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Abstract: Background: The accuracy of human pose tracking using smartphone camera (2D-pose) to
quantify shoulder range of motion (RoM) is not determined. Methods: Twenty healthy individuals
were recruited and performed shoulder abduction, adduction, flexion, or extension, captured simul-
taneously using a smartphone-based human pose estimation algorithm (Apple’s vision framework)
and using a skin marker-based 3D motion capture system. Validity was assessed by comparing the
2D-pose outcomes against a well-established 3D motion capture protocol. In addition, the impact
of iPhone positioning was investigated using three smartphones in multiple vertical and horizontal
positions. The relationship and validity were analysed using linear mixed models and Bland-Altman
analysis. Results: We found that 2D-pose-based shoulder RoM was consistent with 3D motion
capture (linear mixed model: R2 > 0.93) but was somewhat overestimated by the smartphone. Differ-
ences were dependent on shoulder movement type and RoM amplitude, with adduction the worst
performer among all tested movements. All motion types were described using linear equations.
Correction methods are provided to correct potential out-of-plane shoulder movements. Conclusions:
Shoulder RoM estimated using a smartphone camera is consistent with 3D motion-capture-derived
RoM; however, differences between the systems were observed and are likely explained by differences
in thoracic frame definitions.

Keywords: shoulder; range of motion; human pose tracking; 2D pose; clinical assessment; validity

1. Introduction

Shoulder pain is a major cause of disability with a multifaceted aetiology affecting
shoulder function [1]. Depending on the shoulder pathology, conservative therapy and/or
surgical treatment interventions are proposed. For either treatment type, periodic tracking
of active shoulder function is essential to establish the efficacy of the intervention, and
active RoM is part of the commonly used patient-reported outcome measures such as
the Constant–Murley score [2]. Current clinical methods such as goniometer and visual
estimation of active shoulder range of motion (RoM) lack accuracy and consistency [3–5].
Therefore, a change detected in the RoM could potentially reflect measurement error and
inadvertently impact clinical decisions. For maximal efficacy and ease of use, the functional
assessment should be objective and simple to perform, in an outpatient setting or at home.
Recent developments in tracking body landmarks using smartphone video imaging (2D-
pose) provide a promising tool that fulfils these requirements. In addition to efficacy in
intervention assessment, these tools could also be utilised to assess postural behaviour in
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real work environments [6]. Therefore, it is critical to assess the accuracy and limitations
of these tracking algorithms against established 3D motion capture (3D-Mocap) methods.
Although the accuracy of identifying and locating key body landmarks is well established
(e.g., [7,8]), limited information is available that compares their accuracy against 3D-Mocap,
especially for the upper limb.

Based on machine learning models (e.g., [9]), a smartphone camera can track key
body landmarks (Skeletal Tracking). As such, they may have potential limitations that
require investigation. These are primarily related to the fact that smartphone cameras
view movements in 2D; the accuracy of any movements outside this plane will obviously
suffer from projection errors [10]. For example, a less ideal use case could include when
smartphones are angled relative to the user when positioned on a table and leaned against
an object when performing a self-assessment, or the user’s movements/posture are not
aligned with the 2D plane of the phone, thereby impacting the RoM detected. Although
projection errors can be determined based on linear algebra, it is important to demonstrate
the impact of out-of-plane movements to increase awareness of 2D video limitations.

Most studies that assessed validity against 3D-Mocap system registration investigated
lower-limb kinematics (e.g., [11,12]). One study assessed upper-limb RoM against screen
goniometry [13]. However, there is limited information available that validates single
camera 2D poses against 3D-Mocap. Validation of the methods is required to ensure that
shoulder RoM can be meaningfully interpreted. This can be established by comparing
angles against those from 3D-Mocap based on International Society of Biomechanics (ISB)
recommendations [14].

The specific aims were as follows: (i) to determine the accuracy/validity of the Apple
vision-based 2D-pose to estimate shoulder abduction, adduction, flexion, and extension
RoM, by comparing against RoM estimated using 3D-Mocap; (ii) to demonstrate the
impact of, and provide methods to compensate for, potential out-of-plane movements. We
hypothesize that 2D-pose-based shoulder RoM is closely related to 3D-Mocap-based RoM.
The 2D-pose was based on Apple Vision, and the application programming interface was
incorporated in Zimmer Biomet’s mymobility® App (v3.5).

2. Materials and Methods
2.1. Participants

Twenty participants (10 female, 10 male, mean (SD), age: 36 (13, range 23–71) years,
height: 1.72 (0.09) m, weight: 72 (13) kg) with no history of shoulder pain volunteered
for this study. Participants provided written informed consent, and all procedures were
approved by the Institutional Human Ethics Committee (#2000000470).

2.2. Experimental Setup

The active thoraco-humeral RoM of the left (n = 9) or right shoulder (n = 11) was
assessed simultaneously using a 12-camera Vicon system (Vantage V5, Vicon, Yarnton,
Oxford, UK) and 2D-pose RoM, part of the mymobility® App (v3.5, Zimmer Biomet,
Warsaw, IN, USA) run on two iPhone 13s and one iPhone 13 pro (Apple, Cupertino, CA,
USA). Vicon data were collected at 50 samples/s. iPhones’ sampling rate was 30 frames/s.

A t-shirt was provided for participants to wear during the experiment to mimic normal
use of the mymobility® App to estimate shoulder range of motion. The t-shirt would block
the vision of reflective markers placed on the thoracic anatomical landmarks (C7, T8, sternal
notch, xiphoid processes) based on ISB recommendations [14]. To allow for tracking of the
thorax, a marker cluster (MCP1090, NaturalPoint, Inc., Corvallis, OR, USA) was attached to
the skin covering the 5th thoracic vertebrae. The provided t-shirt (Figure 1) had a cut-out on
the rear, such that the thorax cluster could be clearly seen by the 3D-Mocap cameras. The
ISB-defined upper arm anatomical segment orientation is based on the humeral epicondyles
and the glenohumeral joint position [14]. To allow for tracking of the glenohumeral joint
position, as single skin-based markers cannot, an additional cluster was attached to lateral
aspect of the upper arm. The anatomical landmarks representing thorax (C7, T8, sternal
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notch, xiphoid processes) and upper arm (medial and lateral epicondyles) were registered
to the respective clusters using a custom-made pointer [15].

