data and loss
function. However, cascading multiple weight-sharing modules slows down inference. The
goal of each module is to output an image close to the target. Ideally, the first module alone
could satisfy this. Later modules produce redundant outputs. Therefore, during testing,
we can speed up inference by using just the first module. Our method enhances low-
light OCTA images while also improving inference speed and stability through weight
sharing and stepwise optimization. This will benefit subsequent analysis and clinical use
of retinal images.

3.2.2. Auto-Regulatory Calibrated Interface

To define a module that allows computational results at each stage to converge to
the same state, we must first recognize that the input for each phase originates from the
previous one, with the first phase’s input naturally being our low-light observation.

An intuitive idea would be to establish a connection between the input of each stage
(except for the first one) and the low-light observation (i.e., the input of the first stage),
thus indirectly exploring the convergence between each stage. To achieve this goal, we
introduce a self-calibration module h and add it to the low-light observation to represent the
difference between the input of each stage and the input of the first stage. More specifically,
the self-calibration module can be expressed as:



Sensors 2024, 24, 774 10 of 18

T (xn) :


zn = y ⊘ xn,
hn = Hφ(zn),
cn = y + hn,

(6)

where n ≥ 1, cn is the transformed input at each stage and Hφ is the parameterized
operator we introduced with learnable parameters φ. The operator Hφ plays a crucial role
in our framework. It is designed to adaptively adjust the input of each stage based on the
learned parameters φ. This adjustment is achieved through a process of parameterized
transformation, where Hφ applies a set of learned transformations to the input zn, thereby
generating the self-calibration term hn. This term is then used to modify the input of
the subsequent stage, ensuring that the input is optimally adjusted for each stage of the
process. Furthermore, the basic unit transformation at the n stage (n ≥ 1) can be written
as R(xn) → R(T (xn)). The introduction of Hφ allows for a more dynamic and adaptive
approach to handling the variations in illumination and other factors in low-light OCTA
images, significantly enhancing the effectiveness of our method.

In practice, our constructed self-calibration module integrates physical principles to
gradually correct the input at each stage, thereby indirectly influencing the output at each
stage. This framework combines physical principles with deep learning algorithms, aiming
to improve the efficiency and stability of algorithms while ensuring image quality. Our
experimental results have also confirmed the effectiveness of this design, reducing the
impact of noise, such as artifacts and uneven brightness, on segmentation during the OCTA
acquisition process.

4. Experiments and Results
4.1. Dataset and Metrics

We tested our model on two datasets: the RVOS dataset, collected by the Second
Affiliated Hospital of Zhejiang University, and the widely recognized OCTA-500 [30]
dataset. The RVOS dataset is particularly notable for its inclusion of OCTA images captured
in low-light conditions, a prevalent challenge in medical image segmentation. The OCTA-
500 dataset, on the other hand, offers a diverse range of scenarios and multiple acquisition
layers, making it ideal for assessing the generalizability of our model. These datasets
collectively provide a comprehensive testbed for our model, demonstrating its applicability
in various clinical scenarios and its ability to handle common challenges in the field.

1. RVOS: This dataset includes 454 training images and 160 test images, with a mix of
140 HCRVO and 167 RVO images. The images were captured using high-speed CMOS
to record the light-intensity signals reflected and scattered back by tissues at different
depths. The inclusion of low-light condition images in RVOS makes it a valuable
dataset for testing the robustness of our model in challenging imaging scenarios.

2. OCTA-500: All 200 subjects (No. 10301-No. 10500) with 3 mm × 3 mm SVP scans
from the OCTA-500 dataset [30] were included in our experiments. The data were
collected using a commercial 70 kHz SD-OCT (RTVue-XR, Optovue, Fremont, CA,
USA). We used the maximum projection map between the internal limiting membrane
(ILM) and the outer plexiform layer (OPL) because it was used for vessel delineations.
We followed the same training, validation, and testing split as in [30] (No. 10301-10440
for training; No. 10441-10450 for validation; and No. 10451-10500 for testing).

The details of the datasets are shown in Table 1. Our selection of these datasets,
namely the RVOS dataset collected by the Second Affiliated Hospital of Zhejiang University
(referred to as ROVS in some contexts) and the publicly available OCTA-500 dataset, was
driven by their ability to present a wide range of imaging conditions and challenges.
This selection enabled us to comprehensively evaluate the generalization capabilities
of our model in a clinical context. The proposed model was rigorously tested on both
datasets, and the segmentation results achieved state-of-the-art (SOTA) performance. This
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demonstrates that our model possesses robust generalization capabilities across different
datasets, making it suitable for most current OCTA image segmentation tasks.

Table 1. Details of the datasets used.

