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Abstract: In this study, we propose an augmentation method for machine learning based on relabeling
data in caregiving and nursing staff indoor localization with Bluetooth Low Energy (BLE) technology.
Indoor localization is used to monitor staff-to-patient assistance in caregiving and to gain insights
into workload management. However, improving accuracy is challenging when there is a limited
amount of data available for training. In this paper, we propose a data augmentation method to reuse
the Received Signal Strength (RSS) from different beacons by relabeling to the locations with less
samples, resolving data imbalance. Standard deviation and Kullback–Leibler divergence between
minority and majority classes are used to measure signal pattern to find matching beacons to relabel.
By matching beacons between classes, two variations of relabeling are implemented, specifically
full and partial matching. The performance is evaluated using the real-world dataset we collected
for five days in a nursing care facility installed with 25 BLE beacons. A Random Forest model
is utilized for location recognition, and performance is compared using the weighted F1-score to
account for class imbalance. By increasing the beacon data with our proposed relabeling method
for data augmentation, we achieve a higher minority class F1-score compared to augmentation with
Random Sampling, Synthetic Minority Oversampling Technique (SMOTE) and Adaptive Synthetic
Sampling (ADASYN). Our proposed method utilizes collected beacon data by leveraging majority
class samples. Full matching demonstrated a 6 to 8% improvement from the original baseline overall
weighted F1-score.

Keywords: oversampling; data augmentation; machine learning; signal measurement; signal pattern;
relabeling; indoor localization; beacon; nursing care

1. Introduction

The increasing population of older adults is impacting the nursing workforce, leading
to a shortage of skilled staff [1]. As the demand for services grows, the use of nursing
homes is also escalating, resulting in a rise in the patient-to-caregiver ratio [2,3]. Research
efforts to better comprehend activity patterns during patient assistance are significant to
leverage staff and improve elderly care delivery [4].

Indoor Positioning System (IPS) allows localization within enclosed spaces, facilitating
navigation and the tracking of individuals or objects through a network of transmitters
and receivers [5,6]. Employing indoor positioning to monitor care routine and patient
assistance is helpful to support nursing records and to optimize care response [7–9]. Several
key positioning techniques exist, but the standard approach includes trilateration, triangu-
lation, multilateration, and fingerprinting [10]. However, these techniques are limited by
environmental factors such as hardware requirements, setup complexity, signal obstruction,
and time synchronization.

IPS differ in technology, signal measurement, and localization techniques tailored
to suit the environment and particular use-case requirements [8]. Radiofrequency-based
technologies [11], specifically Wi-Fi [12–16], Radio Frequency Identification (RFID) [17,18],
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and Bluetooth Low Energy (BLE) [19–21], are typically preferred considering flexibility to
setup and integration with IoT. Recently, studies on Wi-FI have been optimizing line of
sight (LOS) and non-line of sight (NLOS) [22,23] approaches, including combination with
vision [24] for localization. Furthermore, sensors such as IMU [25] and Geomagnetism [26]
are integrated in movement and positioning. However, considering restrictive data collec-
tion in caregiving activities, beacons are preferred in nursing homes with straightforward
installation and lesser complexity imposed on participants [3,27]. The presence of un-
avoidable equipment in the facility can also hamper the collection of geomagnetic data.
Given that Indoor Positioning Systems (IPS) are contingent upon the specific use case and
environment, Bluetooth Low Energy (BLE) has been selected based on target availability,
straightforward deployment, and privacy considerations pertinent to elderly individuals.
Additionally, the energy-efficient power consumption of BLE allows longer data collection
with minimal disturbance in the facility monitoring the device remotely.

A common challenge to indoor localization accuracy is low quality of signals. Outlier
detection [28] and filtering methods are applied to resolve this issue. Moving average [29],
weighted average [30], Bayesian sequential Monte Carlo [20], and Gaussian filtering [31] has
been proposed for signal smoothing to achieve better positioning. Kalman filter [21,32] is a
widely used method for filtering signals in IPS. In addition, machine learning [7,10,14,29,33]
and deep learning [12,30,34] methods are being employed to optimize signal features which
are not covered by standard localization techniques. Network issues, environmental factors
affecting signal quality, and hardware malfunction can impact collected data. Moreover,
data imbalance due to unequal representation of different areas or activities within the
facility in a real-world setting affects indoor positioning accuracy [2].

Data augmentation methods are utilized to address the issue of class imbalance,
including in IPS applications. Data augmentation is a method to artificially increase the
training dataset by creating a modified version of the current data. To increase real data,
Random Sampling (RS) [17] is commonly applied to minority class samples by duplication.
On the other hand, creating synthetic samples is an alternative method. Adaptive Synthetic
Sampling (ADASYN) [35] and Synthetic Minority Over-sampling Technique (SMOTE) [36]
both generate synthetic data points for the minority class by interpolation based on the
nearest neighbors principle. Currently, existing oversampling techniques suffer from
repeating data, resulting in overfitting, while synthetic samples are prone to noise and
data misrepresentation. Since augmented data are intended to reflect actual samples,
oversampling should be carefully considered. At present, augmentation methods do not
optimize real data from the majority classes, and few studies exist that investigate the use
of signal patterns for augmenting training data in the context of indoor localization [2].

This paper introduces a data augmentation approach to address the challenge of
unequally represented locations in beacon-based indoor localization. By analyzing signal
patterns in different rooms, we successfully implement a relabeling strategy, utilizing
Received Signal Strength Indicator (RSSI) values from one location as a proxy in another.
As more nursing homes adopt IPS with IoT, this research aims to leverage beacon data
collected in real-world environments to improve indoor localization. The main objective of
this research is to develop an augmentation method by increasing training samples with
beacon data from different rooms to improve location detection of minority classes. We
focus on identifying semantic locations where rooms are preferred over exact geograph-
ical positions to support caregiving records. Specifically, this study aims to address the
following research questions:

1. How do we identify and match signal patterns between different locations in the
facility? We utilize standard deviation and Kullback–Leibler divergence to analyze
signal patterns, facilitating the identification of similar beacons across minority and
majority classes.

2. How can we use the samples from other beacons to augment location with less data?
We propose a novel relabeling approach that reassigns signals from matching beacons
to areas with fewer samples, thereby addressing data imbalance issues.
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3. What is the performance of oversampling based on signal pattern relabeling compared
to existing augmentation methods? To evaluate, we compare the performance of
relabeling with Random Sampling, ADASYN, and SMOTE applied to our collected
real-world data from a nursing facility. To further assess, we test relabeling to different
rooms to validate its effectiveness.

