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Abstract: Traditional systems for indoor pressure sensing and human activity recognition (HAR)
rely on costly, high-resolution mats and computationally intensive neural network-based (NN-based)
models that are prone to noise. In contrast, we design a cost-effective and noise-resilient pressure mat
system for HAR, leveraging Velostat for intelligent pressure sensing and a novel hyperdimensional
computing (HDC) classifier that is lightweight and highly noise resilient. To measure the performance
of our system, we collected two datasets, capturing the static and continuous nature of human
movements. Our HDC-based classification algorithm shows an accuracy of 93.19%, improving the
accuracy by 9.47% over state-of-the-art CNNs, along with an 85% reduction in energy consumption.
We propose a new HDC noise-resilient algorithm and analyze the performance of our proposed
method in the presence of three different kinds of noise, including memory and communication,
input, and sensor noise. Our system is more resilient across all three noise types. Specifically, in the
presence of Gaussian noise, we achieve an accuracy of 92.15% (97.51% for static data), representing a
13.19% (8.77%) improvement compared to state-of-the-art CNNs.

Keywords: pressure sensing; hyperdimensional computing; human activity recognition

1. Introduction

Smart homes utilize cost-effective and user-friendly motion and vibration sensors [1–3]
among others. These sensors facilitate continuous monitoring, playing an integral role in
human activity recognition within the home environment. Recent advancements in machine
learning algorithms have enabled the detection and classification of more sophisticated indoor
activities [1,2,4], further enhancing the capabilities of smart home systems [1,2,4]. In the context
of smart home applications, pressure sensing mats are an important type of sensor [5–7].
Pressure mats are used for elderly care [5–7], health monitoring [7,8], security [8,9], daily activity
monitoring [5,9–14], analyzing walking gait in ASD children [15], and recognizing sleep postures
to optimize sleep positions for improved sleep quality and overall health [16].

Related works on human activity recognition using pressure mats cover a range of
design areas, encompassing hardware design, algorithm design, and system design, where
the latter includes both hardware and algorithmic aspects. Notably, Chen et al. introduced
a novel contactless sleep-monitoring IoT system with RFID-tagged bed sheets and a Rasp-
berry Pi 4 Model B, addressing the limitations of conventional sleep posture monitoring
based on the Random Forest method [17]. The work by Tang et al. [7] used a convolutional
neural network (CNN) for posture recognition and provided real-time feedback, posture
diaries, and fall alerts through a smartphone application, offering an advanced and accessi-
ble solution compared to intrusive and expensive alternatives for clinical sleep monitoring.
Stern et al. proposed 2D and 3D CNNs for in-bed posture monitoring and achieved high
accuracy for detecting different sleep positions in an open-access dataset [18]. The study
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addressed dataset imbalance using strategies such as downsampling. In [19], Clever et al.
introduced PressurePose, a synthetic dataset featuring a large pressure images dataset with
3D human poses and shapes, created through a physics-based simulation method. The
accompanying PressureNet is a deep learning model which, with the aid of a pressure map
reconstruction (PMR) network, estimates human pose and shape from pressure images,
exhibiting robust performance with real data for diverse poses.

On the algorithm side, convolutional neural networks (CNNs) have demonstrated
outstanding performance in various activity recognition applications. For example, Tang
et al. [7] achieved an average accuracy of 90.5% in classifying six sleeping postures using
CNNs. However, CNNs are computationally intensive and may not be suitable for small
mobile systems. In contrast, the pressure mat offers a simpler data format compared to
images conventionally used in cognition tasks, facilitating online processing and learning
with lightweight models.

While recent techniques based on deep neural networks have demonstrated promising
accuracy [7,18], NN-based methods require large amounts of computation and memory,
which cannot be implemented in resource-constrained devices like IoT devices. Commer-
cially available pressure sensing mats are concerned with determining the presence of a
person or object rather than detecting various activities and require costly high-resolution
computation [20,21].

Also, conventional AI techniques are generally prone to noise in different components
of the system [22]. The noise can stem from various sources, including sensor and input
data fluctuations, communication interference between the sensors and the hardware, and
memory errors [19,23]. Therefore, there is a need to design a pressure sensing system that
is robust to noise while maintaining effectiveness (e.g., cost, time, and energy, to align with
IoT device requirements) and ease of setup.

In this work, we propose a novel hyperdimensional computing (HDC)-based pressure
mat design that outperforms the accuracy of state-of-the-art methods with clean data
(without noise) as well as in the presence of different types of noise. HDC is an ideal
lightweight computing model inspired by the cognitive process of the brain [24,25]. Our
proposed design improves the traditional HDC by including a novel encoding mechanism,
and provides a low-cost, time- and energy-efficient, and robust pressure sensing system
for smart home applications. Our HDC-based model demonstrates resilience across a
spectrum of noise sources, spanning from initial data acquisition to wireless transmission,
with the overarching goal of mitigating the impact of noise on overall system performance.
By uniformly distributing the information over long vectors, HDC is well-suited to handle
such noisy data effectively [26]. Also, benefiting from simple arithmetic computations,
HDC can be highly efficient in terms of computation time and energy, making it very
suitable for IoT environments [27,28]. This is the first paper that investigates an HDC-based
method on pressure mat data by introducing a novel encoding approach that is robust to
multiple sources of noise.