OCTA-3M RVOS

Number 200 614
Resolution 304 × 304 614 × 614
Image type SVC SVC, DVC
Annotation pixel level pixel level

Disease type - RVO, HCRVO

To evaluate the performance of the vessel segmentation algorithms, the following
metrics were calculated between the manual delineation and the segmentation results
produced by each algorithm:

• Recall, specificity, IoU, and Dice: DSC = 2×TP
2×TP+FP+FN ;

• Area under the ROC curve: AUC;
• Accuracy: ACC = TP+TN

TP+TN+FP+FN ;

• Kappa score: KAPPA = ACC−pe
1−pe ;

• False discovery rate: FDR = FP
FP+TP ;

• G-mean score: GMEAN =
√

sensitivity × speci f icity;
• Dice coefficient: DSC = 2×TP

FP+FN+2×TP .

TP, TN, FP, FN represent the true positives, true negatives, false positives, and false
negatives, respectively, and pe = (TP+FN)(TP+FP)+(TN+FP)(TN+FN)

(TP+TN+FP+FN)2 . Sensitivity and speci-

ficity are computed as TP
TP+FN and TN

TN+FP , respectively. These metrics are also reported
in [18]. All the p-values reported were computed using a paired, two-sided Wilcoxon
signed-rank test (null hypothesis: the difference between paired values comes from a
distribution with a zero median).

4.2. Implementation Details

Our model was implemented using PyTorch, and all the networks were trained using
the Adam optimizer. The learning rate was set at 1 × 10−3, and the weight decay was
established at 1 × 10−6. The Adam optimizer, which combines the advantages of RMSProp
and Momentum, was well suited for our network’s requirements. We utilized the Adam
optimizer with the parameters β1 = 0.9, β2 = 0.999, and ϵ = 10−8. The minibatch size
during training was set to 8, and the learning rate was initialized at 10−4. We set the
number of training epochs to 1000 to ensure comprehensive learning and optimization
of the network. The parameters θ in Equation (5) and φ in Equation (6) represent the
learnable parameters within the respective modules of our framework. The parameter θ
in the mapping Pθ is critical for the phased optimization of the illumination component,
as it governs the degree of residual learning at each stage. Similarly, the parameter φ
in the self-calibration module Hφ is essential for adjusting the input at each stage based
on the learned self-calibration. The values of θ and φ are learned during the training
process, allowing the model to adaptively enhance its performance on the OCTA image
datasets. Training ceases when the validation loss no longer decreases, employing an
early-stopping strategy to effectively prevent overfitting on the training set, provided
a suitable validation dataset is available. Otherwise, the number of training epochs is
determined empirically. For instance, the OCTA-500 dataset possesses its own validation
dataset, whereas for our other experiments, the number of training epochs is determined
based on empirical evidence. All experiments were conducted on a single 4090 graphics
card, ensuring computational efficiency and result reproducibility. Table 2 shows the time
required to generate the outputs for each module of our network. Currently, the source
code for this work remains proprietary while under review for potential commercialization.
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Upon completion of the review, we will consider making the source code publicly available
to facilitate the replication of our experiments by other researchers and further advancement
in the field.

Table 2. The time required to run the different modules within the proposed framework (in us). It
can be seen that each module runs very efficiently.

Module Pathway Sequencer STA Module Feature Interpreter Decoder BLAAM Module

Time (µs) 0.3576 0.9537 0.4174 0.4768 0.7153

4.3. Performance Comparison and Analysis

Our proposed framework demonstrated superior performance across multiple OCTA
image datasets, as evaluated through quantitative metrics and visual inspection. As shown
in Table 3, BiSTIM achieved optimal results across all metrics and regions. We compared
our proposed method to several state-of-the-art architectures including U-Net [11], R2U-
Net [31], attention-gated R2U-Net [32], U-Net+CBAM [33], U-Net+SK [34], SegNet [35],
ENet [36], PSPNet [37], DeepLabV3+ [38], GCN [39], UNet++ [40], UNet 3+ [41], Frago [42],
and IPN+ [43].

Table 3. Quantitative results of the proposed BiSTIM and previous SOTA models on the RVOS dataset.
The IoU and Dice metrics reflect the quality of the average segmentation results, whereas the Kappa
and GMEAN objectively evaluate the comprehensive segmentation quality of the mapping model
under different distributions of data, which are important in OCTA image segmentation. Figures
in bold indicate the best results.

