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Abstract: Localization and perception play an important role as the basis of autonomous Unmanned
Aerial Vehicle (UAV) applications, providing the internal state of movements and the external un-
derstanding of environments. Simultaneous Localization And Mapping (SLAM), one of the critical
techniques for localization and perception, is facing technical upgrading, due to the development
of embedded hardware, multi-sensor technology, and artificial intelligence. This survey aims at the
development of visual SLAM and the basis of UAV applications. The solutions to critical problems
for visual SLAM are shown by reviewing state-of-the-art and newly presented algorithms, providing
the research progression and direction in three essential aspects: real-time performance, texture-less
environments, and dynamic environments. Visual–inertial fusion and learning-based enhancement
are discussed for UAV localization and perception to illustrate their role in UAV applications. Subse-
quently, the trend of UAV localization and perception is shown. The algorithm components, camera
configuration, and data processing methods are also introduced to give comprehensive preliminar-
ies. In this paper, we provide coverage of visual SLAM and its related technologies over the past
decade, with a specific focus on their applications in autonomous UAV applications. We summa-
rize the current research, reveal potential problems, and outline future trends from academic and
engineering perspectives.

Keywords: localization; perception; visual SLAM; UAV; odometry; feature extraction; visal–inertial
SLAM; NeRF

1. Introduction

UAVs have attracted much interest in their applications, such as unknown space
perception, industrial defect inspection, and military operations, because of their flexibility,
portability, and speed [1–3]. Localization and perception as the basis play an impor-
tant role in those applications in which autonomous ability is needed. Internal states of
movements and external understanding of environments are provided to enable UAV
autonomous execution of missions. Localization determines whether the autonomous UAV
moves accurately and acts precisely, while perception also supports basic movement in
unknown space by detecting obstacles; moreover, a high-level understanding like semantic
segmentation of environments enables more intelligent behavior, thereby enhancing the
performance of autonomous UAVs and expanding the cover area of UAV applications.
In particular, the above-mentioned applications have encountered the challenge of Global
Navigation Satellite System (GNSS) denial where GNSS provides global localization capa-
bilities. Therefore, an alternative approach to UAV localization and perception is needed,
since it is the fundamental building block for autonomous upper missions such as nav-
igation. The SLAM [4–6] technique has been widely researched for robot localization,
and many excellent works have been presented. The SLAM technique is designed to
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simultaneously estimate the state (position, orientation) of the robot body and construct a
map of the surrounding unknown environment through the data collected by the sensors.
This technique requires not the GNSS signal but onboard sensors such as camera, Light
Detection And Ranging (LiDAR), and sonar, and it provides robust, real-time localization
and perception for autonomous robots, including UAVs.

Earlier SLAM techniques were intended to use LiDAR or multiple sensors to achieve
accurate and robust localization [7]. The sensor configurations, however, required extensive
cost and computation resources. With the advances in computer vision, visual SLAM
techniques [8–11] take cameras as the only sensor input and have gained much popularity
because of the image sensor’s low cost and simple configuration. Additionally, this sensor
has great potential due to its ability to capture rich information about the surrounding
environment. It is widely applied in lightweight devices such as smartphones, UAVs,
and AR/VR equipment. This technique has a long history since [12] used the Kalman
filter to estimate ego motion for the camera by extracting feature points in images in
1988. Nowadays, several well-designed and outstanding visual SLAM algorithms show
incredible localization and mapping capability. To comprehensively understand the modern
keyframe-based visual SLAM algorithm structure, we briefly introduce its workflow as
following three main modules:

• Odometry: this is the basic module of the SLAM algorithm [13]. Its primary func-
tionality is to process the latest received image by feature-based methods or direct
methods, finding the correspondence between the current image and the reference
image (or map). Once the correspondence is established, the camera pose can be
estimated by epipolar geometry (2D–2D matches) [14], PnP (2D–3D matches) [15–17],
or ICP (3D–3D matches) [18,19]. More recently, learning-based methods have been
used for end-to-end estimating of the camera pose [20].

