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Abstract: Industrial-quality inspections, particularly those leveraging AI, require significant amounts
of training data. In fields like injection molding, producing a multitude of defective parts for such
data poses environmental and financial challenges. Synthetic training data emerge as a potential
solution to address these concerns. Although the creation of realistic synthetic 2D images from 3D
models of injection-molded parts involves numerous rendering parameters, the current literature on
the generation and application of synthetic data in industrial-quality inspection scarcely addresses the
impact of these parameters on AI efficacy. In this study, we delve into some of these key parameters,
such as camera position, lighting, and computational noise, to gauge their effect on AI performance.
By utilizing Blender software, we procedurally introduced the “flash” defect on a 3D model sourced
from a CAD file of an injection-molded part. Subsequently, with Blender’s Cycles rendering engine,
we produced datasets for each parameter variation. These datasets were then used to train a pre-
trained EfficientNet-V2 for the binary classification of the “flash” defect. Our results indicate that
while noise is less critical, using a range of noise levels in training can benefit model adaptability and
efficiency. Variability in camera positioning and lighting conditions was found to be more significant,
enhancing model performance even when real-world conditions mirror the controlled synthetic
environment. These findings suggest that incorporating diverse lighting and camera dynamics is
beneficial for AI applications, regardless of the consistency in real-world operational settings.

Keywords: synthetic data; rendering parameter; AI inspection; quality control; defect detection;
blender

1. Introduction

Quality assurance in manufacturing, particularly in injection molding, remains a
challenge due to a variety of error types stemming from machine parameters, environmental
influences, and batch inconsistencies. As these errors can be expensive to produce in real-
world settings, synthetic training data offer a compelling solution for machine learning
models tasked with defect detection. The use of synthetic data for deep learning has been
expanding in various fields in recent years, yet the impact of rendering parameters on the
quality of this data and the subsequent performance of AI models is not well understood.

Recent years have seen an increasing number of publications utilizing synthetic train-
ing image data for diverse applications. These range from medical domains, such as
Schenkenfelder et al.’s [1] generation of virtual images for burn wound detection on human
skin, to civil infrastructure inspection, such as Howells et al.’s [2] work that can be used in
assessing earthquake damage, and even space technology, where Viggh et al. [3] used Unity
to create synthetic data for spacecraft component detection. In industrial contexts, synthetic
data have been employed for tasks including segmenting car parts in the automotive indus-
try [4], training robots for bin-picking chicken fillets in the food industry [5], and detecting
surface defects on machine parts [6–8]. The generation of the synthetic images from 3D
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geometry is often carried out by using Unity [3,4], and sometimes custom solutions are put
into place [7,9], whereas Blender is utilized in the majority of the studies [1,2,5,6,10–19].

A common approach, exemplified by Schmedemann et al. [17], is the randomization
of numerous parameters, including lighting, camera position, texture, and the defect itself.
This is based on the assumption that a greater extent of domain randomization leads to
enhanced domain adaptation and, thus, improved model performance for real images.
While it’s common to alter at least some of the rendering parameters, particularly focusing
on camera position and lighting, beyond this assumption, most studies do not delve deeper
into the specific impacts of these variations [1–7,10,12–15,17–19].

Only a few studies have addressed the intricate details of render parameters. Ruediger-
Flore et al. [16] explored the impact of realistic material properties and background settings,
examining objects rendered at varying levels of detail, from “plain rendered CAD” to
“full scene”. Their findings highlight that increasing scene realism significantly boosts
classification performance, especially when the proper material properties are added. They
also found that mixing different levels of realism and expanding the volume of training
data further improves performance. However, their analysis did not extend to other critical
parameters, such as lighting and camera position. In a different vein, Zhang et al. [20]
compared various illumination models, discovering that the choice of illumination model
substantially affects network performance. Yet, their study did not investigate whether
variation in lighting is better than using any single illumination model, nor did it determine
the characteristics required for one lighting model to excel over another.