To summarize, our work makes the following key contributions:

• We designed a low-cost pressure sensing mat with 512 sensing areas using Velostat
material [29] for indoor activity recognition.

• To address the computational constraints of such a small mobile system, we developed
a novel lightweight online learning algorithm based on noise-resilient HDC. To the best
of our knowledge, this paper represents the first application of an HDC-based method
for the analysis of pressure mat data. We enhance traditional HDC performance with
a novel encoding method to account for different noise sources, all while ensuring
comparable time and computation costs by operating in significantly lower dimensions
(vector lengths).

• To evaluate the performance of our system, we collected two datasets, capturing the
static and continuous nature of human movements. Our study includes three static
and four continuous activities. Our system matches CNN’s accuracy for static activities
and outperforms it by 9.47% for continuous activities with an accuracy of 93.19%, while
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consuming 85% less energy. This is achieved with compact 200-dimensional vectors,
compared to the more memory-intensive HDC baseline (2k–10k vector dimensions).

• Our method effectively preserves complex data patterns without requiring compli-
cated feature extraction, operating directly on raw data. Extensive experiments, in-
cluding noise injections, demonstrate its superiority in smart home activity recognition
over state-of-the-art algorithms. Our approach excels in mitigating noise challenges,
achieving an average improvement of 13.19% (8.77%) for continuous (static) data with
Gaussian noise compared to the current state-of-the-art method.

The rest of the paper is organized as follows: Section 2 and Section 3, respectively,
provide the background on related works and on the hyperdimensional computing back-
ground. Section 4 explains our proposed hardware and software design. Section 5 describes
the experimental setup and presents the results. The paper concludes in Section 6.

2. Related Work

Existing works on human activity recognition using pressure mats can be divided into
three categories according to their specific features as follows: system design, hardware
design, and algorithm design. Ref. [7] utilized a CNN for posture recognition and achieved
a high accuracy of around 90%. The study also involved the use of real-time feedback,
posture diaries, and fall alerts through a smartphone application, offering an advanced
and accessible solution compared to intrusive and expensive alternatives for clinical sleep
monitoring. Ref. [17] introduced a novel contactless sleep-monitoring IoT system with
RFID-tagged bed sheets and a Raspberry Pi 4 Model B, addressing the limitations of
conventional sleep posture monitoring based on the Random Forest approach. Ref. [19]
introduced PressurePose, a synthetic dataset featuring a large pressure images dataset with
3D human poses and shapes, created through a physics-based simulation method. The
accompanying PressureNet is a deep learning model that, with the aid of a pressure map
reconstruction (PMR) network, estimates human pose and shape from pressure images,
exhibiting robust performance with real data of diverse poses.

Traditional neural network (NN)-based methods, as seen in studies like [7,17], face
challenges due to their reliance on large datasets and numerous parameters. Existing
approaches often involve computation- and energy-intensive algorithms, such as feature
extraction, which are impractical for resource-constrained devices like IoT devices. Addi-
tionally, these methods are susceptible to noise in various regions of their systems.

In our work, we introduce system, hardware, and algorithm designs. Our paper
represents the first investigation of an HDC-based method applied to pressure mat data,
incorporating a novel encoding approach. The proposed method operates directly on raw
data, eliminating the need for complex computations, like feature extraction, parameter-
tuning, and the time- and energy-consuming processes typical in NN-based methods.
Hence, it can be easily implemented in resource-constrained devices like IoT devices. Our
proposed method not only outperforms state-of-the-art accuracy levels under clean data
conditions but also demonstrates robust performance in the presence of different kinds of
noise, owing to its ability to capture local patterns in the images. Furthermore, this is the
first study that analyzes the memory and communication, input, and sensor noise data
commonly observed in human activity recognition systems and yields considerably higher
accuracy compared to the best state-of-the-art methods. We further summarize related
works in Table 1.
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Table 1. Comparison of human activity recognition using pressure mat approaches.

Authors System Comparison

Tang et al. [7] CNN-based posture
recognition

Data and computing intensive, prone to
noise

Chen et al. [17] Raspberry Pi 4 and
Random Forest

Data and computing intensive, prone to
noise

Clever et al. [19] Synthetic dataset
(PressurePose) Computing and energy intensive

Our Work Novel HDC-based
encoding design

Outperforms in noise resilience, time and
energy efficient

3. Hyperdimensional Computing

Hyperdimensional computing (HDC) is a computational paradigm rooted in the
principles of cognitive neuroscience, which is designed to process and represent information
within high-dimensional spaces [24]. The key idea behind HDC is to leverage the inherent
properties of high-dimensional spaces, such as redundancy and fault-tolerance, to enable
robust information processing and representation. In HDC, the data are represented as high-
dimensional vectors, which are manipulated using simple element-wise logical operations,
such as AND, OR, and XOR, to perform computations.