• Back end: this module maintains a global insistent map by performing Bundle Adjust-
ment (BA) [21] for most state-of-the-art visual SLAM algorithms. On the one hand,
the sliding window strategy is adopted, which keeps a fixed number of keyframes by
marginalizing the old frame for controlling the BA cost in real time. On the other hand,
a sparse map is constructed to optimize the motion and structure for more accurate
results, since joint optimization with motion and dense map fail to run in real time.

• Loop closure: this module eliminates the accumulated error caused by large-scale,
long-time estimation. To this end, a loop detection procedure is performed to detect
the potential loop. Once a loop is detected, a lightweight pose graph optimization
correlates with the trajectory, significantly improving the SLAM algorithm’s accuracy.
Notably, the precision rate of the loop detection is critical and must be ensured.
Otherwise, the wrong detection could directly lead the algorithm to fail.

With these three modules, a general visual SLAM pipeline can be depicted as in
Figure 1, the real-time camera egomotion can be estimated, and the sparse (or dense) map
can be reconstructed.

Returning to UAV localization and perception, compared to another widely used
sensor, LiDAR, here are some reasons why visual SLAM algorithms are more suitable:

• Low-cost sensor: Visual sensors are cheap and low-power. This is important for UAVs,
which have relatively unstable control, poor loadability, and low power consumption.
Unstable control results in a high damage rate and destruction of sensors; poor
loadability and low power consumption mean the weight and power consumption
are better to be lower. These factors make visual sensors popular in UAV applications.

• High frame rate: Visual sensors can capture images at a higher frame rate, enabling
algorithms to provide more localization information. To utilize the flexibility of UAV,
high-frame-rate odometry is necessary for precision of control.

• Capturing rich texture information: This is beneficial for UAV perception; rich texture
information brings a high understanding of environments, subsequently enabling
more intelligent missions for UAVs such as object tracking, semantic segmentation,
and implicit reconstruction.
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Figure 1. General keyframe-based visual SLAM algorithm pipeline (similar to [22–24]). ’Image
Processing’ includes image distortion, feature extraction, etc., and procedures for image matching to
find correspondence; ’Keyframe Decision’ considers whether the current map supports odometry
to estimate the current state; ’Map generation’ triangulates the pixels to 3D map points; ’History
updating’ updates the dataset by inserting new keyframes for potential loop detection.

Prior to our review, there have been excellent surveys on visual SLAM and related tech-
niques, and it is necessary to summarize those surveys for comprehensive covering research:
Ref. [25] reviews Visual Odometry (VO) and SLAM solutions for solving robot localization
and mapping, introducing different types of VO methods and map representation, and EKF-
based, particle filter-based, and RGB-D SLAM. It systematically explains algorithm, theory,
and performance; Ref. [26] focuses on the types, approaches, challenges, and applications
of VO. It shows the advantages of VO by comparing it with other sensor-based localization
methods; Ref. [27] completely analyzes the SLAM problem and reveals SLAM’s capability
and challenges. Moreover, it summarizes the SLAM systems over the past 30 years and dis-
cusses the long-term autonomy of SLAM algorithms, representation of mapping, theoretical
tools, active SLAM, unconventional sensors, and learning methods, providing a compre-
hensive review and open problems. With the great advance of visual SLAM algorithms
from 2010 to 2016, Ref. [7] summarizes the state-of-the-art algorithms, from conventional
feature-based methods and direct methods to RGB-D camera-based methods, within this
period; Ref. [8] reviews visual SLAM algorithms through their flowchart, providing a clear
understanding of the advantages and shortcomings of the main algorithms in three aspects
(visual only, visual–inertial, and RGB-D camera-based); Ref. [9] provides an in-depth litera-
ture survey on visual SLAM algorithms in various aspects including multi-sensor, feature
type, environment, resource constraint, and odometry method. Discussing the current
trends of this technique, Ref. [10] reviews the state-of-the-art visual SLAM algorithms to
date—specifically, sensors, feature extraction and matching methods, deep learning tech-
niques, and major datasets are mentioned. However, in our survey, we provide coverage
of visual SLAM and its related technologies over the past decade, with a specific focus on
their applications in autonomous UAV applications.