This study aims to fill the existing knowledge gap by utilizing the Cycles rendering
engine to procedurally generate a specific type of defect (flash) on 3D models of injection-
molded parts. With this setup for generating synthetic training data, we focus specifically
on empirically evaluating the influence of key rendering parameters—lighting, camera
position, and noise—on the efficacy of an AI model for quality assessment. Guiding our
research are the following key questions:

1. How does variation in lighting affect the accuracy and generalization capabilities of
an AI model trained with synthetic data, as compared to using a static light source?

2. In what ways does changing the camera position impact the accuracy and general-
ization capabilities of an AI model trained with synthetic data, as opposed to a static
camera position?

3. How does the comparison of high versus low noise levels, inherent to the ray tracing
process in rendering, affect the accuracy and generalization capabilities of an AI model
trained with synthetic data?

The remainder of this paper is structured to explore our methodology, present the
experimental results, discuss these results, and conclude with insights aimed at informing
future directions in synthetic data generation for AI-driven quality inspection.

2. Materials and Methods

In order to create our synthetic 2D image dataset, we use Blender, a versatile piece of
open-source 3D graphics software (https://www.blender.org/download/). The integration
of the Cycles rendering engine in Blender, which accurately simulates lighting using ray
tracing, is essential to the creation of photorealistic images. Blender’s advantages also lie
in its rich feature set, which includes 3D modeling and sculpting, texturing, UV mapping,
and rendering, as well as its powerful Python API that enables the automation of rendering
tasks, which is essential for creating large datasets with variable parameters.

Table 1 outlines the variations in the rendering parameters we examined in Blender,
each altered systematically to assess their impact on AI model performance. For instance,
for the high noise data, a 0.1 noise threshold in Blender was used, a 10-fold increase
compared to the low-noise setting. In the table, the Lighting column contrasts a single light
source directly above the object with a high dynamic range imaging (HDRI) background for
varied lighting. The Camera Position column compares a fixed camera directly above the
object to a camera in random positions within a cube above the object, simulating varying

https://www.blender.org/download/
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camera positions. The Noise (the noise parameter is linked to ray tracing, where the
quantity and path of light rays determine each pixel’s color and brightness in the rendered
image) column showcases two scenarios: a high noise scenario with a 0.1 threshold and a
low noise scenario with a 0.01 threshold.

Table 1. Variations of the analyzed cleaning parameters.

Lighting Camera Position Noise

One light source directly above the object Exactly above the object 0.1 Noise threshold

Via the HDRI background Random position in cube above the object 0.01 Noise threshold

2.1. Scene Setup

After the 3D modeling of a real injection molded part—a “mortar bowl”—was con-
verted into a .stl geometry, it can be loaded into the blender scene and placed onto a desk
geometry. For the material of the desk, we used a freely available asset for a wooden table,
meaning the textures for the color, roughness, and normal map are input into the “Princi-
pled BSDF” (bidirectional scattering distribution function) shader. For the bowl, we also
used the Principled BSDF shader and a Subsurface IOR of 1.46, as well as a Transmission of
0.1 and a Roughness of 0.2 as the properties for plastic material. For the images with vari-
able lighting, a high dynamic range image (HDRI) was used as the background. The scene
in Blenders layout view and rendered preview is shown in Figure 1. The reflections of
the light sources generated from the HDRI and their physically correct reflection on the
tabletop are worth noting, as well as the slight noise in darker areas, such as the right side
of the table.

Figure 1. The scene in a rendered preview using ray tracing and a randomly selected HDRI image.

2.2. Defect Creation

The sole focus of our simulation is the “flash” defect, a prevalent issue in plastics
production and one of the most common defects in injection-molded parts. Flash is charac-
terized by excess material that extends beyond the intended parting line or mold cavity,
with its severity ranging from a barely perceptible thread to a wide rim. This defect is
not only widespread but is also of significant concern in the industry. It can result from
various factors, including improper mold design, inadequate mold maintenance, excessive
injection pressure or speed, and material shrinkage during the molding process.