We employ different augmentation techniques in the training set comprising 3.5 days
of data and perform indoor localization using 1.5 days of test data. Overall and target class
F1-scores are measured to account for the data imbalance, including precision, and recall.
Our proposed method achieves an improved target class F1-score of 27% to 40% compared
to the baseline data. With full matching, the relabeling method demonstrates a 6 to 8%
improvement from the original baseline overall weighted F1-score. KL divergence results
in a better F1-score than the standard deviation for both full and partial matching. This
method effectively expands the training set, enhancing model accuracy, as demonstrated
in a nursing care facility where beacon devices and mobile applications are employed for
data collection.

The subsequent sections of this paper are structured as follows: Section 2 covers the
relevant research on indoor localization with BLE technology, including the distinction of
our work over other localization and oversampling techniques. In Section 3, we elaborate
on the proposed method, which encompasses signal pattern and relabeling approach, while
Section 4 covers the data collection process, including the evaluation of proposed relabeling
in comparison to baseline and other augmentation strategies. A comprehensive analysis
of the results follows in Section 5 emphasizing the significant insights from our research.
Section 6 concludes the paper, highlighting the main contributions and outlining potential
directions of future work.

2. Related Literature

In this chapter, we cover relevant works on the design of indoor positioning imple-
mented in the nursing facility. With the advent of the Internet of Things (IoT), devices
that easily connect to the network such as beacons, tags, and mobile devices [2,37–40]
are preferred in system design. Signal measurements are generally based on time, angle,
and received signal strength (RSS) [28,29,31,38,41].

2.1. Indoor Localization with Beacons

Beacons are battery-driven radio transmitters used in indoor positioning with proxim-
ity sensors that emit BLE signals [42,43]. Unlike the classic Bluetooth, which is connection-
oriented, BLE has advertising functionality and does not necessarily have to pair [44,45].
Beacons are preferred in IPS since they are flexible, easy to deploy, and cost-effective,
with low power consumption that can last up to a year [46].

BLE beacons are used to track nursing activities to better understand care routines,
which is crucial to optimize workload distribution considering the low staff-to-patient
ratio [47]. Existing systems combine beacons with Wireless Local Area Networks (WLAN)
for tracking both patients and nurses by analyzing RSSI, Time of Arrival (ToA), and the
Angle of Arrival (AoA) [7]. This involves the setup of more hardware as receiver and
transmitter modules. BLE beacons are often paired with smartphones used by caregivers
for detection. To automatically record daily caregiving routines, beacons are used for
time-spatial recognition [5,9].

In some nursing facilities, multiple patients share a common room. Considering
the effects of setting up indoor positioning on the privacy of the elderly, which can af-
fect their social interaction, the placement of beacons should be carefully considered in
planning IPS [27]. Studies on nursing homes commonly use RSS and BLE for indoor local-
ization [3,9,27] with its energy-efficient power consumption. However, noise and multipath
can affect the signal quality and positioning performance.
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2.2. Data Augmentation

The uneven distribution of classes within a dataset is referred to as data imbalance,
which is a prevalent problem in machine learning. This indicates that the classifier performs
well for the majority class but poorly for the minority class. Since minority classes are
crucial to solving many real-world issues, correctly categorizing samples from this class is
similarly crucial [48–50].

Data augmentation is significant in improving indoor positioning systems. The tech-
nical and non-technical challenges of IPS in real-world environments [51] have impacted
the precision of indoor positioning with uncontrolled variables such as signal interference,
physical obstructions, and hardware breakdown. Data collection in on-site scenario [52]
affects data quality and labeling, resulting in an imbalanced and unequal representation
of classes in dataset [2,53]. In order to create a robust and unbiased model for IPS, data
augmentation shows up as a crucial and imperative approach to address data imbalance.
By applying several changes to the current dataset, data augmentation creates synthetic
data that diversify the training set and lessens the effects of class imbalance [54–56].

Three basic approaches dominate data-level solutions to the class imbalance issue:
Random Sampling [57,58], Synthetic Minority Over-Sampling Technique (SMOTE) [56],
and Adaptive Synthetic Sampling (ADASYN) [35]. By randomly adding additional copies
of selected minority classes to the training data, Random Over-Sampling balances class
distribution [57]. On the other hand, instead of oversampling by replacement, ADASYN
and SMOTE oversample the minority class by producing synthetic instances [36]. However,
these techniques have several limitations.

Overfitting can result from Random Over-Sampling since duplicates of minority-class
samples are added to the dataset without adding new information. If the original data are
already highly dimensional, this increases the calculation cost and lengthen the classifier’s
training period. Conversely, Random Under-Sampling randomly removes instances from
the majority class, potentially leading to the neglect of essential data.

When training a model, applying SMOTE creates a linear mapping of the data,
which can lead to overfitting issues. Also, there is a risk of overlap because the SMOTE
method does not account for the position of general data close to the uncommon class
data [49,56,59,60] Similarly with ADASYN, possible class overlap occurs in boundary areas
as oversampling targets to resample between neighboring minority and majority classes.
In general, both synthetic approaches are sensitive to noise and need parameter tuning as
both are dependent on data distribution [61].

A combination of augmentation techniques has been applied in indoor localiza-
tion [62,63] including adding information to the reference dataset and deep learning-based
approach [34,64], yet these involve computational complexities. Few studies have focused
on using methods based on signal patterns between sensors to augment training data
specifically for indoor localization purposes in nursing homes.

Accurate labels ensure that models learn the correct patterns and relationships in
the data. In machine learning, relabeling is employed in the data augmentation process
to handle proper class labeling, which is crucial for the accuracy of supervised learning
models. In existing studies, relabeling is commonly applied to preserve the original class
labels [65]. Recently, relabeling has been used to address class imbalance when using
logistic regression by assigning new labels to classes with fewer instances [66]. Data
augmentation leading to the loss of label information can reduce model performance.