X

Y

Z

X
Y

Z

A B

C

Figure 1. Experimental setup. (A) shows the vertical iPhone setup. (B) shows the horizontal iPhone
setup. (C) shows a detail of the phone holder and attached cluster with reflective markers. The phone
holders were disconnected from the vertical post that was used in the vertical phone setup and were
placed on top of the tripods (B). The global definition of the Vicon coordinate system, i.e., the X, Y,
Z-axes are shown in blue, green, and red, respectively.

We estimated the glenohumeral joint location using a functional approach [16,17].
To this end, a temporary cluster was attached to the skin covering the acromion to track
the scapula to allow for measurement of relative motion between the upper arm and
scapula [18]. The scapular cluster was placed at the junction of the scapular spine and
acromion [19]. To limit skin movement artefacts of the scapular cluster, shoulder move-
ments to estimate the glenohumeral joint location were kept below 90◦ [19]. The scapular
cluster can reliably measure scapular kinematics below 120◦ shoulder elevation [20]. The
estimated coordinates of the glenohumeral joint in the scapula cluster axis system were
then expressed in the upper arm cluster axis system. After this procedure, the scapula
cluster was removed for the rest of the measurements so that participants could wear the
provided t-shirt for the rest of the procedure.

To demonstrate the impact of the 2D-pose RoM against potential less ideal phone-
participant setups that might occur during everyday use, we assessed shoulder RoM with
a vertical and a horizontal arrangement of the phones, as depicted in Figure 1. For the
vertical arrangement (Figure 1A), the iPhone 13 pro was placed at 0.9 m height (standard
kitchen benchtop height [21]), in front of the participant at ~3 m distance. The phone was
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aligned with gravity (using built-in Apple level App) and ideally positioned, i.e., it viewed
participants with minimal projection errors; this is referenced as “centred” phone. The other
phones were placed at 0.45 m height (standard coffee table height [22], pitched upwards
(mean (SD) across participants) with 18.4◦ (1.6◦), and at 1.8 m height (standard shelf
height [23]), pitched downwards with 20.2◦ (1.8◦) to ensure that participants were in frame
(Figure 1A). The brightness, contrast, and focus of the phone camera were automatically
adjusted by the device.

For the horizontal arrangement (Figure 1B), the centred phone’s position and orienta-
tion were not altered. The other two phones were aligned with gravity and positioned at
the same 0.9 m height on a 3 m radius at ~22.5◦ and ~45◦ to the participant (Figure 1), to
mimic potential misalignment of the participant’s frontal plane relative to the phone camera
2D plane. Mean (SD) heading angles of these phones were 24.8◦ (3.8◦) and 44.6◦ (1.7◦),
respectively. If the right shoulder was assessed, the iPhones were positioned to the left of
the participant, and vice versa. To measure the phone’s locations and orientations relative
to the Vicon system, each phone was positioned in a custom-made holder part with a
marker cluster attached to it (Figure 1C), and phone corners and front-facing camera were
registered to the phone’s cluster using the custom pointer.

2.3. Data Collection

Order of shoulder movements (abduction, adduction, flexion, and extension) was
randomised. Before data collection, the participant viewed the instruction video provided
by the mymobility® App that explained how to perform each movement while standing up-
right. The 2D-pose in the mymobility® App provided the maximum-achieved RoM when
performing a shoulder movement. To mimic reduced shoulder function expected in indi-
viduals pre/post-shoulder surgery, the RoM accuracy was assessed at different shoulder
RoMs. Participants were instructed to self-select three different RoMs (two repetitions each)
at a low, medium, and towards maximum-available RoM (Table 1). Protocol was performed
with the phones in vertical and horizontal arrangements. This resulted in 48 trials for the
centred iPhone (2 repetitions × 3 different RoMs × 4 shoulder movements × 2 phone
arrangements) in total per participant.

Table 1. Mean (standard deviation) of self-selected RoM.

RoM Abduction Adduction Flexion Extension

Small 28 (9) 25 (10) 40 (15) 28 (7)
Medium 67 (10) 39 (14) 77 (14) 37 (8)

Large 146 (16) 57 (17) 138 (15) 52 (8)
RoM = range of motion.

2.4. Data Analysis

Raw x, y, and z coordinates of reflective markers were low-pass filtered using a
second-order, bi-directional Butterworth filter with a cut-off frequency of 5 Hz [24]. Then,
local anatomical coordinate systems were determined based on ISB recommendations [14]
and expressed as quaternions. The thorax and upper arm orientations were quantified
according to ISB recommendations [14]. To ensure compatibility with the Vicon right-hand
coordinate system, positive Z-axis up, positive X-axis forward, and positive Y-axis to the
left, we swapped the naming of ‘Z’ and ‘Y’ segment longitudinal axes relative to the ISB
convention (Figure 2A). In addition, we ensured that the Y-axis (Z-axis in ISB) pointed to
the left for the thorax and upper arm. This does not change how anatomical segments are
defined. The upper arm anatomical axis system was expressed in the thoracic anatomical
axis system using Equation (1).

qthorax
upper arm = conj

(
qG

thorax

)
qG

upper arm (1)
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where upper case reflects the reference frame in which a segment is expressed. G reflects
the global frame. ISB suggests the YXY Euler decomposition sequence, with our frame
definitions that would be a ZXZ Euler sequence to decompose the humerus orientation
relative to thorax orientation. The first rotation reflects the plane of elevation, the second
rotation reflects elevation, and the third reflects internal/external rotation [14]. The thoraco-
humeral RoM was determined as the maximum elevation (second rotation of the ZXZ
order) angle during each repetition. The 3D-Mocap-derived shoulder RoM was considered
as the reference.