This survey focuses on the visual SLAM algorithm applied in UAV applications
and discusses its trend in UAV applications. The paper structure is described as follows:
Section 2 introduces sensor configurations and data processing methods for some prelimi-
naries. In Section 3, we review the development of visual SLAM (or odometry) algorithms
by features: real-time performance, texture-less environment, and dynamic environment
emphasizing state-of-the-art algorithms. Additionally, Section 4 introduces the widely
applied SLAM algorithms in UAVs called visual–inertial SLAM and illustrates how it
improves the robustness and accuracy of UAV localization. Finally, learning-based modules
for UAV perception are discussed in Section 5, and a comprehensive conclusion is drawn
in Section 6.

2. Camera Configuration and Data Processing

The visual SLAM algorithm takes visual sensors, which are low-cost and have great
potential, as the input. It can be varied by different camera configurations and data
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processing methods, which determine the algorithm inputs and lead to the successive
modules changing. In this section, we introduce the different camera configurations and
their properties, respectively, particularly for the feature-based method, the traditional
feature extraction algorithms are reviewed, and at the end, the Inertial Measurement Unit
(IMU) pre-integration method is briefly described to give the preliminary of the later section.

2.1. Camera Configuration

Different camera configurations significantly influence the performance and applica-
tion scenes of visual SLAM algorithms. The advantages, shortcomings, and algorithms
relative to sensor types are summarized in Table 1.

Table 1. Advantages, shortcomings, and algorithms relative to sensor types.

Type Advantage Shortcoming Algorithms

Monocular simple and cheap suffers from scale ambiguity [22,28,29]

Stereo indoor and outdoor depth sensing relies on texture of environment and
requires computing [23,30,31]

RGB-D high-quality depth sensing only suitable for indoor scenes and has high
power consumption [32–34]

Event sensitive to dynamic information unable to capture regular-intensity images [35–37]

Multi-camera captures more information and arbitrary
views combination larger data need to be processed [38–40]

2.1.1. Regular Camera Type

Monocular, stereo, and RGB-D cameras are the most common configurations for vi-
sual SLAM algorithms. The monocular system takes a single camera as the input. This
cheap and straightforward sensor brings several challenges, and many researchers have
dedicated themselves to overcoming them to outperform results with this simple sensor.
One of the biggest challenges for the monocular system is scale ambiguity because it cannot
measure the scene’s depth and estimate the up-to-scale motion; subsequently, the system
inevitably suffers from scale drift, which can significantly reduce its accuracy. On the
contrary, the stereo system can measure depth with a pair of cameras fixed with a constant
baseline (or, more generally, with an overlapping field of view and fixed extrinsics). Subse-
quently, the disparity of the two cameras is computed by the stereo matching algorithm
to produce the depth point with the actual scale. Notably, dense depth points can be
made by epipolar searching. However, the quality is undermined when facing repetitive
texture and poor illumination. Similarly, the RGB-D system can measure depth by active
stereo or time-of-flight sensing. Therefore, a dense depth image can be directly produced
without computation resources and does not rely on environment texture and illumination.
However, a limitation exists, since the sunlight can firmly interrupt active sensing. This
sensor is only suitable for indoor or short-distance depth measurements.

2.1.2. Special Camera Type

In addition to these regular camera configurations, other practical configurations have
emerged for more challenging environments. The event camera, a bio-inspired sensor, is
sensitive to dynamics and intensity changes, captures every pixel asynchronously with
low latency, and is suitable for dynamic object detection. As a new technique, it is barely
researched, and there is still much potential to be unearthed. A multi-camera configuration
can enlarge the Field of View (FOV) of the system, thus enabling the system to receive
more information that resists the texture-less, dynamic environment and motion blur [40].
Furthermore, a more complete, well-distributed map can be constructed. For designing the
multi-camera system, the multiple inputs must be carefully processed to extract the most
useful information that enhances performance and maintains acceptable cost.
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2.2. Data Processing