The defects on the outer edge of the 3D model were created in such a way that they
come as close as possible to those of the real component. In order to do this, the nodes on
the outer edge of the 3D object’s mesh were first added to a collection and then saved (see
Figure 2). Each time a part with a defect is rendered, the defect creation algorithm iterates
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over all the points in the collection of the original model’s geometry, randomly selects a
subset of vertices, and applies a perturbation to their position, followed by a smoothing
process to ensure a natural transition.

Figure 2. Manipulated vertices highlighted.

The algorithm is parameterized by the ’strength’ of perturbation, the ’perturb_fraction’,
which is the fraction of total vertices to be perturbed, and the ’smoothness’, which defines
the number of iterations for smoothing the perturbations to create a realistic defect edge.
Given a mesh with N selected vertices, the algorithm selects a subset of M vertices to
perturb, where M is determined by the perturb fraction:

M = ⌈N · perturb_fraction⌉. (1)

Each vertex, vi, in this subset is then randomly perturbed by a value, pi, within the range
[0, strength]. In order to ensure a smooth transition and avoid sharp edges, this perturbation
is smoothed over smoothness iterations. During each iteration, the perturbation for a vertex
vi is recalculated as the average of its own value and the perturbations of its immediate
neighbors, giving the smoothed perturbation psmooth

i as

psmooth
i =

pi + ∑j∈neighbors(i) pj

number of neighbors(i) + 1
. (2)

Finally, the vertices are displaced along their normal vectors by the smoothed pertur-
bation amount, updating the position of each vertex vi to a new position v′

i by

v′
i = vi + psmooth

i · ni. (3)

Adjusting the algorithm’s parameters allows for the simulation of defects that align
with the diverse types and severities encountered in actual injection-molded parts. In our
experiments, we determined a smoothness setting of 100 to be universally suitable for the
type of defects we aimed to replicate. We varied the strength of the perturbation within the
range [2.0, 25.0] and the perturb_fraction within [0.01, 0.1]. Both parameters were drawn
from a normal distribution with a mean of 0.055 and a standard deviation of 0.025 for the
perturb_fraction, and a mean of 13.5 with a standard deviation of 5.75 for the strength.
Values falling outside the defined ranges were clamped to the interval’s boundaries.

The strength parameter determines the scale of the defects, affecting their size and
the extent of deformation on the mesh. Conversely, the perturb_fraction sets the occur-
rence rate of the defects, which translates to the frequency and variability of the defects’
presentation on the mesh surface. In calibrating these parameters, our objective was to
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replicate defects with a high degree of subtlety. We set the median defect size to be relatively
small, and the lower threshold of the strength parameter was selected such that defects at a
high perturb_fraction are just barely perceptible, and those at the lower end are virtually
invisible to the naked eye without zooming in on the image. This nuanced approach aims
to enhance the AI’s sensitivity to minute irregularities, challenging its detection capabilities.
Figure 3 depicts defects of median and maximum possible sizes, characterized by excess
material on the outer edge (rendered from a top-down camera perspective). The mesh is
displayed to better illustrate the variations in the dimensions of these defects.

(a) (b)

Figure 3. Examples of different defect sizes. (a) Median defect strength and fraction; (b) maximum
defect strength and fraction. Some of the defects at the brim are marked.

2.3. Render Settings

By randomly selecting one variant of each parameter (as depicted in Table 1), we
rendered 10,000 images without defects and 10,000 images with defects, which were
generated using the algorithm described in Section 2.2. This resulted in a total dataset
of 20,000 images for all variations. Each image was rendered with parameters chosen
randomly from those outlined in Table 1, with a 50% probability for each variant. The test
dataset, consisting of 4000 images, was rendered separately with the same settings.