Model Recall Specificity Accuracy IoU Dice Kappa GMEAN

U-Net [11] 0.75383 0.99016 0.87466 0.74629 0.85293 0.74474 0.86294
U-Net + AG [44] 0.77178 0.98480 0.88394 0.75916 0.86178 0.76168 0.87097

SegNet [35] 0.81311 0.80561 0.80959 0.56305 0.72010 0.57808 0.80728
R2U-Net [31] 0.70778 0.90013 0.80622 0.62920 0.77141 0.60290 0.79595

DeepLabv3+ [38] 0.66382 0.84648 0.76596 0.56371 0.71964 0.51783 0.74807
PSPNet [37] 0.48245 0.83922 0.58582 0.42958 0.59870 0.20680 0.63495

ENet [36] 0.79958 0.88435 0.85193 0.67881 0.80759 0.68453 0.84009
GCN [39] 0.66387 0.79017 0.74454 0.50129 0.66640 0.45591 0.72311

UNet3+ [41] 0.89195 0.90247 0.90022 0.76309 0.86497 0.78515 0.89590
IPN+ [43] 0.89606 0.89936 0.89969 0.76105 0.86364 0.78370 0.89644

UNet++ [40] 0.77575 0.98719 0.8874 0.76483 0.86476 0.76878 0.87392
Frago [42] 0.87397 0.92738 0.90814 0.78399 0.87819 0.80362 0.89866

BiSTIM 0.86386 0.94036 0.91118 0.79581 0.88580 0.81138 0.91074

Qualitative comparison: We first evaluated the performance of the proposed method
on the RVOS dataset against a variety of SOTA methods using the aforementioned evalua-
tion metrics. As shown in Table 4, except for recall and specificity, our proposed BiSTIM
method exhibited the best performance in both the SCP and DCP classes. Although UNet3+
and U-Net achieved the best results in the recall and specificity metrics, they failed to
accurately measure the model’s segmentation, and there was a serious imbalance between
U-Net and UNet3+ in the assessment of microvessels and background classes. For exam-
ple, UNet3+t achieved the optimal results in recall (0.89195), but its specificity (0.90247)
was much lower compared to U-Net (0.99016). The Kappa and GMEAN are two metrics
that can reflect comprehensive segmentation quality and better reflect the model’s overall
performance on the data. However, the proposed model achieved optimal results in both
the mean value of Kappa (0.81138) and the GMEAN (0.91074). This indicates that BiSTIM
effectively combined vascular structure segmentation in the foreground with multi-level
deep topological structure information and was able to distinguish microvessel classes
from background classes.
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Table 4. Evaluation of SOTA methods in terms of OCTA-500 segmentation. Figures in bold indicate
the best results.

Model Recall Specificity Accuracy IoU Dice

U-Net 0.74875 0.99026 0.87390 0.74125 0.84943
U-Net + AG 0.76458 0.98594 0.88210 0.75286 0.85742

Unet++ 0.88648 0.91008 0.90374 0.76794 0.86794
Frago 0.76900 0.98774 0.88600 0.75857 0.86046

BiSTIM 0.86097 0.94443 0.91317 0.79707 0.88650

In addition, the models demonstrating effective segmentation adopted skip-link oper-
ations. For example, models such as UNet++ and Frago achieved partial segmentation of
microvessels in OCTA images through the supervision of more complex multi-scale depth
information. Therefore, the feature interpreter we designed achieved optimal results in
the Dice, Kappa, and GMEAN metrics through multi-level supervision of deep topology.
Compared to Frago, the proposed model exhibited a 0.77% improvement in the Dice metric,
which proves that the design of BiSTIM is consistent with the OCTA segmentation task
compared to other methods.

Quantitative comparison: The same conclusion is supported by the OCTA segmenta-
tion results in Figure 5. The performance of many of the classic segmentation models in
the OCTA microvessel segmentation task was poor in several aspects. For example, in the
segmentation of the main trunk of microvessels and the detailed segmentation of branches,
most methods could not identify the main branches of blood vessels, and breakpoint prob-
lems occurred in the segmentation of veins and capillaries. The proposed method was able
to segment the details in both the trunk structure and the veins of branch vessels.

To further validate the proposed method, we evaluated its performance on the publicly
available OCTA-500 dataset. As shown in Table 4, the BisTIM achieved a mean Dice
coefficient of 0.8865, IoU of 0.79707, and accuracy of 0.91317 on this dataset. This surpassed
the published results of state-of-the-art methods, including U-Net + AG (IoU 0.75286),
UNet++ (IoU 0.76794), and Frago (IoU 0.75857). And it achieved great improvements in
accuracy (2.7%), IoU (3.85%), and Dice (2.61%) compared to the Frago model. These results
provide additional evidence that the proposed model generalized well across the OCTA
datasets. The extensive quantitative benchmarking on OCTA-500 against the state-of-the-
art methods further validates the strengths of the proposed approach for enhanced OCTA
image analysis. It proves that the model’s multi-level decoding and enhancement of deep
topological structure information can improve generalization and robustness.