A critical step in the Visual Odometry algorithm is building the connection between the
new incoming frame and the current estimation (referent frame or local map). Traditionally,
there are two methods to do this: feature-based methods and direct methods. Feature-based
methods require the feature extractor to extract features and match the features to find
correspondences in the reference frame, as in Figure 2. Those methods, however, rely
on the feature extractor to extract the invariant salient point, which is robust for rotation,
view change, and illumination change. Additionally, there is always a trade-off between
robustness and efficiency, while the robust extractor can increase the computation cost.
On the contrary, direct methods discard the feature extractor and directly utilize the pixel
intensity to align the new incoming frame by minimizing the photometric error. Notably,
those methods use full-image information that subsequently achieves more accurate results
and is naturally robust against poor texture environments and is efficient, since there is no
need to extract features.

Figure 2. Finding correspondences between the current frame and the reference for the feature-based
method (images come from EuRoC [41] dataset). Detection detects pixels with distinctiveness and
repeatability; description creates the unique descriptor of features for feature matching; matching
compares the similarity of those descriptors to match features.

2.2.1. Feature Extraction Algorithms

While the direct method seems to outperform the feature-based method, some disad-
vantages make the feature-based method worthwhile to develop continually. First of all,
the direct method is based on the assumption that intensity invariance and scene illumina-
tion changes will be a disaster for this method. Secondly, this method has failed to build a
strong association that limits the performance in long-term large-scale SLAM algorithms.
Anyway, the feature-based method and feature extraction algorithms are still important.
Feature extraction algorithms are widely researched in computer vision, and they tradi-
tionally detect features with pixels that are distinctive by a manually designed formulation.
The Harris corner detector [42] is broadly used in computer vision tasks that extract the
points by computing their intensity change in a small region. Features with rotation and
illumination invariance can be extracted efficiently. The Tomasi corner detector [43] is simi-
lar to the Harris corner detector, with a proposed feature selection criterion. This detector
extracts the good features that are more robust and less outlying, afterward improving the
SLAM algorithms since the outliers could be harmful and interrupt the motion estimation.

However, the Harris and Shi–Tomasi corners lack scale invariance that cannot be
matched in close or away motion. A Scale-Invariant Feature Transform (SIFT) algorithm
was proposed by [44] to extract robust features to scale, including illumination, view
changes, image rotation, and noise. This algorithm uses a coarse-to-fine approach to
detect the features, which initially using the algorithm efficiently to identify potential
features and refine them for solid invariance. It creates the descriptor for feature matching
by computing the gradient magnitude and orientation in a designed region. However,
the high computational cost hinders its usage in the visual SLAM algorithm, which requires
real-time performance in limited computation devices. By simplifying the existing Hessian
matrix-based detector and gradient distribution descriptor, the SURF algorithm [45] extracts
the features with comparable repeatability, distinctiveness, and robustness against SIFT
but improves efficiency. This algorithm uses Hessian matrix approximation to reduce the
computation in the detector. It describes a distribution of Haar-wavelet responses in a
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64-dimensional region of the feature, thus reducing the computation cost for detection,
description, and matching.

Aiming at low-power CPU devices with limited computation and parallelizing ability,
Rublee et al. proposed an efficient feature extraction algorithm called ORB [46]. Building
on the FAST corner detector [47] and the BRIEF binary descriptor [48], they designed an
efficient method to compute the orientation of FAST corners (Oriented FAST) and a rotation-
aware BRIEF descriptor, improving performance while rotating. BRISK [49] is another
efficient feature extraction algorithm that experimentally shows more scale invariance
against ORB features with an acceptable computational cost. This algorithm adopts the
scale space feature detection method inspired by AGAST [50] to improve scale invariance.
It uses a compact binary string to describe the features similarly to BRIEF but with different
sampling patterns. For those two algorithms, feature detection can quickly detect extensive
features, and the efficient binary descriptor further improves the efficiency. This is contrary
to the idea that the quality of features is better than the quantity, and it introduces the
outliers into the visual SLAM algorithm. However, this is the trend of feature extraction
algorithms in visual SLAM; robustness and accuracy are compromised for efficiency. This
is because the outlier ejection method can later filter the extracted features to improve
the performance of the SLAM algorithm, similar to the coarse-to-fine procedure that puts
the main computation into outlier ejection, which deals with feature-level data to reduce
overall computation cost, instead of feature extraction, which deals with pixel-level data.
Of course, with acceptable efficiency depending on the devices and applications, the higher
quality of features can still enhance visual SLAM algorithms.