The 2D-pose was based on the Vision framework developed by Apple (Apple, Cu-
pertino, CA, USA) [9,25]. This algorithm detects the position of key body landmarks on
the image. For the upper body, these are as follows: both shoulders, centre in between
shoulders, elbow, wrist, and ipsilateral hip (Figure 2B). Using the positions of these key
body landmarks, the thoraco-humeral RoM was calculated within the mymobility® App
as the angle between the lines connecting shoulder to elbow and connecting shoulder to
ipsilateral hip (Figure 2B). As defined, mymobility® App provided the maximum value
observed during an assessment.

The interpretation of Euler or Cardan sequence to decompose a 3D orientation depends
on the order of the sequence. Twelve rotation orders can decompose an orientation. We
followed Wu et al. [14] guidelines that aim to “remain as close as possible to the clinical
definitions of joint and segment motions” (p. 985, [14]). However, some differences are
unavoidable [14,26]. Therefore, in addition to ISB-recommended Euler decomposition, we
applied alternative Cardan sequences. The last angle from the ‘ZYX’ Cardan sequence of
the thoraco-humeral angle represented shoulder abduction and adduction angle. The last
angle of the ‘ZXY’ Cardan sequence of the thoraco-humeral angle represented shoulder,
flexion, or extension angle.

In addition, we applied an alternative method to compare shoulder RoM between the
3D-Mocap and 2D-pose. The position of the front-facing phone camera and the orientation
of the phone relative to the 3D volume was recorded. Therefore, the phone’s 2D view of
the 3D world could be determined. To do this, all xyz reflective marker coordinates were
transformed into the centred phone local reference system. First, the origin of the phone (i.e.,
the position of the phone camera in 3D volume) was subtracted from all xyz 3D coordinates.
Second, all translated xyz 3D coordinates where then rotated in the phone reference frame
(Z-up, X-forward out of the phone’s screen, and Y to the left) using Equation (2).

Pxyz = conj
(

qG
phone

)
[0 x y z] qG

phone (2)

where Pxyz is the coordinates of the reflective markers in the phone reference system, conj
is the conjugate of the quaternion, qG

phone is the phone orientation expressed in the 3D
volume using quaternions, and [0 x y z] are the quaternion version of the xyz coordinates
of the reflective markers. The last three columns of Pxyz were kept to represent normal xyz
coordinates. Then, all motion capture data were processed, as described above.

Because the phone can only view in 2D, the x coordinates were dropped; in other
words, all data were projected onto the ZY-plane of the phone. Like the angle calculation on
the phone, the angle of global thorax Z-axis and global upper arm Z-axis were determined
using inverse tangents. The relative thoracohumeral shoulder angle was determined by
subtracting the upper arm 2D global angle from the thorax 2D global angle. The peak angle
during a shoulder movement was used for further analysis.

The experimental setup allowed for different ways to compare 3D-Mocap and 2D-pose
outcomes. First, the shoulder RoM validity was determined using the centred phone’s data
including all available repetitions. Second, the impact of phone misalignment relative to
the participant on shoulder RoM accuracy was determined by investigating the difference
between the 2D-pose-based RoM detected by the centred phone and the angled phones
using all available data of either the vertical or horizontal phone setups.
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Figure 2. Anatomical reference frame definitions. (A) shows the anatomical axes definitions of the
thorax and left upper arm viewed from the left-rear side. The anatomical axes were defined according
to the International Society of Biomechanics. The thorax (in blue) anatomical axis system was defined
as follows; the Z-axis was defined as the line that connects the mid-point between Xiphoid and T8 to



Sensors 2024, 24, 534 7 of 20

the mid-point between Sternal notch and C7, the Y-axis is defined as a line that is perpendicular to
the plane defined by mid-point between Xiphoid and T8, Sternal notch and C7. The X-axis is defined
as a line that is perpendicular to the plane defined by the Y- and Z-axes. The upper-arm (in purple)
anatomical axis system was defined as follows; the Z-axis is defined as a line that connects between
the mid-point of the epicondyles of the humerus to the estimated glenohumeral joint centre. The
X-axis was defined as a line perpendicular to the plane formed by the epicondyles and estimated
glenohumeral joint centre. The y-axis was defined as a line perpendicular to the plane formed by
the Z- and X-axes. (B) shows examples of 2D-pose from the skeletal tracking RoM of shoulder
abduction of a left and right shoulder. The coloured circles reflect the identified body landmarks
from the skeletal tracking algorithm; ipsilateral shoulder in green, contralateral shoulder and centre
of shoulders in grey, arm landmarks in white, ipsilateral hip in red. Assessments were derived from
the centred phone.

2.5. Statistics

The relation between the two measurement systems (3D-Mocap and 2D-pose from cen-
tred phone) was assessed using linear mixed models for each movement type individually.
Participants were entered as random intercepts. Point estimates and their 95% confidence
intervals (CIs) were determined using the maximum likelihood function. Adjusted R2 of
models was determined. Significance threshold was set at p < 0.05. R2 reflects the consis-
tency between two measures. R2 = 1 reflects a situation in which all variance of an outcome
measure is directly linked with the variance of the other measure. This is independent of
the amplitude of the variation, i.e., it does not reflect agreement.

Agreement between measurement systems was described using Bland-Altman analy-
sis, determining the mean difference between 3D-Mocap- and 2D-pose-based RoM and the
limits of agreement (LoA) [27]. The standard error of measurement (SEM) was assessed
as the SD across participants of the pooled SDs within each participant of the difference
between the measurement systems (3D-Mocap—2D-pose) divided by

√
2 [28]. If the SEM

is low, then the 2D-pose-based shoulder angle is consistent with the 3D-Mocap shoulder
angle, independent of any bias. From the SEM, the smallest detectable change can be
determined (SDC) [28]; SDC = 1.96 ×

√
2 × SEM, and represents the 95% CI; SDC95. This

represents the value above which a change in 2D-pose-based RoM estimation is beyond
potential measurement error [28].

Above agreement determination assumes that the difference between the measurement
systems follows a normal distribution and does not depend on the amplitude of the
shoulder angle measured. To test if these assumptions were met, the difference between
the two measurement systems was modelled using mixed models and fitted to the Bland-
Altman plots [29]. If assumptions were not met, SDC was also determined as the average
of the 95% CI level of the predicted error values from the observed 2D-pose shoulder
movement range (SDC295).