HDC exhibits inherent noise tolerance due to the redundancy of the high-dimensional
representation, allowing for robust recognition in the presence of noise in high-dimensional
space [22]. We discuss the general steps for deploying a conventional HDC for a classi-
fication task. Figure 1 depicts the HDC steps. First, the input data are encoded into D-
dimensional hypervectors. For encoded vectors H⃗1 and H⃗2, the proximity of S⃗ = H⃗1 + H⃗2
to H⃗1 and H⃗2 is higher than to any other random vector. HDC algorithms capitalize on
this principle to represent sets by aggregating together vectors of identical labels. After
encoding, hypervectors of the same class are superimposed (added) to create class hyper-
vectors. Then, the query data are classified using similarity metrics with respect to the
class hypervectors, such as the cosine distance or the dot-product [25]. Later in Section 4.1,
we introduce an innovative HDC-based algorithm crafted to augment the baseline HDC
performance and to enhance its resilience towards various forms of noise.

Class 1

HDC Model

-2 -12+4

Training Dataset

+

Encoding

Encoded Hypervector

Score 1

Score 2

Score 3

(a)

Class 2

Class 3

HDC Model

-1 +5-10 

Encoding

Encoded Query

Class 2

Class 3

Class 1

Label=1 Label=???

(b)

×

×
×

Test Dataset

Label = MaxTraining

Inference

Figure 1. (a) HDC training. Each training data point is encoded to a hypervector and added up to
the proper class hypervector based on its label. (b) HDC inference. The query data are encoded
and compared with all the class hypervectors. The class index with the highest similarity is the
prediction result.
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Encoding: The most critical part of the HDC framework is the encoding process,
which transforms the raw data into high-dimensional vectors. This is typically achieved by
selecting a fixed set of random binary or bipolar vectors, and associating each unique input
item or feature with one of these hypervectors. The association can be performed using
different encoding methods, like random projection. An input sample is represented by a
vector F = ⟨ f1, f2, · · · , fd⟩, where each element fi ∈ R corresponds to a feature, such as
pixel values in the case of image representation. Table 2 summarizes the notations used
throughout the paper.

Table 2. Table of notations.

Symbol Definition Symbol Definition

d Dimension of the original data B Base matrix
D Dimension of encoded data H Hypervector of encoded data
w Window size W Encoded window
s Window overlapping step C Class hypervector

Applying the framework of the random projection (RP) encoding technique, which is
a popular encoding method [28], we assign a constant D-dimensional projection vector B⃗i
to each feature position, resulting in a total of d constant vectors. The formulation of the
random projection encoding can be expressed as follows:

H⃗ = sign
( d

∑
i=1

fi × B⃗i
)
= sign

(
B ×F

)
(1)

Training: During training, the encoded binary vectors are superimposed to form
composite vectors representing each class. The superposition operation aggregates the
encoded vectors belonging to the same class by element-wise addition, resulting in com-
posite vectors that capture the shared characteristics and common features of the class.
This process forms class-specific vectors that represent the aggregated information from
the training samples. By superimposing vectors within classes, HDC leverages the cu-
mulative knowledge to create robust and discriminative representations. The resulting
set of class hypervectors serves as a reference for subsequent classification and inference
tasks, enabling the recognition of patterns and concepts in new, unseen data. During the
training phase, for every training sample F j with a corresponding label yj = ℓ, the HDC
algorithm generates and accumulates encoded vectors H⃗j to form the class vector C⃗ℓ. This
aggregation is achieved through the following equation:

C⃗ℓ = ∑
j such that yj=ℓ

H⃗j (2)

Here, the class vector C⃗ℓ for class label ℓ is formed by summing up the encoded vectors H⃗j

of all the training samples with label yj = ℓ.
Inference: This step in HDC involves computing the similarity between an input

data sample and the class hypervectors. This is achieved using element-wise operations
between the encoded input H⃗ and the class hypervectors, which results in a binary vector
that indicates the degree of similarity between the input and each class. The classification
of the input is then determined based on the closest class hypervector as follows:

ℓ⋆ = argmax
j∈C

(
H⃗ · C⃗ j

)
(3)

Retraining: To enhance the accuracy, the retraining phase performs inference on the
training samples and updates the class vectors. This involves adding the mis-predicted
vector H⃗ to the correct class vector C⃗ℓ, while subtracting it from the erroneously assigned
class vector C⃗ℓ′ . The update process can be represented by the following equations:
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C⃗ℓ = C⃗ℓ + H⃗ C⃗ℓ′ = C⃗ℓ′ − H⃗ (4)

While the baseline HDC excels in lower time and energy consumption compared
to the NN-based methods [7,17], it faces challenges in detecting patterns in image data.
Our enhanced HDC adopts 200-dimensional vectors, achieving superior efficiency. This
enhancement ensures prolonged device lifespan, reduced operational costs, and enhanced
sustainability. While showing notable noise resilience, in the noise-free scenarios, our
proposed method also obtains a higher accuracy as it better stores the local patterns within
the images.

Hardware Design: Sensor Mat Design for Smart Home Pressure Sensing

The hardware of our system has three major components as follows: a sensor mat,
multiplexers (MUX), and analog to digital converters (ADC). A conceptual diagram for our
hardware is shown in Figure 2 (a picture of the practical setup is later shown in Figure 9).