KAZE [51] detects and describes features in a nonlinear scale space by means of
nonlinear diffusion filtering to improve their repeatability and distinctiveness. AKAZE [52]
improves the efficiency of the KAZE algorithm to make it available for embedded devices; it
uses Fast Explicit Diffusion (FED) to dramatically accelerate feature detection in nonlinear
scale spaces, and a Modified-Local Difference Binary (M-LDB) descriptor to efficiently
describe features. to evaluate their detection, description, and matching performance.
In [53], 14 feature extraction algorithms in 10 extremely variant image pairs were compared.
A comprehensive comparison of the above-mentioned algorithms was presented by [54].

2.2.2. IMU Pre-Integration

Specifically, the visual SLAM algorithm can be integrated with an Inertial Measure-
ment Unit (IMU), usually containing an accelerometer and a gyroscope. The algorithm
can be more accurate and can solve temporary visual tracking fails by leveraging the
self-motion measurement provided by IMU. For those algorithms (visual–inertial SLAM or
odometry), the IMU regularly measures the acceleration and angular velocity at a high rate,
since the modern loosely coupled visual–inertial algorithm considers IMU measurements
as variables in the back-end factor graph to perform optimization. However, problems
arise. On the one hand, high-rate IMU measurements will dramatically increase the number
of variables, increasing the optimization and computation cost scale. On the other hand,
the optimizable variables are generated by IMU integration (acceleration is integrated as
velocity, velocity is integrated as translation, and angular velocity is integrated as rotation):
they contain the integration operation and, thus, are hard to optimize. To solve these
problems, IMU pre-integration methods are proposed. In general, IMU pre-integration [55]
summarizes IMU measurements between two concussive image frames to a single com-
pound measurement, as Figure 3, which constrains the frame-to-frame motion and is easy
to optimize.
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Figure 3. IMU measurements pre-integration: letters a and w, respectively, represent acceleration and
angular velocity; dP, dQ, and dV are increments of position, orientation, and velocity between the
last frame to the current frame.

According to the above illustrations, some essential preliminaries are given. The algo-
rithm input and property can be determined by the sensor configuration and the scheme
to process it. For instance, the monocular inertial SLAM algorithm, jointly visual and
inertial initialization, can recover the real scale to avoid scale ambiguity. Furthermore,
the IMU constraints are created by pre-integration to perform visual–inertial optimization,
which refines the estimated scale. Especially for UAV applications, low-power, light-weight,
and low-cost sensors are prior considerations due to the characteristics of limited power
consumption and vulnerability. Additionally, heavy data processing cannot be afforded for
embedded devices.

3. Visual SLAM Algorithms

Like Structure From Motion (SFM) [56], which estimates camera motion and constructs
the unknown environment, the visual SLAM solves problems. However, they have a
different emphasis: the SFM technique is a classical subject in the computer vision area;
it reconstructs the 3D scene from a set of images (video stream or random images) and is
allowed for offline computation. The visual SLAM technique was initially proposed for
robotics applications and required real-time computation, emphasizing accurate, robust
localization rather than mapping. In other words, the map served for localization. This
section reviews the state-of-the-art or classic visual SLAM and odometry algorithms and
three features: real-time performance, texture-less environment, and dynamic environment.
We categorize those algorithms to illustrate the trend of development. We start from the
early feature-based algorithms for real-time performance and show how to achieve real-
time processing. At the same time, the essential requirement is satisfied, and the robustness
and accuracy of the algorithms are considered, specifically in two typical environments:
texture-less and dynamic.