3. Results
3.1. Comparison between 2D-Pose and 3D Motion Capture (ISB-Based Euler
Decomposition): Consistency

There was a strong linear relation between 2D-pose- and 3D-Mocap-based shoul-
der RoM as R2 of linear models > 0.92. See Table 2 for model coefficients, 95% CI, and
corresponding p-values (Figure 3A).

The findings of the alternative Cardan sequences are reported in Appendix C. Overall,
the findings are in line with the results of the ISB-recommended Euler decomposition,
except for adduction. For adduction, a lower consistency than ISB-recommended Euler
decomposition was observed.
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Table 2. Relations between 2D-pose and 3D-Mocap for the different shoulder movements. Equations
that describe the linear relation between 2D-pose-based and 3D-Mocap shoulder angle (2D-pose
versus 3D-Mocap), and the agreement between 2D-pose and 3D-Mocap were determined using linear
mixed models (see 2.5 Statistics).

2D-Pose vs. 3D-Mocap

Movement Intercept
(95% CI) p-Value Coeff

(95% CI) p-Value Adjuster R2

Abduction −13.8
(−16.5, −11.1) <0.001 0.859

(0.845, 0.873) <0.001 0.98

Adduction 18.2
(15.6, 20.7) <0.001 0.539

(0.514, 0.565) <0.001 0.92

Flexion 3.56
(0.07, 6.65) 0.046 0.824

(0.810, 0.839) <0.001 0.98

Extension 10.87
(8.34, 13.39) <0.001 0.606

(0.590, 0.623) <0.001 0.97

Agreement

Abduction −13.8
(−16.5, −11.1) <0.001 −0.141

(−0.155, −0.127) <0.001 0.73

Adduction 18.2
(15.6, 20.7) <0.001 −0.461

(−0.486, −0.435) <0.001 0.90

Flexion 3.56
(0.07, 6.65) 0.046 −0.176

(−0.190, −0.162) <0.001 0.82

Extension 10.87
(8.34, 13.39) <0.001 −0.394

(−0.410, −0.378) <0.001 0.96

CI = confidence interval, Coeff = coefficient.
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Figure 3. Comparison of thoraco-humeral abduction, adduction, flexion, and extension shoul-
der angles between 3D-Mocap and 2D-pose-based RoM from the centred phone at 0.9 m aligned with
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gravity, i.e., the most ideal phone setup in our experiment. (A) shows scatter plots between 2D-pose-
based (X-axis) and 3D-Mocap (Y-axis) derived shoulder angles. The blue diagonal line represents the
line of identity. Data below or above this line reflect overestimation or underestimation of Skeletal
Tracking RoM, respectively. The solid orange line represents the linear fit and the orange dashed
lines represent the 95% confidence interval (CI) derived from the linear mixed models. (B) shows the
Bland-Altman plots that correspond with the above scatter plots between 3D-Mocap and Skeletal
Tracking RoM derived data. The y-axis represents the difference, or error (3D-Mocap—2D-pose
RoM) of the shoulder angle and the X-axis represents the 3D-Mocap derived shoulder angle. Bias
(solid blue line) and 95% limits of agreement (LoA, dashed blue lines) are displayed. The orange
solid line represents the fit between 2D-pose and the difference between the 2D-pose-based and
3D-mocap-based RoM, with 95% CI derived from the linear mixed models (dashed orange lines).

3.2. Comparison between 2D-Pose and 3D Motion Capture (ISB-Based Euler
Decomposition): Agreement

Overall, 2D-pose-based shoulder RoM somewhat overestimated shoulder RoM for all
movements. The amount of overestimation depended on the RoM amplitude; the overes-
timation was smaller at low or large RoM than the mid-range RoM (Table 2, Figure 3A).
This relation is further highlighted in the Bland-Altman plots (Figure 3B). The differences
between the measurement systems could be fitted using a linear model for adduction,
flexion, and extension and for abduction with slopes that were significantly different from
zero (Table 2, Figure 3B). This means that the differences were dependent on RoM angle.
Hence, the reported SDC95 is likely to be overestimated. The SEM of shoulder abduction
RoM was 9.2◦, SDC95 was 25.4◦, and SDC295 was 9.2◦. The SEM of shoulder adduction
RoM was 14.3◦, SDC95 was 39.5◦, and SDC295 was 9.8◦. For the flexion task, the SEM was
9.9◦, SDC95 was 27.4◦, and SDC295 was 8.8◦. For the extension task, the SEM was 7.8◦,
SDC95 was 21.7, and SDC295 was 4.2◦. See Table 3 for the differences between 2D-pose and
3D-Mocap at selected shoulder angles.

Table 3. Differences between 2D-pose and 3D-Mocap. Negative values reflect that 2D-pose is
measuring a larger angle than 3D-Mocap. Values and 95%CI are derived from respective models.

2D-Pose vs. 3D-Mocap
Range (◦) 0 30 60 90 120 150 180

Abduction −13.8
(−23.8, −3.8)

−18.0
(−27.6, −8.5)

−22.2
(−31.4, −13.1)

−26.5
(−35.5, −17.4)

−30.7
(−39.7, −21.7)

−34.9
(−44.1, −25.7)

−39.1
(−48.7, −29.6)

Adduction 18.2
(8.3, 28.0)

4.3
(−4.9, 13.6)

−9.5
(−18.6, −0.3)

−23.3
(−32.9, −13.7)

Flexion 3.6
(−6.2, 12.9)

−1.9
(−10.9, 7.1)

−7.2
(−15.9, 1.5)

−12.5
(−21.0, −3.9)

−17.7
−26.3, −9.1)

−23.0
(−31.9, −14.1)

−28.3
(−37.5, −19.0)

Extension 10.9
(6.2, 15.6)

−0.9
(−5.1, 3.2)

−12.8
(−16.8, −8.7)

−24.6
(−29.1, −20.1)

2D-pose vs. 2D view of 3D-Mocap
Range (◦) 0 30 60 90 120 150 180

Abduction −19.4
(−31.2, −7.5)

−19.9
(−31.1, −8.6)

−20.4
(−31.2, −9.5)

−20.9
(−31.5, −10.2)

−21.4
(−32.0, −10.7)

−21.9
(−32.8, −10.9)

−22.3
(−33.7, −11.0)

Adduction 10.0
(−5.7, 25.8)

−3.5
(−18.6, 11.6)

−17.0
(−32.1, −1.9)

−30.6
(−46.4, −14.7)

Flexion 3.4
(−6.9, 13.6)

−1.5
(−11.3, 8.2)

−6.4
(−15.9, 3.0)

−11.3
(−20.6, −2.0)

−16.2
(−25.6, −6.9)

−21.1
(−30.7, −11.6)

−26.0
(−36.0, −16.1)

Extension 6.3
(0.6, 12.0)

−3.5
(−8.4, 1.4)

−13.3
(−18.1, −8.6)

−23.2
(−28.5, −17.8)

CI = confidence interval.