2.3. Signal Pattern

Signal patterns refer to the specific way that radio frequencies, like Bluetooth, behave in
an indoor setting. Fluctuations in the signal are essential metrics providing valuable insights
into the alterations of signal intensity that occur within indoor settings [67]. Trilateration
and triangulation are traditional localization techniques that utilize geometric principles to
assess signal behavior, measuring distance and angle from reference points.
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In the non-conventional approach, statistical techniques are optimized to handle
inherent variability and uncertainty in the signal-based analysis. The received signal’s
standard deviation reflects the signal strength fluctuations at different positions or distances
within an indoor environment [68–70]. On the other hand, variance measures the spread
of the RSSI values around the mean, offering perspectives on the consistency of the signal
strength measurements at different locations [68]. KL divergence is a measure of the
difference between two probability density functions. In IPS, it is calculated to measure
similarity in the online phase of unlabeled data in existing database and up-to-date data [10].

Integrating multiple signal sources, sensor fusion techniques, and machine learning
provides more robust and reliable localization. Implementing adaptive algorithms that
can learn and adjust to environmental changes further improves positioning performance.
In this study, we delve into the signal patterns between locations by employing statistical
techniques, specifically standard deviation and KL divergence, to measure features to find
matching patterns for oversampling.

In this work, we propose to compare the signal pattern features of labeled beacon
data from different locations and determine the divergence between minority and majority
classes as a foundation for data augmentation. By considering the layout of the care facility,
we focus on leveraging the current data from stationary beacons by using the majority class
to oversample locations with less BLE data. We utilize relabeling to update labels of the
augmented data derived from other locations, aligning them with the labels of the minority
class. Specifically, signal patterns observed from selected positioned beacons from various
rooms are utilized to guide the relabeling process. Full and partial matching represent
two distinct relabeling variations that take into account the comprehensive arrangement of
installed beacons.

This research strategically deploys BLE beacons to enable indoor localization of nurs-
ing staff, ensuring that the architecture of the nursing home remains unaltered and that
caregiving services are delivered without interruption. This work prioritizes identifying
semantic room locations over exact coordinates, considering the relevance to caregiving
records. To protect the privacy of patients, all devices are mounted outside the doors of
patient rooms.

3. Material and Methods

This section introduces our developed relabeling method depicted in Figure 1 for
beacon data augmentation.

Figure 1. Proposed oversampling approach based on signal pattern relabeling for indoor localization.

In this approach, we aim to increase the training data sample, particularly locations
with less beacon data. Initially, training data are analyzed to identify rooms with fewer
beacon signals, termed as the ”Target Minority Class”. To oversample, we identify matching
locations to minority classes from other locations by comparing signal patterns using
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standard deviation and KL divergence. To proceed with data augmentation, we apply
relabeling to the identified matching class by updating the location label similar to the
target minority. The relabeled set is then added to the original training data, increasing
the set. The augmented data are then used to enhance the indoor localization employing
machine learning, with the model’s efficacy evaluated using test data.

The subsection commences with information on the beacon data from the site. Un-
derstanding the signals detected from beacons to comprehend variability is necessary to
execute relabeling. Figure 2 describes the overview of the indoor localization employed in
the nursing facility from data collection to the use of the relabeling approach.

Figure 2. An overview of the proposed indoor positioning system in nursing care facility.
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3.1. Signal from Detected Beacons

Prior to deployment, the respective MAC addresses of the beacons are recorded to
match the raw data from the server, as shown in Table 1. After pre-processing the raw
data, the MAC addresses of detected devices are filtered to match the beacons. The final
dataframe of RSSI values is shown in Figure 3.

Table 1. Collected raw beacon data stored in the server.

User_id Timestamp Mac Address RSSI

90 2023-04-10 10:22:55.589+0900 FD:07:0E:D5:28:AE −75
90 2023-04-10 10:22:55.599+0900 D2:1C:25:72:FB:E3 −62

Based on Figure 3, we can suppose RSSIt represents the detected RSSI at timestamp
t at location m. We then define the RSSI measurement for all beacons n, and the corre-
sponding location label as in Equation (1). Overall, the signal database can be expressed as
Equation (2) and the labels as Equation (3).

RSSIt = [RSSIt1, . . . , RSSI1n], labelt = mt, (1)

RSSI = {[RSSI11, . . . , RSSI1n], . . . , [RSSIt1, . . . , RSSItn]}, (2)

label = {m1, m2, m3, . . . , mt}, (3)

where t represents the timestamp, n denotes the total number of beacons installed on
site, and m refers to the associated elderly room. With location label m, training data are
observed to identify rooms with fewer detected signals.

Figure 3. Matrix of the received signal strength from beacons. (a) Single column RSSI. (b) The
corresponding RSSI for each beacon, repositioned into separate columns.

3.2. Matching

Generally, the accuracy of IPS decreases as the distance between the transmitter
and receiver increases [71]. Observing this from the histogram of detected beacons and
considering the setting of installed devices covering up to a 5 m range, we limit the analysis
to six beacons to better comprehend signal patterns between rooms. Specifically, we only
focus on elderly rooms installed with stationary beacons following a similar layout. Figure 4
shows the targeted surrounding beacons investigated for each room.

Prior to calculating the signal pattern feature, we classify rooms based on the com-
pleteness of the selected surrounding beacons. For each location, six BLE transmitters are
filtered such that

fm = [ f lm, slm, sm, fm, srm, f rm]. (4)

In Equation (4), s is the beacon on the location (source) room, f is the beacon on
the room in front, f l and sl are the beacons on the left side rooms while sr and f r are
beacons on the right side, respectively. In full matching, we only consider elderly rooms
forming complete six beacons as candidate match to the minority class. On the other hand,
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with partial matching, all elderly rooms are considered as possible match to the minority
class regardless of incomplete sensors forming the targeted six. As an example, in Figure 4,
Room 515 is considered only in partial matching where f515 = [null, 13, 15, 1, 16, 2]. Room
521, on the other hand, is also a candidate in full matching, where f521 = [8, 20, 21, 10, 22, 11].
For locations with incomplete beacons resulting in null values representing no signal
detected, we replace null with zeroes for the model to better differentiate from distant
beacons with higher negative values and to calculate the signal pattern feature.

Figure 4. Full and Partial Matching based on selected sensors. (a) Full matching with complete
6 sensors. (b) A total of 6 sensors surrounding the location. (c) Partial matching with incomplete
6 sensors.

3.3. Relabeling Based on Signal Pattern

A signal pattern feature is computed from the six beacons to define the signal variabil-
ity in different rooms. A sub-dataframe patternm containing the RSSI values of the beacons
in the list fm is created for each room in the majority class. The sub-dataframe of the
minority class is denoted as patternmin. From these sub-dataframes, standard deviation and
KL divergence are measured to represent each room’s signal pattern feature, which is then
used to identify similar locations. The objective is to pinpoint the room that has a matching
signal pattern with the minority class in order to move forward with the relabeling process.
Initially, the majority class is downsampled to match the number of samples in the minority
class as depicted in Figure 5. Outlined in Steps 1 to 4 are the procedures to calculate the
signal pattern feature of patternm and patternmin. See Algorithm 1.