3.1. Real-Time Performance

Global Bundle Adjustment (GBA) is widely used in SFM algorithms to optimize whole
structures and poses jointly; it achieves accurate results but with too much computation cost.
Therefore, this scheme was deemed unable to be applied in visual SLAM algorithms at an
early stage. To this end, filtering schemes were adopted to solve the SLAM problem [57–60].
Among those filtering schemes, the Extended Kalman Filter (EKF) is the most widely used
because it efficiently propagates the state and uncertainty. A top-down Bayesian framework
to perform visual SLAM was proposed by [57]. In this framework, state estimation is
computed by first-order uncertainty propagation in constant time. MonoSLAM [58] has
successfully applied visual SLAM in interactive augmented reality and humanoid robots
in room-sized domains with a single free camera. Using the EKF scheme, the state of the
sensor can be incrementally estimated. However, this scheme can drift over time, since the
state estimation only considers the last state, yet there are other past states. Furthermore,
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the computation cost increases along with new incoming features. These problems lead to
filtering-based visual SLAM failing to deal with long-time large-scale scenes.

While filtering-based visual SLAM seems to reach its limitations, to overcome these
limitations, Refs. [61,62] used the Smooth Variable Structure Filter (SVSF) to solve the SLAM
problem. This filter is significantly robust against uncertain parameters and unknown
noise characteristics. Both methods were shown to outperform conventional filtering-
based methods in terms of accuracy and robustness. The Adaptive Smooth Variable
Structure Filter (ASVSF) was proposed by [63], introducing a covariance matrix to assess
the estimated uncertainty of the original SVSF and achieving more robust localization
performance, especially in unstable noise disturbance. Furthermore, Ref. [64] deals with
the dynamic environment by removing the dynamic information. Recently, Ref. [65]
proposed a monocular–inertial SLAM algorithm based on SVSF, achieving a real-scale
localization solution for UAV navigation. Overall, SVSF-based SLAM algorithms show
great performance compared to conventional filtering methods and are capable of handling
uncertainty and extensive noise.

Moreover, experiment [66] further shows that the BA scheme is more suitable for
visual SLAM, in terms of accuracy, robustness, and efficiency. Local BA instead optimizes
a batch of local keyframes and map points for real-time processing and has become the
mainstream of current visual SLAM algorithm research. Along with advances in semicon-
ductor technology, the CPU has become more and more parallel. To utilize this property,
PTAM [67] is presented for tracking a hand-held camera in a small AR workspace by
splitting the SLAM algorithm into tracking and mapping, respectively, running in two
separate threads. In the tracking thread, a coarse-to-fine procedure is executed to estimate
the current camera pose based on the feature-based method. At the same time, local and
global BA are performed in the mapping thread to optimize the poses and sparse map
points jointly. A keyframe selection strategy is adopted to control the optimization scale,
which intensively reduces the amount and improves the quality of the optimizable vari-
ables. This algorithm shows the great advantage of the BA scheme against the EKF scheme.
Furthermore, this parallel pipeline has been acknowledged and has significantly influenced
the later visual SLAM algorithms. A dense visual SLAM algorithm for RGB-D cameras,
similar to PTAM, was proposed by [32]. They split the algorithm into two components: fast
odometry to register the current frame to the keyframe by direct method and a pose graph
built by keyframe selection and optimized when a loop is detected. This algorithm uses
a novel entropy-based keyframe selection strategy, inserting the frame when estimation
uncertainty grows. However, the above two algorithms are only suitable for small-scale
and indoor scenes. LSD-SLAM [28] can track camera motion using a monocular camera
and can build a large-scale, semi-dense map in real time on a CPU device. This algorithm
uses a filtering method to estimate the semi-dense depth map of keyframes, and the 3D
similarity transforms between keyframes as edges for scale-aware global optimization.
As we see, the feature-based, dense direct, semi-dense direct SLAM algorithms are de-
signed by a multi-threads pipeline, and the keyframe selection strategy is adopted to select
those essential frames and bridge the odometry to back-end optimization. Specifically,
the real-time performance of the visual SLAM algorithm is determined by Visual Odometry,
and the later optimized map provides a reference for odometry for more accurate results.