The findings of the alternative Cardan sequences are reported in Appendix C, Table A2,
Figure A1. Overall, the findings are in line with the results of the ISB-recommended
Euler decomposition, except for adduction. For adduction, less agreement than for ISB-
recommended Euler decomposition was observed.
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3.3. Comparison between 2D-Pose and 2D View of 3D Motion Capture

The R2 values of the linear mixed model between 2D-pose and the 2D view of the
3D-Mocap suggest a strong linear relation between the two (R2 > 0.96, Figure 4A), except
for adduction, which was lower than other shoulder movements (R2 = 0.85, Table A1).
When compared to the findings reported in Sections 3.1 and 3.2, we observed two key
differences. (i) For abduction, the difference between 2D-pose and the 2D view of 3D-Mocap
was consistent across all shoulder abduction angles, and the amount of overestimation
was lower than when 2D-pose was compared against 3D-Mocap; and (ii) for adduction,
there was less consistency (Figure 4B). See Appendix B Table A1 for model parameters.
The SEM of shoulder abduction RoM was 7.0◦, SDC95 was 19.3◦, and SDC295 was 10.9◦.
The SEM of shoulder adduction RoM was 17.6◦, SDC95 was 48.7◦, and SDC295 was 16.8◦.
For the flexion task, the SEM was 10.1◦, SDC95 was 28.0◦, and SDC295 was 9.5◦. For the
extension task, the SEM was 6.4◦, SDC95 was 17.8, and SDC295 was 4.9◦. See Table 3 for the
differences between 2D-pose and the 2D view of 3D-Mocap at selected shoulder angles.
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Figure 4. Comparison of thoraco-humeral abduction, adduction, flexion, and extension shoulder
angles between 2D-pose-based RoM and 2D view of 3D-Mocap from the centred phone at 0.9 m
aligned with gravity, i.e., the most ideal phone setup in our experiment. (A) shows scatter plots
between 2D-pose-based (X-axis) and 2D view (from phone perspective) of 3D-Mocap (Y-axis) derived
shoulder angles. The blue diagonal line represents the line of identity. Data below or above this line
reflect overestimation or underestimation of Skeletal Tracking RoM, respectively. The solid orange
line represents the linear fit and the orange dashed lines represent the 95% confidence interval (CI)
derived from the linear mixed models. (B) shows the Bland-Altman plots that correspond with the
above scatter plots between 3D-Mocap and Skeletal Tracking RoM derived data. The y-axis represents
the difference, or error (2D view of 3D-Mocap—2D-pose RoM) of the shoulder angle and the x-axis
represents the 3D-Mocap derived shoulder angle. Bias (solid blue line) and 95% limits of agreement
(LoA, dashed blue lines) are displayed. The orange solid line represents the fit between 2D-pose
and the difference between the 2D-pose-based and 2D view of 3D-Mocap-based RoM, with 95% CI
derived from the linear mixed models (dashed orange lines).
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3.4. Impact of Out-of-Plane Movements

From visual inspection of the scatter plots in Figure 5, the direction and amplitude
of the difference are related to whether the phone was pitched upwards or downwards
and on the shoulder RoM amplitude. The phone that was pitched downwards provided
higher RoM compared to the centred iPhone, whereas the phone that was pitched upwards
provided lower RoM compared to the centred iPhone.
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Figure 5. Difference in thoraco-humeral shoulder angle between centred phone setup (0.9 m height
aligned with gravity) and phones positioned at different heights (vertical setup). (A) shows the
difference in angle for abduction and adduction, (B) shows the difference for flexion and extension
for the iPhone positioned at the top pitched down at ~20◦ and at the bottom pitched up at ~18◦ in
orange and blue respectively. Note that y-axis ranges are different between the plots. Zero difference
level is highlighted by the grey horizontal lines.

From visual inspection of the scatter plots in Figure 6, for abduction, both horizontally
placed phones at ~45◦ compared to ~22.5◦ to the participant (Figure 1B) overestimated the
RoM compared to the centred phone. Overestimation reduced towards larger abduction
RoM. For the flexion and extension shoulder movements, the horizontally positioned
phone measured larger or lower RoM than the centred phone depending on the RoM of
the shoulder. For flexion, at low RoM, the horizontally placed phones underestimated at
RoM ~<45◦ and overestimated ~>45◦. For extension, at low RoM, the horizontally placed
phones overestimated at RoM ~<90◦ and underestimated ~>90◦. The adduction movement
was challenging to assess with the phones positioned horizontally, especially at 45◦. See
Appendix A for methods to correct for out-of-plane phone alignment.
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Figure 6. Difference in thoraco-humeral shoulder angle between centred phone setup (0.9 m height
aligned with gravity) and phones placed in the horizontal plane at ~22.5◦ and ~45 ◦ (horizontal
setup) to the participant. The difference in shoulder range of motion between the angle quantified by
the centred phone and horizontally placed phones (~22.5◦ in orange dots and ~45◦ in blue dots) is
plotted for abduction and adduction (A), and flexion and extension (B). Note that y-axis range are
different between the plots. Zero level is highlighted by the grey horizontal lines.