Each image was rendered at a resolution of 1920 × 1080 pixels using the Cycles engine
(without denoising) using the GPU. In every rendering cycle, the material color was varied
randomly among four options: light blue, dark blue, orange, and red. If the part was to
include a defect, it was created by manipulating the object’s geometry with a random size
and shape.

With dependence on the randomly selected variant for each parameter, the following
render settings were configured via the Python API:

Noise: Adaptive sampling was enabled for both variants. For lower noise levels,
the maximum number of samples was set to 500, and the adaptive threshold was set to 0.01.
For higher noise scenarios, the maximum samples were reduced to 50, and the threshold
was increased to 0.1.

Lighting: Depending on the random selection, either variable lighting was used by
selecting an HDRI from 191 available 2 k textures downloaded from Poly Haven [21] or a
disk-shaped area light positioned directly above the object with an energy setting of 5000
was used.

Camera: If the top-view camera was selected, Camera Object 1, located directly above
the bowl, was used. Otherwise, Camera Object 2 was chosen with its position randomly
determined within a cube above the object and oriented towards it.
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2.4. Preliminary Experiments

Choice of classification model: The objective of classification in this research is not
to achieve the highest possible accuracy on test or real-world data but rather to assess the
comparative impact of different rendering parameters on model performance. The chosen
model should not only exhibit good generalization but should also operate efficiently to
accommodate the numerous training and inference iterations required by our experiments.
We evaluated various models, including different variants of EfficientNet [22] and Efficient-
NetV2 [23], to determine whether the size of the input images and the complexity of the
networks significantly influence performance.

Image normalization: The role of image normalization in the training and testing
phases was examined by training the model on a subset of 4000 images randomly selected
from the entire dataset of 20,000. Three different normalization schemes were applied:

(a) ImageNet with mean = [0.485, 0.456, 0.406], and std = [0.229, 0.224, 0.225];
(b) Rendered dataset mean = [0.3320, 0.2324, 0.2056], and std = [0.1839, 0.1681, 0.1932];
(c) No normalization

Dataset size: Rendering a substantial volume of images with accurate light simula-
tion is time-intensive; generating 20,000 images required approximately four and a half
days using our equipment. Consequently, to manage the rendering duration—given that
seven models were to be trained for our studies—without compromising the integrity
of the training data, we evaluated the impact of dataset size on model performance. We
considered datasets of 6000 and 8000 images, selected randomly from the full dataset to
ensure uniform distribution.

2.5. Training EfficientNet

For training the EfficientNetV2-RW-T model, we utilized PyTorch and ensured repro-
ducibility by setting the same seed for all random number generators in torch, numpy,
and CUDA. The batch size was determined by the memory capacity of the graphics card,
with 24 being the maximum number of samples per batch that could be accommodated.
Our dataset was partitioned into an 80/20 split for training and validation. Data loaders
were configured with specific transformations for the training and testing datasets (refer to
Appendices A and B for details). The training process spanned over 40 epochs, utilizing an
initial learning rate of 1 × 10−3.

2.6. Obtaining Real Test Data

For all subsequent evaluations (Sections 3.2 and 3.3), the models were trained and
validated according to the methodology described in Section 2.5. The model with the high-
est validation accuracy after each epoch was selected for further evaluation. We assessed
each model’s performance using the synthetic test set and a dataset of real objects pho-
tographed under varying environmental conditions. These conditions included placing the
object on a wooden workbench and within a specialized inspection device (the inspection
device, provided by SQB GmbH, features a back light, top light, and a segmented ring
light. It is particularly well-suited for experiments involving variations in lighting and
camera parameters, making it an ideal setup for determining optimal image acquisition
configurations and for capturing training data) with both light and dark backgrounds.
For each setup, we captured images in both well-lit and dimly-lit scenarios, taking two
photographs of each object with slight rotations and positional adjustments. Due to the
limited availability of real parts with the specified flash defect, only four were available for
testing. Conversely, five defect-free parts were used to represent the ‘good’ class. (Note
that three of the defective parts are orange, and one is dark blue. For the IO parts, we had
one part of each color available).
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3. Results
3.1. Conclusions from Preliminary Experiments

The following results were obtained from preliminary tests to find a valid experimental
setup, as described in Section 2.4.