Figure 5. Comparing signal pattern feature between minority and majority class. (a) Length of
samples considered. (b) Comparison between rooms per beacon.

The signal pattern feature based on standard deviation calculates the absolute differ-
ences in standard deviation for each beacon between minority and majority classes. This
approach considers individually the variability difference for each beacon before summing
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them. The matching location from the majority class is identified with the least standard
deviation difference sum expressed in Equation (5),

∆σtotal = ∑ |σmin − σmatch|, (5)

where ∆σtotal represents the total difference in standard deviation values, σmin is the stan-
dard deviation for a specific beacon in the minority subdataframe, σmatch is the standard
deviation of each beacon in the candidate sub-dataframes patternm, and ∑ represents the
summation symbol, indicating the sum of absolute differences across all beacons.

Algorithm 1: Algorithm for comparing the signal pattern feature between rooms
Input:
m← room number
dtrain ← train data
Output:
patternmatch ← patternm
1. Identify rooms with small sample in train data, df = dtrain.
2. Define patternmin and patternm following Equation (4) such that for i in labels, m

di = d f [d f [‘m′]] == “i′′]
if i == “1”: f1 = [ f l1, sl1, s1, f1, sr1, f r1]
. . .
elif i == “25”: f25 = [ f l25, sl25, s25, f25, sr25, f r25].

3. Group patternm accordingly as candidates for full and partial match.
4. Calculate the signal pattern feature from patternmin and patternm.
5. Compare the signal pattern features to identify patternmatch.

On the other hand, Kullback–Leibler (KL) Divergence is calculated from minority to
majority classes. With this approach, we measure the divergence between the probability
distribution represented by minority and majority classes, normalizing the data to represent
probability distributions. The KL Divergence applied is expressed in Equation (6),

DKL(P ∥ Q) = ∑ P(i) log
(

Q(i)
P(i)

)
, (6)

where P(i) represents the probability of observation i in patternmin and Q(i) represents the
probability of observation i in candidate match patternm. After calculating and plotting
all the statistical values, we observe the trend of the signals in patternmin and locate
similarity in the rest of patternm from all other rooms to find patternmatch. We apply
both statistical measures to partial and full matching variations of relabeling forming
four candidate matches.

To proceed with relabeling, train data dtrain, patternmin for the location with low
sample and identified patternmatch are required. The expected output is the augmented
train data dtrain,new with concatenated original train data dtrain and relabeled data drelabeled.
Listed from one to five are the sequential steps followed to execute the relabeling process.
See Algorithm 2.

Nursing homes frequently feature an evenly distributed space across rooms. Given the
environment’s influence on signal behavior, the relabeling method is specifically designed
for floors where the rooms share the same geometric layout. The relabeling method is
exclusively applied to patient rooms in the original floor plan based on matching as depicted
in Figure 4. In this study, relabeling is not applied for signals from beacons positioned
in areas with diverse dimensions and layouts, such as open spaces in the cafeteria. It is
crucial that the beacon devices are installed in fixed positions. Moreover, as the proposed
approach specifically filters data to the six surrounding beacons, Standard Deviation and KL
Divergence were chosen to measure signal patterns as they represent the variability of the
targeted signals. To apply relabeling to other sensors, the representation of signal patterns
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can be updated using other statistical measures that better suit the behavior of the data
being analyzed.

Algorithm 2: Algorithm for relabeling the location of matching class
Input:
dtrain ← train data
patternmatch, patternmin
Output:
dtrain, new ← dtrain, drelabeled
1. Create a dataframe for the relabeled data drelabeled.
2. Populate drelabeled with values from patternmatch following the same columns

representing RSSI values of the six beacons.
3. Add remaining columns from dtrain in drelabeled for beacons not included in

patternmatch. Fill with zero values.
4. For relabeling, assign the location of the minority class to the labels for drelabeled.
5. To oversample, combine the augmented data drelabeled to the original train split

dtrain in a new dataframe dtrain,new.

3.4. Indoor Localization

In this paper, indoor localization is approached as a recognition problem using machine
learning [72] to identify semantic room locations. This approach is designed to enhance
caregiving records by emphasizing the functional nature of spaces within the caregiving
environment rather than their physical coordinates. For room estimation considering
attenuation, RSSI values from all rooms are considered in feature extraction. Discrepancies
between the timestamps of location labels and RSSI data are resolved by synchronizing
data. To proceed with indoor localization, statistical and temporal features are derived from
the RSSI matrix. The Random Forest algorithm is employed for identifying locations as
this classifier demonstrates effectiveness in handling imbalanced data [73] and preferred in
indoor positioning [74–76]. As we deal with a similar scenario of data imbalance between
locations, we opt to adopt this model to focus on relabeling.

Five statistical features are extracted, specifically mean, standard deviation, minimum,
maximum, and RSSI count. Integrating the quantity of detected signals per device into
the feature set improves the model’s effectiveness, as observed in prior work. Time-based
attributes, specifically hour, minute, and microsecond, are extracted. A non-overlapping
time window of 45 s is implemented. The train and test data division is date-based,
adhering to train-test ratios recommended by empirical studies. The training set comprises
3.5 days of data, and the remaining 1.5 days are intended for test data. Both training and
test sets reflect the caregiving routine in the facility, where nursing staff frequently visited
the common area compared to the patient rooms.

To assess the effectiveness of relabeling, the indoor localization performance of baseline
train data is compared to the performance of data augmentation. In addition, various
data augmentation methods must be applied to the minority class. For cross-validation,
the relabeling approach is applied to different rooms and compared with other methods.
The next chapter covers the evaluation of real-world data collected in the nursing home.

4. Data Collection and Evaluation

The majority of the caregiving activities are location dependent; hence, monitoring the
rooms visited by nursing staff is necessary for an estimation of the delivered workload and
assistance given to elderly individuals on the floor. This information is relevant in automatic
care recording, necessitating inputted FonLog data. The nursing care tasks executed by
the caregiver fall under the category of patient care, medical assistance, documentation,
cleaning, and organization. As the movement of the caregiver is dependent on nursing
activities, we elaborate the details on caregiving to record the workload of staff performed
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in respective locations. Patient care covers bathing, excretion assistance, daytime support,
meal preparation, and recreation. Medical assistance encompasses checking patient vitals,
administering treatment, and overseeing rehabilitation. Cleaning and organization tasks
include changing linens and handling laundry. Care record falls under documentation.