4. Discussion

Four key findings can be derived from this study. First, the detected shoulder angles
were consistent between 2D-pose and 3D-Mocap (high R2). However, some differences
were detected; in general, the shoulder RoM from the 2D-pose was somewhat overesti-
mated. Second, the differences depended on shoulder movement types and amplitude,
with shoulder adduction a challenging movement to assess using 2D-pose tracking, likely
because this movement occurs outside the 2D plane of the phone and occasionally block-
ing of 2D-pose landmarks. Third, the bias was not consistent among movement range
and could be modelled using linear equations that had slopes that differed from zero.
However, bias was consistent for abduction movements when 3D-Mocap was projected
onto the 2D camera plane. Fourth, as expected, a less ideal positioned phone in terms
of location/orientation to the user impacted the estimation of shoulder RoM. The con-
sistency between systems highlights the clinical applicability of 2D-pose-based shoulder
RoM assessment in clinical/home environments and could improve objective assessment
compared to the goniometer or visual estimates, as long as the method to determine RoM
is applied consistently within a participant [30]. The findings have implications for the
interpretation of the estimated shoulder RoM using 2D-pose RoM algorithms.

Compared to our findings, Huber et al. [31] demonstrated a similar LOA of shoulder
flexion using Microsoft Kinect against 3D-Mocap. Moreover, Zhu, Fan, Gu, Lv, Zhang, Zhu,
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and Qi [13] reported an accuracy of the OpenPose tracking algorithm of less than 3◦ in
terms of shoulder elevation compared to 2D goniometric manual measurements. However,
the latter did not validate their results against 3D-Mocap.

Biases between 3D-Mocap and 2D-pose RoM were not consistent. The inflated stan-
dard interpretation of Bland-Altman values, such as LoA, SEM, and SDC95, needs to be
interpreted with care (Figure 3B). The SDC based on the mean 95% CI of the linear mixed
model of the SDC295 values was lower after correcting for the relation between 2D-pose
and 3D-Mocap RoM, better reflecting the SDC of the shoulder movements. For abduction,
bias between 2D-pose and ISB-recommended Euler decomposition increased with greater
elevation angles. In contrast, bias was consistent across the abduction range when the 2D
camera view of the 3D-Mocap data was used. This suggests that the 2D-pose accurately
(albeit with some bias) extracts the thoraco-humeral abduction angle. This could suggest
that ISB Euler-based angles might underestimate elevation at larger abduction angles using
ISB Euler decomposition. When compared to the ISB-recommended Euler sequence, the
alternative Cardan sequence for abduction resulted in lower overestimation of the 2D-pose
at end-of-range abduction. However, the relation between 2D-pose and 3D-Mocap is
non-linear for the ZYX Cardan sequence. It remains challenging to obtain clinical and inter-
pretable orientation representation for the shoulder joint [26], and checking against a 2D
projection of the 3D-Mocap is critical to test the performance of 2D-pose methods. Whether
ISB Euler decomposition underestimates the abduction angle needs further investigation.

Models suggest the potential ability to correct for the difference between 2D-pose
and 3D-Mocap. However, improvements in shoulder RoM estimation to achieve a more
consistent (and potentially lower) bias between 3D-Mocap across different RoM should
be considered first. Potential improvements can be made that relate to how the Skeletal
Tracking determines shoulder RoM [9]. The thorax is represented as a line connecting
the left or right shoulder to the ipsilateral hip joint. For example, during abduction, the
angle of this line relative to the vertical is substantial when the thorax would be considered
upright (Figure 2B). Furthermore, thorax reference angle compared to the vertical might
also be affected by visually observed lateral displacement of the shoulder landmark during
abduction [32]. Because of this, there is likely an upward bias of the abduction shoulder
angle and a downward bias at small adduction angles. Other key landmarks more centred
within the body, such as the neck base and pelvis root, could potentially fix these biases [9].
Biases were less apparent or not present when a participant was viewed sideways, likely
because the thorax orientation is better represented in this view.

The extension overestimation by the 2D-pose at larger RoM is likely due to compen-
sations in other segments that cannot be detected when a participant is viewed sideways,
such as extension in the upper thorax region. In line with this observation, data points that
lay outside the limits of agreement could be explained by compensatory movements in
other segments (e.g., thorax), causing more out-of-plane movements of the arm relative to
the phone 2D-plane camera view. This highlights the importance of instructing participants
to ensure that individuals perform shoulder movements without compensating in other
body parts. However, adduction outliers could not be explained by this compensatory
movements. Because the arm moves in front of the body, this can potentially affect key
landmark detection, impacting the accuracy of adduction RoM estimation.

Less ideal placement/orientation of the phone relative to the user affected the es-
timated RoM. Clear user instructions are provided in the mymobility® App, aimed to
minimise out-of-plane movements. These findings highlight the importance to standardise
and check adherence to these instructions. Most likely, the phone will be positioned on
a table of a certain height leaned against something for stability, causing the phone to be
pitched. Pitch angles can be detected using the iPhone’s accelerometer; thus, a correction
could be applied (Appendix A). This is especially important when the progress of shoulder
rehabilitation is measured longitudinally, as different pitch angles of the phone would
increase estimation variability, biasing the progress of RoM over time.
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Several limitations require consideration. First, we assumed that 3D-Mocap RoM is the
“gold standard”. Limitations in tracking bony segments via skin markers are mostly linked
with soft-tissue artifacts [33,34]. Because movements were performed slowly, it was not
expected that this limitation had a large impact. However, this could potentially increase
some variability between and within participants that might impact comparisons between
3D-Mocap and 2D-pose RoM. In addition, movement speed was not controlled. This
could potentially impact the accuracy of 2D-pose-based estimated body landmarks. For
example, very slow movements could create some positional noise, and faster movements
could impact tracking of the body landmarks. Both would impact the accuracy of the joint
angle. Further research is required to determine these impacts. Second, the Euler/Cardan
decomposition order of a 3D orientation will impact RoM values; shoulder elevation
was based on ISB recommendations, and other orders will result in different outcomes
(Appendix C). Third, the room in which we performed the experiments was relatively
large (Figures 1 and 2). The experimental setup represented a challenging and less ideal
use-case scenario. Participants stood in the centre of the room, such that all Vicon cameras
surrounded them, resulting in a substantial distance between the participant and the
background, which was not of homogeneous colour. The distance between the participant
and phones was set to 3m, resulting in less optimal use of the camera pixel real estate.
These factors, including wearing a loose t-shirt, might impact the contrast between the
participant and background, potentially hampering the detection of key landmarks via
Skeletal Tracking. Instructions are provided within the mymobility® App to minimise these
impacts. Fourth, the external validity of the findings should be considered in relation to
the demographics of the tested population and the limited sample size. Finally, differences
in terms of bony landmark recognition should be expected if a machine learning visual
framework other than Apple vision is utilised. Potential improvements have been made,
and due to the challenging nature of adduction RoM assessment using a phone, this
movement has been excluded from any mymobility® public release.