Choice of classification model: Initial tests on a subset of 4000 images from our
dataset, encompassing all parameter variations, revealed no significant performance dis-
parities attributable to different input sizes (see Appendix A.1). Consequently, with an
emphasis on reducing model size and expediting training, we opted for a pretrained
version of efficientnetv2_rw_t, which offers a suitable balance between efficiency and
predictive capability.

Image normalization: Confusion matrices, as shown in Table A4, indicate discernible
but modest differences in model performance across the various normalization techniques.
Upon visual examination, images after normalization, especially those with darker back-
grounds, may lose realism and appear overly dark, as can be seen in Figure A1. In light
of these observations and the similar performance metrics of the models tested, we opted
against using normalization. This decision also streamlines the testing process.

Dataset size: Model performance metrics on the test data are documented in Table A5.
The analysis revealed marginal differences among the models, with the model trained on
6000 images (6k) unexpectedly outperforming the one trained on 8000 (8k). Based on these
findings, we opted to render a dataset of 6000 images for each of our experiments, with an
equal split between the defective and nondefective samples.

3.2. Noise

Tables 2 and 3 present the confusion matrices for the classification results of the models
trained on high-noise and low-noise image data, respectively. The left side of each table
displays the results on the rendered test dataset, while the right side presents the findings
on the real data. Figures A2 and A3 depict the receiver operating characteristic curve (ROC)
for the respective noise models when tested against real data. (As a reminder, the area under
the receiver operating characteristic curve (AUC-ROC) provides a quantifiable measure of
a classifier’s accuracy, plotting the true positive rate (sensitivity) against the false positive
rate (1-specificity) at various thresholds. An AUC of 1.0 signifies perfect classification,
while an AUC of 0.5 corresponds to the performance of random guessing (diagonal)).

Table 2. Confusion matrix for a high-noise model.

Synth. Data Real Data
Predicted: G NG G NG

Actual: G 1721 279 60 0
Actual: NG 182 1818 19 29

Table 3. Confusion matrix for a low-noise model.

Synth. Data Real Data
Predicted: G NG G NG

Actual: G 1483 517 53 7
Actual: NG 205 1795 18 30

The overall performance of both models on the test datasets is deemed reasonable.
The model trained on low-noise images demonstrates a marked reduction in performance
on the synthetic test data, suggesting a potential difficulty in generalizing to the high-noise
conditions that are also present in the rendered test set. However, when assessed on real-
world images, the low-noise model exhibits better performance but still does not quite reach
the effectiveness of the high-noise model. It shows comparable proficiency in recognizing
defective objects but tends to misclassify a higher number of nondefective parts.
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The ROC values provide further insight into the classification abilities of the models:
the high-noise model attains an AUC of 0.9469, while the low-noise model reaches an AUC
of 0.8271. Both metrics surpass the baseline of random classification, indicating a significant
ability to discriminate between classes. Notably, the high-noise model shows distinctly
superior performance in accurately classifying real data compared to the low-noise model,
underscoring its robustness in practical settings.

3.3. Camera Position

Tables 4 and 5 show the confusion matrices on the synthetic as well as the real test
data. The respective ROC curves are depicted in Figures A4 and A5.

Table 4. Confusion matrix for the top camera model.

Test Dataset Real Dataset
Predicted: G NG G NG

Actual: G 961 1039 51 9
Actual: NG 268 1732 18 30

Table 5. Confusion matrix for the variable camera model.