4.1. Data Collection

The data collection approach implemented in the nursing facility is depicted in
Figure 6. Pre-deployment testing was conducted with the caregiver to ensure the de-
tection of beacons, connection to the server, and correct reading of both location labels
and BLE signals. Furthermore, initial data gathering with the placement of beacons was
conducted to make adjustments accordingly following the nursing home’s protocol. Ini-
tially, user feedback was collected via discussion with the participating staff and user study
during the pre-deployment setup. A location labeler was employed to address the staff’s
challenges in recording locations while carrying out their tasks.

Figure 6. Overview of data collection approach in nursing facility.

Final data collection was performed on the fifth floor of a nursing care facility over a
period of five days, from morning to afternoon of April 10 to 14, capturing the locations
a caregiver visited during their daily routine. Daily, about seven hours of data collection
was performed: three hours in the morning and four hours in the afternoon. The schedule
followed the caregiving routine in the facility. In adherence, the placement of beacons
outside patient rooms was decided to protect privacy, and data collection was executed
following the facility’s protocol and proposed schedule.

FonLog, a smartphone application in Figure 7, was installed and used as a data
collection tool to log location labels and as a receiver of RSSI signals [39]. In this study,
FonLog was explicitly customized to record activities performed on the respective floor of
the nursing care facility with strategically positioned beacons.

Two separate smartphones installed with FonLog were set up for data gathering, one
for the nursing staff with enabled BLE ID and another for the location labeler. Prior to
deployment, the location and Bluetooth settings of the smartphone were set, and beacon
detection was verified on the login interface, where the MAC (Media Access Control)
addresses are displayed. The nursing staff was requested to bring one smartphone as
they performed caregiving across various rooms on the floor. To avoid disturbance during
tasks and maintain the quality of nurse care, the device was placed in the front pocket of
the uniform.

A common challenge of on-site data collection is a mismatch between beacon data
and the corresponding location label, which occurs due to the delay in activity recording.
Caregivers usually log the activity after completing various tasks, resulting in discrepan-
cies in timestamps during pre-processing. To mitigate this problem, the data collection
process included an observer closely monitoring the caregiver’s daily routine. The labeler
assigned was positioned in the hallway and recorded locations on the second smartphone,
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with Fonlog choosing from the list of rooms in the app. Both the carer and labeler were
each assigned a unique user ID. Similarly, each patient room and area within the floor was
allocated a unique customer ID. All beacon data and labels were temporarily stored in the
local storage of each smartphone and uploaded to the same server once internet connection
was established. In this study, the data collection involved participating nurses of average
height. Any significant height differences should be noted, and the impact on RSSI values
should be observed in the case of multiple participants.

Figure 7. User interface of the FonLog application. (a) Sensor selection screen where BLE ID is
enabled. (b) Activity recording screen showing respective rooms within the floor. (c) Log-in interface
reflecting detected mac address of BLE device.

Beacon data recorded from Fonlog contain user_id, timestamp, MAC address, and RSSI,
while location data by labeler consists of user_id, activity performed, start and stop time,
customer_id, and specified location. In our initial approach, we aligned the timezones of
both the location and beacon data, and the timestamps were subsequently reformatted.
Duplicates and rows with null values were removed, and entries lacking in start-time and
stop-time with undefined duration were filtered from location labels. Figure 8 depicts the
map of the target floor in the nursing facility with installed beacons.

Before deployment, beacon frequency and height placement were decided based on
experiments performed in the lab and hallway of the university, reflecting the facility’s
layout. In total, 25 stationary beacons indicated by blue points on the map were installed
2 m from the ground, strategically positioned outside 19 elderly rooms, and in common
areas to cover the usual route of the nursing staff. All beacons were configured to a
frequency of 10 Hz, where the actual data showed RSSI detection ranging from 3 to 5 Hz.

In medical and elderly care facilities, there are substantial limitations on where BLE
beacons can be placed. In scenarios where users carry the beacon tag, scanners are strate-
gically positioned in corners and specific areas, taking into account the geometry of the
location [9]. This setup allows for position calculation using methods that do not rely on
machine learning. For this research, the placement of beacons was determined in agreement
with the nursing home to effectively track the movement of caregivers on the respective
floor. Specifically, beacons were mounted at an appropriate height on the doors outside
each patient room. This approach was adopted to respect privacy and to minimize distur-
bance to the elderly during the installation and maintenance of the devices. In contrast
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to other studies [9], beacons were placed in stationary positions as emitters while Fonlog
installed in the caregiver’s smartphone served as the scanner.

Figure 8. Layout of the facility showing the placement of installed beacons at each location.

The transmission power of beacons varies depending on the calibration of the RSSI at
a distance of one meter. Beacons configured for broader coverage have higher transmission
power. According to the specification sheet of the BLE device used, an RSSI detection
range of 100 m corresponds to a transmission power of +4 dBm. All beacons were set
to a detection range of zero to five meters coverage with a transmission power of up to
−30 dBm (decibel-milliwatts).

Figure 9 displays the preprocessed beacon data with location labels used in the baseline
of the indoor positioning model.

Figure 9. Baseline beacon data with location labels segmented for feature extraction. (a) Training
split, 45 s window (b) Test split, 45 s window.

From the data, we can see an overview of the caregiving routine, which involves more
extended activities in the kitchen, nurse station, and cafeteria, where meal assistance and
nurse care recording are performed. We can also identify rooms with more extended data,
suggesting longer patient assistance is delivered in the respective elderly room. The same
test data from the figure are retained to evaluate and compare the performance of different
data augmentation approaches in Section 4.3.
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4.2. Performance Evaluation

As this study aims to address data imbalance by relabeling the approach, a comparative
analysis of signal patterns and an assessment of the efficacy of partial and full room
matching are conducted. Furthermore, we evaluate the performance of relabeling against
other data augmentation methods. The test data cover 1.5 days, while the training data
encompass 3.5 days, both segmented into 45 s windows without overlapping.