5. Conclusions

Active shoulder RoM measured in abduction, flexion, and extension using 2D-pose
aligns with 3D-Mocap but not in shoulder adduction. Although most shoulder movements
are consistent between the two methods, they do not necessarily agree; 2D-pose generally
overestimated shoulder RoM. This overestimation likely stems from differences in defining
thorax anatomical frames. While 2D-pose-based estimates are consistent and can, therefore,
be used for tracking active shoulder RoM to assess the efficacy of interventions, users
should consider the following: i) movements outside the 2D camera plane may lead to
erroneous estimations; ii) actual RoM might be overestimated; iii) consistent methods that
do not agree cannot be interchangeably used.
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Appendix A

Appendix A.1. iPhone’s Pitch Angle Correction

Data showed that the iPhones that were pitched or had different heading angle relative
to the participant measured different shoulder RoM angles compared to the centred iPhone.
This can mostly be explained by the out-of-plane projection effect when calculating the
relative angle between the thorax and upper arm. If the orientation “error” of the phone
is known or can be measured, the error of RoM caused by out-of-plane projection can
potentially be corrected. We assume that the relative angle between the thorax and upper
arm is determined by calculating the angle of each segment relative to the vertical, and the
shoulder angle is represented by the difference between these segment angles.

Z goes from the bottom to the top of the phone, Y to the left (when viewing phone),
and X pointing out the rear of the phone. The axis system of a segment can be represented
by a directional cosine matrix (or rotation matrix (RG

seg), which represents the projection of
the segment’s local frame (x, y, z) onto the global (G) frame (X, Y, Z) of reference, which is
3D (Equation (A1)):

RG
seg =

xX yX zX
xY yY zY
xZ yZ zZ

 (A1)

A pitch angle θ of the phone will ‘rotate’ the viewed segment (RG
seg) from the phone’s

perspective and can be represented by the following rotation matrix, and pitch is, in
this example, a rotation about the Y-axis of the phone in the global frame (RG

phoneY)
(Equation (A2)):

RG
phoneY =

 cos θ 0 sin θ
0 1 0

− sinθ 0 cos θ

 (A2)

Rphone
seg = RphoneY

G × RG
seg (A3)

where (RphoneY
G ) is the transpose of (RG

phoneY) and (Rphone
seg ) is the segment orientation ob-

served from the phone perspective with a global pitch angle θ of the phone.
When we focus on the z-axis of the segment, after matrix multiplication described in

Equation (A3), we obtain:
zphone

X = cos θ × zG
X+sin θ∗zG

Z (A4)

zphone
Y = zG

Y (A5)

zphone
Z = − sinθ × zG

X+cos θ × zG
Z (A6)

When the segment’s z-axis is projected onto the phone’s 2D plane, the x-components
of Equations (A4)–(A6) drop. This shows that only the z-component is scaled by cos θ when
the phone is pitched. Therefore, the z-component of the segment needs to be multiplied by

1
cos θ to correct for pitch angle before calculating the angle relative to the global vertical of
the segment (Equation (A7)):

θseg = tan−1 zY

zZ
1

cos θ

(A7)

The relative angle can then be calculated by subtracting the angles of each segment
relative to the vertical.
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Appendix A.2. iPhone’s Heading Angle Correction

Following the axis definition described in Section 2.2, heading (θ) is a rotation about
the z-axis of the phone (Equation (A8)), expressed in the global frame:

RG
phoneZ =

cos θ −sin θ 0
sin θ cos θ 0

0 0 1

 (A8)

Rphone
seg = RphoneZ

G × RG
seg (A9)

where (RphoneZ
G ) is the transpose of (RG

phoneZ) and (Rphone
seg ) is the segment orientation ob-

served from the phone perspective, with a global with heading angle θ.
When we focus on the z-axis of the segment, after matrix multiplication described in

Equation (A9), we obtain:

zphone
X = cos θ × zG

X−sin θ × zG
Y (A10)

zphone
Y = sin θ×zG

X+cos θ × zG
Y (A11)

zphone
Z = zG

Z (A12)

When the segment’s z-axis is projected onto the phone’s 2D plane, the x-components
of Equations (A10)–(A12) drop. This shows that only the y-component is scaled by cos θ
when the phone is rotated about Z. Therefore, the y-component of the segment needs to be
multiplied by 1

cos θ to correct for heading angle before calculating the angle relative to the
global vertical of the segment (Equation (A13)):

θseg = tan−1 zY
1

cos θ

zZ
(A13)

The relative angle can then be calculated by subtracting the angles of each segment
relative to the vertical if the heading angle of the phone can be determined.

Note that the thorax flexion angle and twist are as important to consider but might be
challenging to quantify from the phone.

Appendix B

Table A1. Relations between 2D-pose and 2D view of 3D-Mocap for the different shoulder movements.
Equations that describe the linear relation between 2D-pose-based and the 2D view of the 3D-Mocap
shoulder angle by the phone camera, and the agreement between 2D-pose and 2D view of 3D-Mocap
were determined using linear mixed models (see 2.5 Statistics).

2D-Pose vs. 2D-View of 3D-Mocap

Movement Intercept
(95% CI) p-Value Coeff

(95% CI) p-Value Adjusted R2

Abduction −19.4
(−22.0, −16.7) <0.001 0.983

(0.966, 1.01) <0.001 0.98

Adduction 10.0
(6.3, 13.8) <0.001 0.549

(0.512, 0.586) <0.001 0.85

Flexion 3.36
(0.25, 6.46) 0.034 0.837

(0.822, 0.851) <0.001 0.98

Extension 6.30
(3.85, 8.74) <0.001 0.673

(0.652, 0.693) <0.001 0.96
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Table A1. Cont.