Test Dataset Real Dataset
Predicted: G NG G NG

Actual: G 1830 170 60 0
Actual: NG 241 1759 17 31

The comparative analysis of model performance, with respect to camera angles, dis-
closes stark differences. The top camera model erroneously classified over half of the
nondefective objects within the synthetic test dataset, indicating a significant challenge
in generalizing from the training data to varied camera perspectives. In marked contrast,
the variable camera model demonstrated consistent and robust performance across the
entirety of the synthetic test data. Remarkably, in real-world evaluations, the variable
camera model excelled, correctly classifying all nondefective objects—despite the fact that
all real images were captured from a top-down perspective. This performance gap is further
highlighted in the receiver operating characteristic analysis, where the variable camera
model achieved a robust AUC of 0.9448, which is significantly higher than that of the top
camera model, the latter nearing the threshold of random classification efficacy.

3.4. Lighting

Again, Tables 6 and 7 show the confusion matrices on the synthetic as well as the real
test data. The respective ROC curves are depicted in Figures A6 and A7.

Table 6. Confusion matrix for the top light model.

Test Dataset Real Dataset
Predicted: G NG G NG

Actual: G 1850 150 60 0
Actual: NG 308 1692 31 17

Table 7. Confusion matrix for the HDRI light model.

Test Dataset Real Dataset
Predicted: G NG G NG

Actual: G 1834 166 60 0
Actual: NG 237 1763 19 29
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The comparative evaluation between models using HDRI versus top light illumination
highlights the subtle yet significant performance variances. On the synthetic tests, the HDRI
model outperforms marginally, as it compensates for misclassifying 16 nondefective units
by correctly identifying an extra 71 defects. For the real images, while both models accu-
rately classify all nondefective parts, the HDRI model proves superior, detecting 29 out
of 48 defects, surpassing the top light’s 17. The AUC metric underlines these outcomes,
with the HDRI model achieving a robust AUC of 0.948, showcasing its strong discriminative
power, which is in contrast to the top light model’s more modest AUC of 0.7295.

3.5. All Variations

Upon analyzing the images, it was observed that the model trained with varied
rendering parameters predominantly misclassified only those with the smallest flash defects
and suboptimal lighting conditions (the metrics are given in Table 8 and Figure 4). In setups
with a dark background, every image was correctly classified, and with adequate lighting,
all images with larger defects were identified accurately regardless of the background.

Table 8. Confusion matrix for all variations.

Test Dataset Real Dataset
Predicted: G NG G NG

Actual: G 1840 160 59 1
Actual: NG 166 1834 14 34

Figure 4. AUC of 0.9233 for the model with all variations using real data.

Illustrations of these observations include a real image with defects incorrectly classi-
fied as nondefective, shown in Figure 5, and an image with the smallest detected defect
classified correctly, presented in Figure 6.
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Figure 5. A real part with a small flash that was classified as good.

Figure 6. A real part with the smallest flash and darkest background was classified correctly.

Consequently, the experiments culminated, albeit unintentionally, in the creation of an
effective classifier, affirming the overall success of the AI training process. This result under-
scores the model’s adeptness at discerning crucial features for precise defect identification.

4. Discussion

In our investigations, we intentionally set the defect parameters to low levels to create
subtle defects, resulting in a substantial number of images without recognizable defects.
This strategy was not geared towards maximizing classification performance but, rather,
was aimed at enabling a meaningful comparative analysis between models trained on
varied datasets. During training, we deliberately refrained from using augmentations that
could alter image noise or brightness to preserve the purity of the data for assessing the
impact of rendering parameters. Universally, the models trained solely on synthetic images
demonstrated admirable adaptability when applied to real image data, thus bridging
the “reality gap” identified by Tobin et al. [24], and they did so without the need for
normalization techniques.