Figure 2. Conceptual diagram for the hardware design including a pressure mat, multiplexers (MUX),
analog–digital-converters (ADC), and a Raspberry Pi (RPi) for data processing and learning.

4. Noise-Resilient HDC-Based Pressure Mat Design

Our pressure mat system is designed to work for both static and continuous activ-
ities. Static postures encompass no_press (no movement on the mat), standing still,
and object containing, while continuous activities account for jump, walk, left/right
(lr)_shift, and tiptoe. For all activities, we collect time-series data over multiple frames
and label them manually. Our goal is the accurate prediction of activity types when
presented with new samples. By leveraging our collected data and employing robust pre-
diction algorithms, we strive to achieve precise recognition of various activities in real-time
scenarios. Our smart sensing system comprises two integral components: (i) a custom-
designed pressure mat hardware equipped with essential signal processing capabilities,
and (ii) a novel lightweight online learning algorithm software based on HDC.

The hardware component captures analog signals generated by human body move-
ment on the pressure mat, converting them into digital data records. This conversion
process ensures compatibility and facilitates subsequent analysis. Each input dataset, re-
gardless of activity classification, consists of 32 × 16 × 7 raw values representing a 7-frame
time series. The software component, operating on a Raspberry Pi, receives input data
with dimensions 32 × 16 × 7. These seven signals are treated as individual frames. The
Raspberry Pi’s software is responsible for data preparation, online training, and generating
the classification results. In the following, we explain the design of each component in
more detail.
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We chose the Velostat material [29] for its cost-effectiveness and established function-
ality as a force-sensitive resistor [30]. For signal management, four MAX4617CPE chips
were selected as multiplexers (MUX) due to their proven reliability and performance in
signal-switching applications. For the conversion of analog signals from Velostat to digital
values, we employed four ADS1115 analog-to-digital converters (ADCs). This choice was
based on the precision and suitability of ADS1115 for low-power applications [31]. Each
ADC receives four voltage signals; thus, a total of 16 values are obtained from all four
ADCs each time when one channel is open. We also carefully select resistors as part of the
voltage divider to customize the voltage range.

Our design goal is to create a low-cost and high-resolution hardware solution tailored
for daily smart-home scenarios. We achieve this by constructing a pressure-sensitive mat
using Velostat [29], a polymeric foil impregnated with carbon black, effectively serving as a
force-sensitive resistor. In comparison to traditional force-sensitive resistors, Velostat offers
a cost-effective alternative with equivalent functionality for smart-home applications [30].
We meticulously affix 0.5-inch carbon tapes onto the Velostat mat, delineating distinct
sensing areas chosen by the multiplexers (MUXes) [32] and identified by the analog-to-
digital converters (ADCs) [33]. Each intersection of tapes creates a 0.25 square inch sensing
area. Having 32 vertical and 16 horizontal tapes, we are able to create a low-cost and
high-resolution pressure mat with 512 sensing areas. We also have four 8:3 MUXes to
control the 32 signals. Only one signal is allowed for triggering high voltage at a time. This
operation could avoid high voltage aliasing. Since we have all the 32 lines sharing with
the load resistors, it is important to separate the high-voltage releases between them. The
decisions are made based on common practice reported in the literature [30,34].

One issue with Velostat is its nonlinear voltage-resistance behavior. Figure 3 displays
the voltage recognized by ADCs under various Velostat resistance and load resistors. Using
a 100 Ω load resistor can generate 0.3–3.25 V output, but using 900 Ω results in only
1.6–3.25 V. In order to have a greater resolution, we use smaller resistors. However, as
the resistance drops, the voltage–resistance curve becomes more nonlinear. This means
that if the resistance decreases, nonlinear behavior increases. Although we prefer low
resistance for high resolution, we need to keep the resistance value high enough for more
linear outputs. Therefore, we chose 200 Ω as the middle value to balance the two trade-offs.
Choosing the right load resistor is important to gain sufficient resolution as well as to
reduce the negative impact of the nonlinear relationship.

AD
C 

Vo
lta

ge

Velostat Resistance

AD
C 

Vo
lta

ge

Velostat Resistance

RLoad = 100 Ohms
RLoad = 200 Ohms
RLoad = 300 Ohms
RLoad = 400 Ohms
RLoad = 500 Ohms
RLoad = 600 Ohms
RLoad = 700 Ohms
RLoad = 800 Ohms
RLoad = 900 Ohms

Figure 3. Voltage at ADC for load resistors in series with Velostat.
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4.1. Software Design: HDC-Based Classifier

Data pre-processing: To prepare for training, we begin by conducting data pre-
processing. Each data frame consists of 32 × 16 digital values obtained from the ADC
conversion. In the dataset, we differentiate between two cases: static postures and moving
activities. For static postures, we combine identical 2D matrices from 7 frames of 32 × 16
into a single sample. On the other hand, for moving activities, we collect the matrices in
chronological order to capture the temporal progression of the motion. We then perform
separate training for the static and dynamic data.