2D-Pose vs. 2D-View of 3D-Mocap

Movement Intercept
(95% CI) p-Value Coeff

(95% CI) p-Value Adjusted R2

Agreement

Abduction −19.4
(−22.0, −16.7) <0.001 −0.017

(−0.034, −0.01) 0.062 0.52

Adduction 10.0
(6.3, 13.8) <0.001 −0.451

(−0.488, −0.414) <0.001 0.80

Flexion 3.36
(0.25, 6.46) 0.034 −0.163

(−0.178, −0.149) <0.001 0.76

Extension 6.30
(3.85, 8.74) <0.001 −0.327

(−0.348, −0.307) <0.001 0.92

CI = confidence interval, Coeff = coefficient.

Appendix C

Comparison between 2D-Pose and 3D-Mocap Using Alternative Cardan Decomposition Sequences

The ZYX Cardan sequence was used for abduction and adduction shoulder move-
ments. The ZXY sequence was used for flexion and extension shoulder movements. The
shoulder angle from the last angle of the Cardan sequence was considered. See Table A2
for consistency and agreement models.

There was a strong linear relation between 2D-pose and 3D-Mocap-based shoulder
RoM as R2 of linear models > 0.96, except for adduction (R2 = 0.66). See Table A2 for model
coefficients, 95% CI, and corresponding p-values (Figure A1).

The SEM of shoulder abduction RoM was 7.3◦, SDC95 was 20.1◦, and SDC295 was
10.3◦. The SEM of shoulder adduction RoM was 23.6◦, SDC95 was 65.5◦, and SDC295 was
15.5◦. For the flexion task, the SEM was 7.2◦, SDC95 was 20.0◦, and SDC295 was 8.6◦. For
the extension task, the SEM was 7.8◦, SDC95 was 21.7, and SDC295 was 4.2◦.

Abduction Adduction
A

B

3D
-m

oc
ap

 (°
)

0 60 120 180
0

60

120

180

0 60 120 180
0

60

120

180
Flexion Extension

2D-pose (°)
0 60 120 180

0

60

120

180

0 60 120 180
0

60

120

180

-24.3

-41.6

-7.0

D
el

ta
 (°

)

-60

0

30

-30

-32.1

-89.7

25.5

-12.0

6.6

-31.7

-10.0

-32.8

12.9

95% CI (LoA)
Bias

95% CI
Bias

Linear mixed model: Bland Altman:

2D-pose (°) 2D-pose (°)2D-pose (°)

2D-pose (°) 2D-pose (°) 2D-pose (°)2D-pose (°)
0 60 120 180 0 60 120 180 0 60 120 180 0 60 120 180

95% CI
Mean

Linear mixed model:

-140

0

30

-70

-60

0

30

-30

-60

0

30

-30

Figure A1. Comparison of thoraco-humeral abduction, adduction, flexion, and extension shoulder
angles between 2D-pose-based RoM and 3D-Mocap from the centred phone using alternative Cardan
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sequence to decompose the 3D thoracohumeral angle. (A) shows scatter plots between 2D-pose-
based (X-axis) and 3D-Mocap (Y-axis) derived shoulder angles. The blue diagonal line represents the
line of identity. Data below or above this line reflect overestimation or underestimation of Skeletal
Tracking RoM, respectively. The solid orange line represents the linear fit and the orange dashed
lines represent the 95% confidence interval (CI) derived from the linear mixed models. (B) shows the
Bland-Altman plots that correspond with the above scatter plots between 3D-Mocap and Skeletal
Tracking RoM derived data. The y-axis represents the difference, or error (3D-Mocap—2D-pose
RoM) of the shoulder angle and the x-axis represents the 3D-Mocap derived shoulder angle. Bias
(solid blue line) and 95% limits of agreement (LoA, dashed blue lines) are displayed. The orange
solid line represents the fit between 2D-pose and the difference between the 2D-pose-based and
3D-Mocap-based RoM, with 95% CI derived from the linear mixed models (dashed orange lines).

Table A2. Relations between 2D-pose and 3D-Mocap for the different shoulder movements based on
alternative Cardan rotation sequences. Equations that describe the relation between 2D-pose-based
and the 3D-Mocap shoulder angle by the phone camera, and the agreement between 2D-pose and
3D-Mocap were determined using linear mixed models.

2D-Pose vs. 2D-View of 3D-Mocap

Movement Intercept
(95% CI) p-Value Coeff

(95% CI) p-Value Adjusted R2

Abduction

−1.5
(−6.4, 3.3) 0.534 B1: 0.491

(0.398, 0.584) <0.001 0.99

B2: 0.0023
(0.0019, 0.0027) <0.001

Adduction 5.9
(0.8, 11.0) 0.024 0.220

(0.180, 0.260) <0.001 0.66

Flexion −1.6
(−4.7, 1.6) 0.336 0.892

(0.878, 0.906) <0.001 0.98

Extension 11.2
(8.8, 13.5) <0.001 0.571

(0.553, 0.589) <0.001 0.96

Agreement

Abduction

−1.5
(−6.4, 3.3) 0.534 B1: −0.509

(−0.602, −0.416) <0.001 0.55

B2: 0.0023
(0.0019, 0.0027) <0.001

Adduction 5.9
(0.8, 11.0 0.024 −0.780

(−0.820, −0.738) <0.001 0.92

Flexion −1.6
(−4.7, 1.6) 0.336 −0.108

(−0.122, −0.094) <0.001 0.72

Extension 11.2
(8.8, 13.5) <0.001 −0.429

(−0.447, −0.411) <0.001 0.96

CI = confidence interval, Coeff = coefficient. For abduction only; B1 = linear model coefficient (first order,
B2 = second order coefficient. Example to use model for abduction agreement: Agreement = intercept + B1 ×
(3D-Mocap—2D-Mocap) + B2 × (3D-Mocap—2D-Mocap)2, where (3D-Mocap—2D-Mocap) reflects the difference
between the two systems.
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