Regarding the noise simulation parameter, the high-noise model remained robust
when applied to real, lower-noise data (e.g.,Table 2), while the low-noise model struggled
to adapt to noisier conditions (e.g., Table 3), suggesting a potential benefit in training with
raytracing at lower sampling rates. Similarly, the models with varied lighting parameters
proved advantageous for classification tasks (e.g., Tables 6 and 7), indicating the effective-
ness of incorporating lighting variation into the training process. The adaptability of models
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to camera position variations also yielded informative outcomes. The models trained with
a static top camera perspective performed poorly when faced with deviations in camera
angle within the synthetic test set (e.g., Table 4), a trend that was unexpectedly mirrored
in real-world scenarios, where the camera positions were consistent, yet the objects were
placed only millimeters apart (e.g., Tables 4 and 5). This leads to our recommendation to
include at least minimal camera position variation in rendering synthetic training data for
inspection tasks to enhance generalization—even if the actual operational setup involves a
fixed camera position.

Our findings also imply the feasibility of prioritizing training with noisy images, which
are not only quicker to render via raytracing but also seem to enhance model performance.
Including a limited selection of low-noise images might suffice to maintain the model’s
ability to generalize.

In our case, the preliminary tests indicated that models without normalization could
match or exceed the performance of normalized counterparts on our test data (e.g., Section 3.1).
Nonetheless, we advise caution in extrapolating this result to other contexts. In situations
where there is significant brightness variation within a dataset, particularly when real
and synthetic data are combined, image normalization could be crucial. This area merits
further investigation to determine the most effective image data preprocessing techniques
for machine learning applications using synthetic data.

5. Conclusions

In this work, we addressed the previously unexplored importance of simulation
parameters in generating synthetic data for enhancing AI performance. Our approach
utilized a binary classification task for defect detection using a single defect type and one 3D
model. The study’s findings underscore the significant impact of varying illumination and
camera positions on AI performance. Specifically, changing camera position led to a 9.26%
(please note that the % sign here and in the following refers to percentage points) increase
in model accuracy and a 21.53% improvement in AUC when tested against real-world
data. Similarly, employing HDRI lighting instead of top lighting resulted in an 11.11%
boost in classification accuracy and a 16.04% increase in AUC. Counterintuitively, we also
discovered that training with higher noise not only aids in model generalization but also
speeds up data generation, showing a dual advantage with a 5.56% rise in accuracy and an
11.98% enhancement in AUC compared to models trained with lower noise levels.

5.1. Limitations

Although this study provides valuable insights into the impact of rendering parame-
ters on AI model performance, it has limitations. Firstly, our investigation into the noise
parameter was limited to only two variations, which may not fully capture the spectrum
of noise levels encountered in real-world scenarios. Secondly, we did not account for
variations in texture in the background, a factor that could significantly influence AI classi-
fication accuracy. While focusing solely on binary classification and the “flash” defect type
might be seen as a limitation, these choices were made to constrain the scope of the study
and manage its complexity.

5.2. Practical Implications

Despite these limitations, the practical implications of our research potentially extend
far beyond the quality inspection of injection-molded parts. Our findings are pertinent to
a broad spectrum of production processes where 3D models are used to algorithmically
simulate defects. Tools like Blender or Unity can be leveraged to generate realistic synthetic
data, which then serve as training material for AI models tasked with detecting these defects
in actual products. Our study demonstrates that manipulating rendering parameters
like lighting, camera position, and noise can significantly boost AI model accuracy and
generalization. This is vital for those using rendered synthetic data for AI training. Notably,
certain parameter variations are more impactful than others, highlighting the importance
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of a targeted approach in their selection. Effectively prioritizing these key parameters and
varying only those that are beneficial can not only streamline the creation of high-quality
synthetic training data but also lead to a dataset that is higher in quality, smaller in size,
and generated in less time.