The target use case for evaluation in this study is centered on enhancing the perfor-
mance of indoor localization through the meticulous comparison of signal patterns by
specific features. By implementing partial and full matching of rooms, we aim to refine
the relabeling process and ensure the most accurate representation of location data. This
comparison also extends to assessing the efficacy of our proposed methods against other
data augmentation approaches, thus providing a comprehensive analysis of performance
improvements in indoor localization systems.

To evaluate the impact of data augmentation to indoor positioning performance,
F1-score, Precision and Recall are measured and obtained, respectively, using the following
Equations in (7)–(9), where TP is the True Positive, TN is the True Negative, FP is the False
Positive, and FN the False Negative values.

F1-score =
TP

TP + 0.5(FP + FN)
, (7)

Precision =
TP

(TP + FP)
, (8)

Recall =
TP

(TP + FN)
. (9)

We assess the efficacy of applying relabeling to underrepresented locations within
the training dataset from the collected data. For this evaluation, reviewing the beacon
data for each location in the training set, Rooms 516 and 507 are identified as minority
classes. Filtering the device of all the rooms to six beacons following Equation (4) and
Figure 4, we proceed with calculating the signal pattern feature. Figure 10 illustrates the
resulting standard deviation of each of six beacons in patternmin corresponding to the
minority class rooms.

Figure 10. Standard deviation of selected sensors in target minority class rooms. (a) Room 508,
filtered to 6 sensors (b) Room 516, filtered to 6 sensors.

We then find the match to the minority class by comparing the signal pattern feature of
other rooms using standard deviation and KL divergence. Based on the floor layout, corner
rooms with only less than six beacons are reserved as candidate matches in partial matching.
In comparison, middle rooms with complete six beacons mounted in surrounding locations
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are considered in full matching. This process allows for two types of relabeling: full and
partial matching, by correlating beacons across different classes.

The integration of two variations of matching and two statistical measures for signal
pattern features results in four potential scenarios for candidate matching in the relabeling
process. To identify the best combination for relabeling, we implement data augmentation
to all four use-case scenarios and compare it with other oversampling methods. From this
approach, we aim to identify the statistical measure that better represents signal patterns
from six beacons, and by comparing full and partial matching, we determine the locations
to consider for relabeling.

In the case of full matching using signal patterns determined by standard deviation,
as depicted in Figure 11, Room 520 emerges as the closest match to Room 508, and Room 511
is identified as the nearest match to Room 516.

Figure 11. Full matching with signal pattern feature based on standard deviation. (a) Room 508 vs. other
locations. (b) Room 516 vs. other locations.

Figure 12 reveals that, under partial matching with signal pattern analysis based on
standard deviation, Room 520 remains the closest match to Room 508, while Room 518 is
identified as the nearest match to Room 516.

Figure 12. Partial matching with signal pattern feature based on standard deviation. (a) Room
508 vs. partial matching locations. (b) Room 516 vs. partial matching locations.
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Continuing with the assessment of the signal pattern using KL divergence, Figure 13
shows the result of full matching with KL divergence where we identify 522 as the majority
class nearest match to 508. At the same time, 520 is the match for 516.

Figure 13. Full matching with signal pattern feature based on KL divergence. (a) Room 508 vs. other
locations. (b) Room 516 vs. other locations.

Lastly, partial matching based on KL divergence results in 512 as the nearest match of
508, while 503 is identified as the top match for 516 as reflected in Figure 14.

Figure 14. Signal pattern feature based on KL divergence with partial matching. (a) Room
508 vs. partial matching locations. (b) Room 516 vs. partial matching locations.

With the matching location identified for each minority class in all four cases, we
proceed with relabeling the identified match for each minority location. We concatenate the
augmented data to the original training oversampling Rooms 508 and 516. Indoor localiza-
tion with the Random Forest model is executed using the new training data. Similarly, we
apply data augmentation using Random Sampling, ADASYN, and SMOTE to both Room
508 and 516, generating the same length of augmented data as that of the relabeled matches
for comparison.
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4.3. Results

In our evaluation of indoor localization, we assessed the effectiveness of various
combinations of relabeling approaches and statistical measures applied to signal patterns.
This assessment aimed to determine the specific combination that yields the most optimal
performance in terms of minority class localization.

Comparing the performance of relabeling using full matching based on standard
deviation in Table 2, only the proposed relabeling method classified Room 516 after over-
sampling. Relabeling achieved the highest target class F1-score for both 508 and 516. In the
overall model F1-score, relabeling improved model performance by 6%. ADASYN achieved
the highest value, followed by the proposed method.

Table 2. Performance of Relabeling with Standard Deviation, Full Matching versus other Sampling.

Oversampling Target Class Target Class Target Class Overall Model
Approach Precision Recall F1-Score Weighted F1-Score

Baseline * Room 508 = 0.50 Room 508 = 0.25 Room 508 = 0.33 0.60
Room 516 = 0.00 Room 516 = 0.00 Room 516 = 0.00

Random Sampling Room 508 = 0.67 Room 508 = 0.50 Room 508 = 0.57 0.64
Room 516 = 0.00 Room 516 = 0.00 Room 516 = 0.00

SMOTE Room 508 = 1.00 Room 508 = 0.25 Room 508 = 0.40 0.63
Room 516 = 0.00 Room 516 = 0.00 Room 516 = 0.00

ADASYN Room 508 = 0.50 Room 508 = 0.50 Room 508 = 0.50 0.69
Room 516 = 0.00 Room 516 = 0.00 Room 516 = 0.00

Proposed Relabeling Room 508 = 0.57 Room 508 = 1.00 Room 508 = 0.73 0.66
Room 516 = 1.00 Room 516 = 1.00 Room 516 = 1.00

* Original train data with no augmentation applied.

The performance of relabeling with partial matching based on standard deviation is
summarized in Table 3. In target class F1-score, no oversampling method was able to classify
Room 516. At the same time, all data augmentation approaches improved the performance
for 508, with SMOTE as the highest, followed by relabeling and ADASYN. Applying
Random Sampling to the minority class resulted in a lower F1-score. Regarding the overall
weighted F1-score, only ADASYN and SMOTE improved the model by 2 to 3%. As for the
relabeling approach, the observed decrease in performance can be attributed to incomplete
beacon data resulting from partial matching and the possibility of overlapping classes.

Table 3. Performance of Relabeling with Standard Deviation, Partial Matching versus other Sampling.