HDC-based Learning and Classification: Figure 4 illustrates the proposed method’s
flow for one frame input image. To better preserve the local information in different win-
dows of images rather than merely considering an image holistically, we propose a novel
window-based encoding method that effectively preserves the local features within the
input data while mapping them to a hyperspace. The goal is to capture and retain the
important temporal and spatial information without relying on complex feature extrac-
tion techniques.

Original Image

...

...

...

...

𝑰𝑫𝟎
𝑰𝑫𝟏
𝑰𝑫𝟐

𝑰𝑫𝟑

All windows’ ID vectors

window 𝑤! Encoding

Flattening

(a) Extracting windows with
step size of  s (here s=|w|) 
from the original image

m×𝑚

w×𝑤

1×𝑘
B𝜖 {−1, 1}!×#

⋮
−1 1 … . 1

⋮
× =

1×𝐷
𝑎$ 𝑎% 𝑎& … 𝑎#'%…

Encoded 𝑤!(𝒲!)

× 𝑎$ 𝑎% 𝑎& … 𝑎#'%
× 𝑏$ 𝑏% 𝑏& … 𝑏#'%
× 𝑐$ 𝑐% 𝑐& … 𝑐#'%
× 𝑑$ 𝑑% 𝑑& … 𝑑#'%

+

+
+

=

𝑧$ 𝑧% 𝑧& … 𝑧#'%

𝑧$ 𝑧% 𝑧& … 𝑧#'%

Class 𝐶": Superimposed vectors of  class 𝑘𝑧$ 𝑧% 𝑧& … 𝑧#'% 1×𝐷

(c) Encoding image

(b)

⋮ +

(d) Training

=
𝑧$ 𝑧% 𝑧& … 𝑧#'% 1×𝐷

Figure 4. Proposed encoding: (a) Splitting original image to smaller windows, (b) encoding a singular
window using conventional random projection encoding, (c) ID-based encoding of the original image,
and (d) training.

Our approach leverages the idea that traditional HDC encoding does not explicitly pre-
serve the temporal and spatial characteristics of the images. By encoding multiple windows
within each image, we can retain a larger amount of relevant information from encoding
local patterns. Moreover, the resulting hypervectors are more tolerant to noise due to the
increased information preservation achieved through the window-based encoding process.

Window-based Encoding (Local Encoding): Our window-based HDC encoding is
inspired by the effective use of convolutional filters in extracting local features from images
within convolutional neural networks, where nuanced local information is captured. In
this technique, instead of considering the input image as a single image and encoding it,
we consider fixed window sizes of w × w within an image of size m × m, and perform
the encoding on each window separately (Figure 4b) using random projection encoding
explained in Section 3. This ensures preserving the local patterns in smaller regions. The
resulting hypervectors, denoted by Wi, are then superimposed to create the hypervector
representing the overall image W (Figure 4c), as follows:

W⃗ = ∑n
i=1 W⃗i · IDi, (5)

where n is the number of windows within an image. We bind (via multiplication) each
encoded Wi by a random D-dimensional ID vector to distinguish between different win-
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dow locations [35]. An image of size m × m will have n = (w(m−w)
s )2 windows with an

overlapping step size of s. The selection of w (window size) and overlapping step s is
tentative and can be optimized based on the dataset. For our case, we obtained slightly
better accuracy with w = 8 and s = 3. Window-based encoding is based on encoding
different overlapping windows within an image, which allows us to capture the local and
spatiotemporal patterns present in the data. It also provides the opportunity to perform
the encodings of smaller windows in an image simultaneously, preserving the time and
computation overhead.

Dynamic data encoding: After encoding each image frame as represented in Figure 4,
we implement a similar approach for encoding a series of frames as in Figure 4c, where
different frames are distinguished by allocating a unique IDframe i to each frame i.

Wdynamic = ∑# f rames
i=1 W⃗frame i · IDframe i (6)

Training and Inference: We aggregate the encoded vectors that belong to each class
to obtain a single class hypervector, as discussed for baseline HDC [25], representing
each class. For prediction, we perform a similarity check between the unclassified testing
hypervector Htest encoded from the testing sample and all the trained class hypervectors.
A basic cosine similarity check is used to find the closest hypervector whose class is the
predicted class, i.e., arg maxj cos(Htest, Cj) = Htest ·Cj

||Htest ||·||Cj || . The class exhibiting the greater
similarity to the encoded query is assigned as the label for the query data.

5. Experiments and Results
5.1. Experimental Setup

Implementation: We use a Raspberry Pi 4 for data collection and HDC-based learning.
We implement a novel HDC-based encoding based on the torch-hd [36] package. Each
training epoch will go through sequential neural networks with one HDC encoding layer.
We chose to set D at 200 based on empirical observations, indicating that the encoded
classes remain distinguishable even with relatively smaller vector sizes. This choice is
supported by a thorough analysis of the accuracy and the capacity to be differentiated, as
illustrated in the t-SNE plots in the following. D is set to 10,000 for the baseline HDC.