ORB-SLAM [22] is one of the most famous and classic visual SLAM algorithms; it
further parallelizes the visual SLAM algorithm as three threads: tracking, local mapping,
and loop closing. The local mapping thread provides intermediate results between ini-
tial tracking and final global optimization to build local data associations that efficiently
optimize the tracking reference to enhance quality. The system is efficient, consistent,
and reliable, using the same fast ORB features for all algorithm components. The new
frame is tracked in the tracking thread by extracting the ORB features that match the local
map. A fixed window is managed in the local mapping thread, and keyframes and map
points within this window are optimized as the local map. In the loop closing thread,
the loop is detected by DboW2 [68] and the global pose graph BA is performed to eliminate



Sensors 2024, 24, 2980 9 of 24

the accumulated drift. This algorithm further parallelizes the pipeline to create short-term,
mid-term, and long-term associations, achieving state-of-the-art outdoor and indoor scene
performance. ORB-SLAM2 [23] is an extension of the previous version; it takes multiple
types of sensors as algorithm input, including monocular, stereo, and RGB-D cameras,
and adds a new thread to perform global BA that jointly optimizes all keyframes and map
points for more accurate results.

In conclusion, the multiple-thread visual SLAM pipeline is currently mainstream in
this area. By splitting tracking and mapping, the real-time performance of visual SLAM
systems is determined by the tracking thread. Thus, the above BA-based systems sacrifice
accuracy in the tracking thread to ensure its efficiency. For instance, Refs. [22,67] use a fast
and fairly robust feature extractor, Ref. [28] rather than using a semi-dense formulation
to boost the tracking speed. Additionally, in filtering methods, real-time performance
can easily be acquired, especially by redesigning the optimizable variables to reduce
the propagation scale. However, this incremental propagation still suffers severely from
accumulated drift. To this end, combining filtering methods and BA methods organically
should be promising. To use filtering methods in the tracking thread, while in the mapping
thread, BA methods refine the accuracy by integrating history information. In other
words, filtering methods are more suitable as an odometry algorithm than a SLAM system.
Ultimately, the real-time performance of visual SLAM algorithms seems to be enough
for current desktop devices or even embedded devices by following this multiple-thread
pipeline. However, it is necessary to further improve efficiency and save resources so that
enabling more algorithms can be implemented. Performance is always compromised for
efficiency, such as by simplifying the feature extractor or reducing the scale of optimization.
Therefore, how to improve efficiency without sacrificing performance is crucial. Opinions
for further improving efficiency from an engineering perspective are listed as follows :

• GPU boosting. A GPU has the capability of highly parallel computing and can be
widely applied in learning-based methods. A common usage of GPUs is to boost
feature extraction, since a GPU is a good computing matrix; however, in a visual
SLAM system, there are other products that can be parallel-computed, such as map
generation and solving BA equations. By utilizing the parallel performance of the
CPU and the GPU, the efficiency of visual SLAM can be further improved.

• Data management. Data query is one of the most frequent operations; every new frame
inputs to the system, finding correspondences to the reference frame, the local map,
and the keyframe database. Therefore, how to use the appropriate data structure to
manage the data stored in the system to achieve efficient queries is crucial. Especially
in large-scale long-term visual SLAM systems.

3.2. Texture-Less Environment

White walls, space, and long tunnels, texture-less environments, severely undermine
feature-based visual SLAM algorithm performance. The direct method performs more
robustly in those environments and is accurate because of the utilization of all image
pixels. It tracks the image by minimizing photometric error at the assumption of intensity
invariance, subsequently saving the computational cost of feature extraction. This method
can be categorized into three types: dense, semi-dense, and sparse (see Figure 4). The dense
method is used in indoor scenes, with depth images provided by an RGB-D camera to
construct the dense surface. The semi-dense approach builds the depth map of the vicinity
of gradient pixels with the monocular camera and some prior geometry. However, both
the dense and the semi-dense methods fail to jointly optimize pose and structure, leading
to less accuracy. The sparse method constructs a sparse map of gradient pixels or patches,
which can be jointly optimized with poses to achieve more accurate results.
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Figure 4. Different type of maps from EuRoC [41] dataset.