Oversampling Target Class Target Class Target Class Overall Model
Approach Precision Recall F1-Score Weighted F1-Score

Baseline * Room 508 = 0.50 Room 508 = 0.25 Room 508 = 0.33 0.60
Room 516 = 0.00 Room 516 = 0.00 Room 516 = 0.00

Random Sampling Room 508 = 0.67 Room 508 = 0.50 Room 508 = 0.57 0.60
Room 516 = 0.00 Room 516 = 0.00 Room 516 = 0.00

SMOTE Room 508 = 1.00 Room 508 = 0.50 Room 508 = 0.67 0.63
Room 516 = 0.00 Room 516 = 0.00 Room 516 = 0.00

ADASYN Room 508 = 0.50 Room 508 = 0.75 Room 508 = 0.60 0.62
Room 516 = 0.00 Room 516 = 0.00 Room 516 = 0.00

Proposed Relabeling Room 508 = 0.50 Room 508 = 0.75 Room 508 = 0.60 0.59
Room 516 = 0.00 Room 516 = 0.00 Room 516 = 0.00

* Original train data with no augmentation applied.
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On the other hand, performance comparison with full matching based on the KL
divergence is depicted in Table 4. With this relabeling approach, only the proposed method
was able to classify Room 516 after performing data augmentation. Relabeling achieved
the highest target class F1-score for both Room 508 and 516. In the overall model F1-score,
relabeling improved the model performance by 8% and achieved the highest result.

Table 4. Performance of Relabeling with KL Divergence, Full Matching versus other Oversampling.

Oversampling Target Class Target Class Target Class Overall Model
Approach Precision Recall F1-Score Weighted F1-Score

Baseline * Room 508 = 0.50 Room 508 = 0.25 Room 508 = 0.33 0.60
Room 516 = 0.00 Room 516 = 0.00 Room 516 = 0.00

Random Sampling Room 508 = 0.67 Room 508 = 0.50 Room 508 = 0.57 0.66
Room 516 = 0.00 Room 516 = 0.00 Room 516 = 0.00

SMOTE Room 508 = 0.67 Room 508 = 0.50 Room 508 = 0.57 0.66
Room 516 = 0.00 Room 516 = 0.00 Room 516 = 0.00

ADASYN Room 508 = 0.60 Room 508 = 0.75 Room 508 = 0.67 0.66
Room 516 = 0.00 Room 516 = 0.00 Room 516 = 0.00

Proposed Relabeling Room 508 = 0.57 Room 508 = 1.00 Room 508 = 0.73 0.68
Room 516 = 1.00 Room 516 = 1.00 Room 516 = 1.00

* Original train data with no augmentation applied.

Lastly, Table 5 summarizes indoor positioning comparison with partial matching
based on KL divergence. Similarly, in target class F1-score, no oversampling method was
able to classify Room 516, while relabeling achieved the highest performance for Room 508
at 73%, which is 16% to 29% higher than that of other oversampling methods. In the overall
model F1-score, only relabeling resulted in an improved model performance at 62%.

Table 5. Performance of Relabeling with KL Divergence, Partial Matching versus other Oversampling.

Oversampling Target Class Target Class Target Class Overall Model
Approach Precision Recall F1-Score Weighted F1-Score

Baseline * Room 508 = 0.50 Room 508 = 0.25 Room 508 = 0.33 0.60
Room 516 = 0.00 Room 516 = 0.00 Room 516 = 0.00

Random Sampling Room 508 = 0.67 Room 508 = 0.50 Room 508 = 0.57 0.60
Room 516 = 0.00 Room 516 = 0.00 Room 516 = 0.07

SMOTE Room 508 = 0.67 Room 508 = 0.50 Room 508 = 0.57 0.58
Room 516 = 0.00 Room 516 = 0.00 Room 516 = 0.00

ADASYN Room 508 = 0.40 Room 508 = 0.50 Room 508 = 0.44 0.57
Room 516 = 0.00 Room 516 = 0.00 Room 516 = 0.00

Proposed Relabeling Room 508 = 0.57 Room 508 = 1.00 Room 508 = 0.73 0.62
Room 516 = 0.00 Room 516 = 0.00 Room 516 = 0.00

* Original train data with no augmentation applied.

5. Discussion

In this section, we outline the findings of our study, building upon the methodologies
and approaches discussed previously. We highlight the contribution to the field of indoor
localization, particularly in the context of nursing care facilities.

To investigate the impact of relabeling on indoor localization in nursing facilities, we
illustrate the performance of the proposed method in Figure 15. In response to the first
research question on identifying matching signal patterns between different locations in the
facility, we calculate signal pattern features using standard deviation to compare per beacon
variability and KL divergence to compare signal distributions between rooms. To better
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understand signal patterns, we filter the analysis of beacons to six surrounding devices in
the neighboring rooms.

In response to the second research question on how we use samples from other beacons
to augment location with fewer data, we apply relabeling to the resulting match from the
comparison of signal patterns between rooms. We implement two variations to relabeling
based on the completeness of six beacons filtered around the surrounding location. We
summarize the resulting performance of applying relabeling to the stationary beacons
installed in the nursing facility in Figures 15 and 16.

Between the variations of relabeling, full matching consistently achieves better per-
formance compared to baseline and partial matching in terms of the target class F1-score.
As reflected in Figure 15, Room 516 is only classified after employing relabeling with full
matching. Matching based on signal pattern features referenced from KL divergence results
in a better F1-score than standard deviation. Overall, the proposed method improves the
target class F1-score compared to the baseline by 27% to 40%.

Figure 15. Comparison of Target Class F1-Score, Baseline versus Proposed Relabeling.

By comparing the overall F1-score performance in Figure 16, we determined that
full matching achieves better performance than baseline with an increase of 6% to 8%.
Moreover, full matching outperformes partial matching by 6% to 7%. For both full and
partial matching, KL divergence results in a better F1-score than standard deviation. Overall,
the proposed method improves model performance compared to the baseline, except in the
case of partial matching with standard deviation. In general, increasing the training data
with relabeling based on signal pattern results in improved localization.

Figure 16. Comparison of Overall Weighted F1-Score, Baseline versus Proposed Relabeling.
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Choosing the best combination of relabeling from the matching variation and signal
pattern feature, we compare full matching based on KL divergence with the baseline
confusion matrix as depicted in Figure 17. For target class F1-scores, relabeling improves
the performance of both Room 508 and 516. All samples of 508 and 516 are correctly
localized with relabeling. In the overall model F1-score, relabeling improves performance
by 8%. On the other hand, a trade-off of the proposed method is potential class overlap,
especially from the majority class used in the matching, which can be observed in Room
520 in the confusion matrix affecting the recognition of the room.