Dataset: We construct a dataset with six different activities. Figure 9 illustrates the
practical setup for capturing the images. Each set of input data, regardless of activity
classification, consists of 32 × 16 × 7 raw values, representing a 7-frame time series. The
software component later receives input data with dimensions 32 × 16 × 7 as individual
frames. The Raspberry Pi’s software is responsible for the data preparation, online training,
and generating the classification results. There are two static poses (no_press, stand) and
four moving actions (jump, walk, lr_shift, and tiptoe). As an illustrative example, Figure
5 visualizes one sample of the tiptoe class that contains seven consecutive frames. As time
moves forward, the frame changes from a full footprint to a half footprint with a tiptoe up,
and finally lands back to the ground, which completes the full action of tiptoe movement
including seven frames. Each static and dynamic set of data is separated into training and
testing sets, using an 80–20% split.

Baselines: We employ a comprehensive set of baseline models for comparative evalua-
tion, including convolutional neural network (CNN) [7], multi-layer perceptron (MLP) [17],
support vector machine (SVM) [37], logistic regression (LR) [38], and a baseline random
projection HDC [25]. The CNN architecture includes two convolutional layers with batch
normalization, ReLU activations, and max-pooling, followed by two fully connected layers.
Three ReLU activations culminate in a softmax activation function. The specific layer
configurations are as follows: 1st convolutional layer (1 input channel, 32 output channels,
kernel size 3, padding 1), 2nd convolutional layer (32 input channels, 64 output chan-
nels, kernel size 3, padding 1), and fully connected layers (256 neurons, ReLU activation,
dropout p = 0.2, and 6 output neurons). The training spans 20 epochs with a batch size
of 64, employing the Adam optimizer (lr = 0.0001) and cross-entropy loss. The results are
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averaged over 10 iterations. The MLP configuration involves a four-layer network and
incorporates dropout layers, featuring hidden layer sizes of 128, 64, and 32, and an output
size of 3 (4) for the classification task in static (dynamic) cases. The training process involves
20 epochs with a batch size of 32. In addition to two fully connected layers, the model
incorporates rectified linear unit (ReLU) activations after each fully connected layer. The
dropout layers are employed to enhance regularization during training. The final layer is
activated using a softmax function. It is noteworthy that all the aforementioned parameters
are extracted after an exhaustive hyperparameter tuning process to identify the optimal
parameter configurations, ensuring a robust and fair comparison.

frame 1

frame 5

frame 2 frame 3 frame 4

frame 6 frame 7

Figure 5. Visualization of the time-series tiptoe data.

Evaluation Metrics: We evaluate the training performance for accuracy on a common
test set at various epochs, execution times, and levels of energy consumption. We run
20 epochs for HDC (baseline [25] and our proposed design), CNN [7], and MLP [17]. All
experiments are evaluated on RPi 4 [39]. The energy consumption is measured by a HIOKI
3334 power meter [40].

5.2. Accuracy, Execution Time, and Energy Consumption with no Noise

Accuracy: Figure 6 compares the accuracy of the different state-of-the-art methods
and baseline HDC [25] with our proposed method. We achieve comparable results as CNN
(best state-of-the-art) on the static data, where CNN converges to 98.88% accuracy and
HDC converges to 98.96% after fewer epochs. Continuous datasets are more challenging
for classification tasks. Our HDC-based method achieves a significantly higher accuracy
of 93.19% in contrast to CNN’s [7] (best state-of-the-art) 83.72%. More significantly, HDC
achieves similar accuracy (83.84%) as multi-epoch CNN in only one epoch of training.
In comparison to the baseline HDC [25], our proposed method yields 3.18% and 16.18%
higher accuracy, respectively, for static and dynamic data.
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Figure 6. Accuracy comparison between 1 and 100 epochs of training across SVM [37], LR [38],
MLP [17], CNN [7], Baseline HDC [25] and Proposed Method (static data on the left, dynamic data
on the right).
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In Figure 7, we present a comparative analysis between our proposed method and
the baseline random projection HDC [25]. Figure 7 displays t-SNE plots of the static and
continuous data. The t-SNE plots visualize high-dimensional data by preserving the local
similarities, revealing patterns in lower-dimensional space. The clusters display noticeable
overlapping and outliers for both small and large hypervector dimensionalities (D = 200,
10k). However, the bottom plots, representing t-SNE plots for our proposed encodings,
show more distinguishable clusters for both large and small dimensionality. The lower KL-
divergence values further confirm the improved discriminative capability of our proposed
method compared to the baseline HDC [25]. Specifically, for D = 200, we obtain KL values
of 0.264 (static) and 0.265 (dynamic)—notably lower than the baseline HDC [25], with 0.549
(0.560) for the static (dynamic) data. This trend persists with a higher dimension of D = 10k.

Static data Continuous data
Baseline t-SNE projection (D=10k). KL = 0.283.    

Our t-SNE projection (D=10k). KL = 0.277.    

Baseline t-SNE projection (D=200). KL = 0.549.    

Our t-SNE projection (D=200). KL = 0.263.    

Baseline t-SNE projection (D=10k). KL = 0.411.    

Our t-SNE projection (D=10k). KL = 0.372.    

Baseline t-SNE projection (D=200). KL = 0.560.    

Our t-SNE projection (D=200). KL = 0.265.    

Figure 7. t-SNE plots illustrating the encoded hypervectors learned by our method for static data and
continuous data compared to baseline HDC. The plots are generated with D = 10k and D = 200. KL
denotes the Kullback–Leibler divergence. The bottom row is our method where the clusters are more
distinguishable.