5.3. Future Research

When looking ahead, several promising research directions emerge. Investigating
whether variations in the base or background of synthetic images can further improve
model accuracy and adaptability is one of those. Another key area is determining the
optimal mix of parameter variations in training data, for instance, understanding if a dataset
comprising 80% images with lighting variations outperforms one with a lower proportion
of such variations. Furthermore, exploring the benefits of a continuous range in variable
parameters, like noise levels, instead of binary high/low levels, might offer more nuanced
generalization capabilities, particularly in scenarios involving different sensor types or
exposure times. These insights pave the way for future research to optimize synthetic data
generation for machine learning applications in quality inspection and beyond.
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Appendix A. Experiment Details

Appendix A.1. Model

As in defect detection tasks, the “not good” (NG) parts are the class of interest we
want to primarily identify; the following naming is used:

True Positive (TP): Defective parts correctly classified as NG.
True Negative (TN): Good parts correctly classified as G.
False Positive (FP): Good parts incorrectly classified as NG.
False Negative (FN): Defective parts incorrectly classified as G.

Appendix A.2. Normalization

The following confusion matrices were the results of training on the 4k images after
40 epochs and inference using the test data.

https://www.eitech.de/
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Table A1. Confusion matrices for models trained with different architectures. From left to right:
efficientnet-Bb6-ns; efficientnetv2-rw-t; tf_efficientnetv2_m_in21ft1k.

B6-ns V2-rw-t V2_m_in21ft1k
Predicted G NG G NG G NG

Actual: G 1823 177 1974 26 1923 77
Actual: NG 200 1800 297 1703 273 1727

Table A2. Metrics for all models (for NG).

Model Accuracy Precision Recall F1-Score

efficientnet-Bb6-ns 90.58% 91.05% 90.00% 90.52%
efficientnetv2-rw-t 91.93% 98.50% 85.15% 91.34%
tf_efficientnetv2_m_in21ft1k 91.25% 95.73% 86.35% 90.80%

Figure A1. Four examples of rendered images after normalization.

Appendix A.3. Training Dataset Size

We randomly selected 6000 and 8000 images from the rendered complete dataset of
20,000 images and trained three different models (one on each). The resulting confusion
matrices are shown in Table A5.
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Table A3. Performance metrics for models trained using different normalizations (in %).

Metric Dataset ImageNet None

Precision 92.76% 92.3% 98.5%
Accuracy 88.5% 90.7% 92.0%

Recall 91.0% 89.1% 85.1%
F1-Score 90.6% 90.7% 91.3%

Table A4. Confusion matrices for models trained using different normalizations.

Dataset ImageNet None
Predicted G NG G NG G NG

Actual: G 1862 138 1851 149 1974 26
Actual: NG 230 1770 218 1782 297 1703

Table A5. Confusion matrices for models trained using different numbers of images.

6000 Images 8000 Images 20,000 Images
Predicted G NG G NG G NG

Actual: G 1910 90 1770 230 1782 218
Actual: NG 185 1815 164 1836 143 1857

Appendix B. ROC Curves

Appendix B.1. Noise

Figure A2. AUC for the high-noise model: 0.9469.
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Figure A3. AUC for the low-noise model: 0.8271.

Appendix B.2. Camera

Figure A4. AUC for the top camera model: 0.7295.
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Figure A5. AUC for the variable camera model: 0.9448.

Appendix B.3. Lighting

Figure A6. AUC for the top lighting model: 0.8111.
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Figure A7. AUC for the variant lighting via HDRI model: 0.9715.

Appendix C. Code

Listing A1. Train transformation pipeline.

transforms.Compose ([
transforms.Resize (528) ,
transforms.RandomRotation(degrees =(-30, 30)),
transforms.RandomResizedCrop(size =500, scale =(0.8 , 1.0)),
# both equally likely - 0.5 that neither will occur
transforms.RandomHorizontalFlip (0.29289322) ,
transforms.RandomVerticalFlip (0.29289322) ,
transforms.ToTensor (), ])

Listing A2. Validation and test transformation pipeline.

transforms.Compose ([
transforms.Resize (528) ,
transforms.CenterCrop(size =500),
transforms.ToTensor (), ])
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