Figure 17. Comparison of indoor positioning with baseline data. (a) Confusion matrix, original data.
(b) Confusion matrix, with relabeled data.

For cross-validation, we test the proposed method by applying data augmentation
on other rooms using the same test data. In the original train data, we reduce Rooms
520 and 523 samples and then re-evaluate the performance for baseline before applying
augmentation. Table 6 summarizes the result after oversampling Room 520. Relabeling
improves both overall and target F1-score of baseline after applying data augmentation
and increasing the samples by 96.7%.

Table 6. Comparison of Indoor Localization Performance, Oversampling Room 520.

Oversampling Train Data Room 520 Overall
Approach Room 520 F1-Score Weighted F1-Score

Baseline 1000 0.00 0.56
Random Sampling 1969 0.50 0.67

SMOTE 1969 0.40 0.67
ADASYN 1969 0.86 0.67

Proposed method 1969 0.40 0.63

For Room 523, the proposed relabeling achieves both the highest overall and target
F1-score after applying data augmentation to the room, increasing the samples five-fold
the original size as depicted in Table 7.

Given the varying quantities of samples added through oversampling, evaluating
and contrasting the augmented data produced by each technique is crucial, as they each
function distinctly.
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Presently, we remain positive that the application of the proposed method to other
rooms relevant insights into the current effectiveness of relabeling. Between the variations
in relabeling, full matching effectively utilizes all sensor data from other beacons. Con-
versely, while partial matching demonstrates some improvement in localization accuracy,
its reduced retention of beacon data from other rooms can lead to diminished performance.
Overall, as relabeling is based on leveraging samples from other beacons, the proposed
data augmentation approach relies on the number of samples in the majority class. In line
with other oversampling techniques, the volume of data gathered within the facility for
training significantly influences the outcome of data augmentation and the performance of
indoor localization.

Table 7. Comparison of Indoor Localization Performance, Oversampling Room 523.

Oversampling Train Data Room 523 Overall
Approach Room 523 F1-Score Weighted F1-Score

Baseline 2178 0.00 0.53
Random Sampling 11,174 0.00 0.53

SMOTE 11,174 0.00 0.53
ADASYN 11,174 0.33 0.59

Proposed method 11,174 0.33 0.61

6. Conclusions

In this paper, we proposed a relabeling method for data augmentation towards indoor
localization in nursing care facilities. Our proposed method addresses the challenge of data
imbalance due to unequal representation of locations with low samples in minority classes.
By filtering BLE devices to surrounding beacons, we calculated the signal pattern feature of
minority and majority classes and identified matching rooms for relabeling. By applying
a relabeling approach to identified locations matching the signal patterns of the minority
class, indoor localization improved both in the target class and overall model performance.
Moreover, we presented a comparative performance of indoor localization using different
augmentation techniques and confirmed that our proposed method achieves better indoor
localization in nursing homes.

The main contribution of this work is utilizing real data from other beacons referenced
from the majority class to augment locations with fewer samples. With our proposed full
and partial matching based on calculated signal pattern features, we showed the advantage
of having a flexible method where the statistical measure can be varied in accordance
with the targeted analyzed data. Moreover, our method displayed model generalization
leveraging majority class data. On the other hand, dependence on the number of samples
of majority classes should be taken into account when applying relabeling.

We could discern similarities between different rooms by calculating signal pattern
features. This enabled us to effectively augment locations with limited data samples by
repurposing data from matching rooms. By measuring both KL divergence and stan-
dard deviation across classes, we mapped the signal patterns among various locations.
The approach based on KL divergence consistently outperforms baseline data and other
methods, specifically Random Sampling, SMOTE, and ADASYN. However, it is important
to acknowledge the potential for class overlap with the matching class. The augmented
data should be carefully examined.

The reliance of the proposed method on the volume of majority class samples and the
potential for class overlap necessitates careful application and consideration. To this end,
our future work will focus on expanding data collection to enable more robust evaluations.
Broadening the scope of data collection to various nursing homes with different layouts is a
key component to validate the effectiveness of relabeling in diverse settings. Furthermore,
locations within common areas not following specific layouts will be further examined.
We aim to refine our relabeling approach to encompass areas within these common spaces
with varying geometries and dimensions, such as cafeterias, where nursing activities
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tend to occur over extended periods. Applying the relabeling approach to other use-case
scenarios using different sensors, such as an accelerometer and gyroscope, will be analyzed
to understand signal patterns for matching. The aim is to apply the proposed relabeling to
other sensor data to assess the performance in improving models after data augmentation.

Currently, the analysis is performed in the offline phase using real-world data. Ex-
panding the system to a more dynamic real-time relabeling and indoor positioning for
nursing homes is suggested to adapt to immediate changes in the caregiving environment.
Furthermore, elaborating analysis of signal patterns by incorporating additional statistical
analysis techniques is suggested to represent signal pattern features of different devices
aside from BLE beacons. A hybrid augmentation approach by combining the proposed
oversampling method with SMOTE or ADASYN is suggested to resolve the limitations of
respective oversampling techniques and further improve indoor localization. Algorithm
optimization should be explored to enhance the accuracy and robustness of indoor local-
ization. We plan to investigate the use of additional machine learning algorithms and the
implementation of filtering techniques to improve signal quality, potentially increasing the
precision of our localization system. On the other hand, the proposed relabeling maintains
its effectiveness even with filtered or high-quality signal inputs.

Lastly, as we continue to improve the FonLog application and indoor positioning
system, we will integrate user feedback collection via an in-app survey to incorporate
suggestions in the system design cycle. This is to ensure adherence to the protocol of
the partner facility and adapt to user experience with practical challenges faced in real-
world scenarios.
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The following abbreviations are used in this manuscript:

ADASYN Adaptive Synthetic Sampling
AoA Angle of Arrival
BLE Bluetooth Low Energy
HAR Human Activity Recognition
LOS Line of Sight
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IMU Inertial Measurement Unit
IoT Internet of Things
IPS Indoor Positioning System
KL Kullback–Leibler
MAC Media Access Control
NLOS Non-line of Sight
RF Random Forest
RFID Radio Frequency Identification
RS Random Sampling
RSS Received Signal Strength
RSSI Received Signal Strength Indicator
SMOTE Synthetic Minority Oversampling Technique
ToA Time of Arrival
Wi-Fi Wireless Fidelity
WLAN Wireless Local Area Network
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