Execution Time: The measured training and test execution time for the proposed
HDC on RPi is shown in Figure 8. To reach comparable testing accuracy, the proposed
method uses about 7.32×(1.44×) less total time than CNNs for static (dynamic) datasets,
which demonstrates the efficiency of our design. In comparison to the other methods, our
proposed method consumes higher energy but the overhead is not comparable with that of
CNN [7].
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Figure 8. (a) Comparison of execution time of static data and dynamic data. (b) Shows average
energy consumption comparison across SVM [37], LR [38], MLP [17], CNN [7], Baseline HDC [25]
and Proposed Method.

Energy consumption: The measured energy on RPi is shown in Figure 8. To reach
comparable testing accuracy, HDC uses about 85% less total energy than CNN, which
demonstrates the efficiency of our design. HDC has similar power consumption per unit
time to CNN, but CNN takes a much longer time to perform prediction and, therefore, uses
more energy in total.
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5.3. Accuracy with Noise

In the operation of pressure mat systems, the acquired data are subject to various
sources of noise inherent to these devices, originating from different components of the
system. We systematically analyze the influence of different noise types on our system and
compare the performance of our proposed method with the state-of-the-art approaches in
terms of accuracy. We also report the execution time and the energy consumption. Based
on our experiments, we observe that a lower reduction in accuracy corresponds to higher
resilience towards noise. Figure 9 illustrates the specific locations within our system where
each form of noise occurs. The examined noises include (i) input noise, (ii) sensor noise, and
(iii) memory and communication noise, each of which will be explained and thoroughly
investigated in the following sections. It is important to note that our experiments focus
primarily on static data, as the introduction of noise in dynamic data may result in various
combinations across frames, affecting either individual frames or the entirety of the dataset,
which can be studied in future work.

Sensor noise

Data Acquisition
Communication noise

Data Storage, Training 
and Classification

Memory noise

input noise

Communication

Figure 9. Different kinds of noise in our pressure mat system prototype: sensor, Input, communication,
and memory noise

5.3.1. Input Noise

To evaluate the impact of input noise, we introduce variations simulating real-world
scenarios, evaluating the resilience of our system to environmental influences and un-
expected inputs. Understanding and addressing input noise is crucial for ensuring the
accuracy and reliability of the data collected. Errors in the input data might occur during
data acquisition, such as distortions in the data or losing a portion of the mat’s data. In our
simulations, we introduce such errors by implementing shift, blurriness, and rotations, as
discussed by [19]. The results are depicted in Figure 10.

The observations in Figure 10a reveal that as the information loss intensifies with
further shifts, the accuracy of the system generally declines. This decline is particularly
noticeable for the baseline HDC. Our proposed method consistently maintains high accu-
racy, outperforming the CNN [7] and baseline HDC [25] by, respectively, an average of
3.22% and 24.4% across shifts within the [1–9] range. Also, the accuracy of our method
is, respectively, 1.37%, 3.21% and 1.22% higher than MLP [17], LR [38], and SVM [37].
For the blurriness noise, our proposed method yields a similar accuracy with SVM when
different rates of noise are applied. Note that SVM and our proposed method are the
best-performing methods when dealing with blurriness in the data. Also, when rotating,
our proposed method outperforms the other methods by an average of 4.95%, 3.33%, and
1.21%, respectively, compared to baseline HDC [25], CNN [7], and SVM [37].
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Figure 10. Effect of input noise, (a) shift-right, (b) blurriness, and (c) rotation, on the accuracy across
SVM [37], LR [38], MLP [17], CNN [7], Baseline HDC [25] and Proposed Method for static data.

5.3.2. Sensor Noise

We investigate the influence of sensor noises, specifically Gaussian noise, as discussed
in [41], and white noise on the input data. We depict the accuracy change with different
standard deviations, evaluating the performance of various methods on the static data.
We depict the results in Figure 11. Our proposed method’s decline is lower than that of
the other methods. To see how tolerant different methods are towards different kinds of
noise types, we applied a range of noise intensities (see Figure 11). Our method maintains
higher averages of 7.33% and 0.65%, respectively, with white and Gaussian noise within
the different noise rates. Compared to the baseline HDC, these values are 1.7% and
4.23% higher.
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0.5 1 2 5 10 15 20 50 100

Accuracy of static data with different white 
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Figure 11. Effect of sensor noise (white and Gaussian on input data) on the accuracy for static data
across SVM [37], LR [38], MLP [17], CNN [7], Baseline HDC [25] and Proposed Method.