4.4. Ablation Studies
4.4.1. Effectiveness of STA Module

In order to verify the impact of the depth topology signal extracted by the STA mod-
ule on the final segmentation result, we conducted ablation experiments on the RVOS
dataset. As shown in Table 5, the proposed method surpassed other methods, like concate-
nation (Cat) and attention feature fusion (AFF), and achieved superior results in almost
all metrics. Compared with AFF, the accuracy, IoU, and Dice metrics increased by 1.2%,
2.1%, and 1.5%. The improvement in segmentation proves the impact of the proposed
deep topology method on the microvessel segmentation task at different levels in OCTA.
The results highlight the benefits of topological relationships for combing OCTA layers in a
synergistic manner.
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U-Net + AGGT DeepLabV3+U-Net SegNet R2U-Net ENet UNet3+ IPN+ Unet++ FRAGO PrIS-TSOriginal

SVC

DVC

Figure 5. Visual comparison of microvessel segmentation between the proposed method and state-
of-the-art methods on RVOS. The upper three rows are the data in the SVC class, and the lower
three rows are the data in the DVC class. The segmentation of the model can be evaluated by
comprehensively segmenting the trunk and branch structures of the reticular microvessels.

Table 5. Evaluation of different fusion methods in terms of RVOS segmentation. Figures in bold
indicate the best results.

Fusion Method Recall Specificity Accuracy IoU Dice

Cat 0.77179 0.88067 0.83769 0.66154 0.79517
AFF [45] 0.82319 0.95276 0.89857 0.77399 0.87077

STA 0.86386 0.94036 0.91118 0.79581 0.88580

4.4.2. Effectiveness of BLAAM Module

Qualitative comparison: During the OCTA image acquisition process, problems such
as artifacts and image blur caused by various high-speed CMOS are often encountered,
further affecting segmentation quality. Therefore, in order to verify that our model can
improve segmentation on data with uneven brightness, we compared its impact under
different loss functions. As shown in Table 6, the BLAAM module achieved the best results
in accuracy, IoU, and Dice compared to the other models, showcasing improvements of
3.6%, 4.9%, and 3.2%, respectively, compared to the sub-optimal method. These results
show that the proposed BLAAM model can standardize data with uneven brightness,
thereby optimizing the segmentation capability of the model and reducing the impact of
noise caused by the acquisition process.

Table 6. Evaluation of different loss functions in terms of RVOS segmentation. Figures in bold
indicate the best results.

Loss Recall Specificity Accuracy IoU Dice

LsmoothL1 0.44308 0.99987 0.50747 0.44307 0.61177
LDICE 0.72692 0.92355 0.82637 0.66887 0.80044

LCEDICE 0.84813 0.92515 0.89541 0.76264 0.86457
LL1 0.75383 0.99016 0.87466 0.74629 0.85293

LBLAAM 0.86386 0.94036 0.91118 0.79581 0.88580
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Quantitative comparison: The same conclusion is supported by the OCTA segmen-
tation results in Figure 6. It can be observed that under the supervision of the BLAAM
module, various trunks and capillaries were segmented in both the SCP and DCP layers,
whereas the other methods could not distinguish between trunks and capillaries, resulting
in a loss of details of the capillaries. However, LCEDICE obtained objective segmentation
results in both qualitative and quantitative aspects. LCEDICE used cross-entropy to con-
strain the global structure and further controlled the details using the Dice loss function.
This demonstrates the importance of constraining segmentation results through multi-level
structures and further proves the crucial role of our BLAAM and STA modules within the
overall BiSTIM framework.

𝑮𝑻 𝓛𝑪𝑬𝑫𝑰𝑪𝑬𝓛𝑫𝑰𝑪𝑬𝓛𝑺𝒎𝒐𝒐𝒕𝒉𝑳𝟏 𝓛𝑳𝟏 𝓛𝑩𝑳𝑨𝑨𝑴

Figure 6. Visual comparison of monocular ophthalmic image segmentation between the proposed
method and state-of-the-art methods.

5. Conclusions

In summary, this study enhances OCTA image segmentation, addressing artifact
noise and complex vascular structures. BiSTIM comprises the PrIS-TS, STA, and BLAAM
modules, showing superior performance in handling complex structures and artifacts on
the RVOS and OCTA-500 datasets. Its utility in clinical applications, especially in detecting
RVO and HCRVO diseases, is also demonstrated.

Although BiSTIM advances OCTA segmentation, future research will focus on refining
the algorithms for patient-specific variability in OCTA images and integrating machine
learning with clinical expertise for more personalized diagnostics. Exploring real-time
OCTA image processing and extending BiSTIM to other imaging modalities are promising



Sensors 2024, 24, 774 16 of 18

directions. Additionally, ethical considerations and patient privacy in AI-based systems in
healthcare are crucial.
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