5.3.3. Memory and Communication Noise

As systems grow more complex, preserving data integrity faces increasing challenges
during memory and communication processes. Our investigation thoroughly assesses
the system’s resilience to memory corruption and communication disturbances, with a
focus on maintaining stability and precision in the stored and transmitted information. We
specifically address memory and communication noise, examining the impact of packet
loss, Gaussian noise, and random bitflips within our system, as outlined in [23,42]. The
literature highlights that Gaussian noise and random bitflips can occur in both memory
and communication processes due to factors such as hardware limitations, electromagnetic
interference, and software vulnerabilities [23,43].
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To perform the analysis, we introduce each of packet loss, bitflips, and Gaussian
noise—common occurrences in IoT networks—into our models. Specifically, for CNN [7]
and MLP [17], we apply these noises to the model weights. In the case of HDC, which
lacks model weights in the traditional sense, we explore the effects of injecting set-to-
zero, bitflip, and Gaussian noise into the stored class hypervectors post-training and
the encoded hypervectors. However, for bitflips, we exclusively consider the encoded
hypervectors, as the class values are represented as floats. We note that, according to [44,45],
the discussed sensor noise (Gaussian and white noise) could also be considered as forms of
communication noise.

Figure 12a,b illustrate the accuracy variations with different noise ratios for the contin-
uous and static data across various methods. Our observations indicate that the baseline
HDC model exhibits superior tolerance to set-to-zero (considered on a par with packet loss),
bitflip, and Gaussian noise compared to the other methods for both continuous and static
data. Notably, our proposed method surpasses the baseline HDC significantly. It demon-
strates remarkable resilience to memory and communication noises, tolerating substantial
ratios, whereas alternative methods experience a rapid decline in accuracy with even minor
injected noise. More specifically, our proposed method outperforms the best state-of-the-art
method (LR [38]) in packet loss noise resilience by an average of 19.9% (4.61%) for dynamic
(static) data across different ratios of noise. Also, our proposed method yields up to an
average of 33.77% (18.72%) higher accuracy for dynamic (static) data compared to the best
state-of-the-art method (CNN [7]) in the presence of bitflip, and up to an average of 13.19%
(8.77%) in the presence of Gaussian noise.
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Figure 12. Effect of memory and communication noise on accuracy across SVM [37], LR [38], MLP [17],
CNN [7], Baseline HDC [25] and Proposed Method for continuous data (a) and static data (b). The left,
middle, and right columns show the results of packet loss, bitflip, and Gaussian noise, respectively.
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5.4. Discussion and Future Work

Unlike conventional machine learning (ML) and NN-based computing methods,
HDC maps the input data into hypervectors with many elements, e.g., of the order of
2–10k elements. Our proposed method yields a high accuracy with vectors of as few as
200 dimensions. However, for more complex tasks and data, in order to achieve high accu-
racy, higher order dimensions are required. In such settings, if memory is limited and not
optimized, storing large hypervectors can be challenging. Additionally, computing with
high-dimensional vectors may become a potential bottleneck, leading to suboptimal per-
formance and increased computational overhead. Furthermore, due to the predominantly
linear nature of HDC encoding, it has limitations in capturing and classifying complex
images [46]. While our proposed method improves the accuracy of the baseline HDC by
preserving local patterns in images, advancing HDC encoding may be necessary when
dealing with more complex data, such as combining NN-based feature extraction with
HDC. This, however, goes beyond the current scope of HDC, which excels in robustness to
noise, simplicity of operations, and lower computation and energy consumption.

In future work, we plan to advance our current methodology by harnessing the
rich potential inherent in diverse data types, such as incorporating signals derived from
human pose and shape analysis applied to pressure images. This enhancement is aimed at
achieving more nuanced and accurate human activity recognition while remaining within
the scope of HDC and using its simplicity, robustness, and resilience towards noise. Also,
the work can be extended to incorporate classification of more complex cognition tasks
based on heterogeneous data from different inputs. Additionally, we intend to conduct a
comprehensive examination of datasets characterized by imbalanced labels and to study
the impact of data augmentation on the performance of the HDC model. Further study
also needs to be undertaken in terms of system maintenance, specifically in the presence of
noise, as well using hyperspace sparsification techniques in HDC to utilize less memory.

6. Conclusions

In this study, we introduced a novel pressure sensing system, specifically designed for
cost-effective and noise resilient human activity recognition. Our system includes a pressure
mat sensor based on Velostat and a novel HDC classifier, which excels in lightweight
computation and demonstrates resilience to various types of noise. We comprehensively
evaluated our proposed system on a Raspberry Pi, demonstrating a remarkable 9.47%
improvement in accuracy compared to the current state-of-the-art method (CNN) for
dynamic data. Notably, our system achieves this superior accuracy while consuming 85%
less energy and exhibiting a remarkable speed enhancement of up to 7.3× compared to
existing methods. Furthermore, we confirm the robustness of our method in handling
various noise types, such as memory and communication, sensor, and input noise. In the
presence of communication and memory noise, our system enhances the final accuracy
by up to 33.77% and 18.72% for dynamic and static data, respectively. When exposed to
sensor noise, the accuracy is boosted by up to 7.33% and 0.63%, utilizing dynamic and
static data. Additionally, it yields up to 3.33% higher accuracy in the presence of input
noise compared to the best state-of-the-art method. Compared to the baseline HDC [25],
our proposed method achieves significant accuracy improvements of up to 20% (4.23%)
for dynamic (static) data in the presence of communication and memory noise. These
findings emphasize the practical viability and efficiency of our proposed pressure sensing
system, positioning it as a promising solution for applications requiring accurate and
resource-efficient human activity detection.
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