3.2.1. Dense Direct Formulation

For these dense methods, RGB-D cameras are usually required to produce dense depth
images. KinectFusion [33] is presented for indoor real-time dense surface reconstruction;
this algorithm tracks the camera pose by frame-to-model alignment, which ray-casts a
global scene model to compute surface prediction and align the live frame through the multi-
scale ICP method. Leveraging the GPU parallel computation, this algorithm integrates
every frame measurement into the scene model, represented by the Truncated Signed
Distance Function (TSDF). DTAM [69] uses a keyframe-based framework to construct a
dense depth map by minimizing the global photometric error, requiring only an RGB sensor
and commodity GPU hardware. In [32], the RGB-D camera is tracked by minimizing both
photometric (intensity) and geometric (depth) errors. Also, a keyframe-based framework is
used to construct the dense map. This algorithm does not need GPU enhancement but runs
on the CPU device in real time. In [70], semi-dense monocular Visual Odometry is proposed,
which continuously estimates a semi-dense inverse depth map of receiving frames. This
algorithm represents the pixel inverse depth as a Gaussian probability distribution and
propagates it frame-to-frame, constructing the vicinity of large intensity gradients of pixels.
Additionally, it shows comparable performance against the dense method without depth
cameras and GPU acceleration. LSD-SLAM [28] completes this odometry algorithm to the
SLAM algorithm by maintaining a global map that contains a pose graph of keyframes
with associated probabilistic semi-dense depth maps. The accumulated drift and scale drift
are both reduced for larger-scale estimation.

3.2.2. Sparse Direct Formulation

Since joint optimization of the pose and dense structure in real time is unaffordable,
the map points are created initially and fixed with the associated frame, resulting in
limited performance. SVO [71] uses the semi-direct method to track camera motion. It
initially estimates the camera pose through sparse model-based image alignment, which
minimizes the photometric error between pixel correspondences. Then, pose and structure
joint optimization is performed through feature alignment by minimizing the reprojection
error. In a separate thread, keyframe decision, feature extraction, and depth filter are
used to construct the keyframe-based sparse map as a tracking reference. This algorithm
utilizes the advantages of both direct and feature-based methods to achieve fast motion
tracking. The latter extension [38] supports multiple camera configurations, edge tracking,
and other camera models. With a full photometric calibration, including exposure time,
lens vignetting, and non-linear response functions, DSO [29] proposes a sparse and direct
formulation for Visual Odometry and shows superior performance against dense or direct
methods. It minimizes the photometric error with the new formulation modeling the
photometric parameters and jointly optimizes camera poses, affine brightness parameters,
inverse depth values, and camera intrinsics. It shows the state-of-the-art performance and
the great potential of direct sparse odometry.
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3.2.3. Structure Feature and Multi-Camera

While direct-based SLAM algorithms effectively solve texture-less environments,
their limitations remain, as illustrated above. Structure feature-based algorithms extract
points, lines, and planes in the environment to handle texture-less environments where
the point features cannot be extracted. PL-SLAM [72,73] is built upon ORB-SLAM that
extracts point and line features to track camera motion and perform optimization jointly.
By formulating the representation of the line feature and its reprojection error term, those
line features can be easily integrated with the original point feature-based algorithm.
A new initialization approach is proposed based on only line correspondences that can
estimate an initial map from three consecutive frames. Many excellent point and line
feature-based algorithms that use the line features to improve robustness and accuracy,
especially in texture-less environments, are presented [73–78]. In addition to the algorithm
enhancement, texture-less problems can be solved intuitively by enlarging the camera’s
FOV [79], fish-eye, omnidirectional [80,81], and multi-camera configurations [38–40]; they
can receive more information about environments. To fully utilize those configurations,
suitable camera models are considered, and relative strategies are proposed instead to
migrate those configurations to existing algorithms.

In the context of a texture-less environment, through the comprehensive reviewing,
two useful strategies to handle it can be summarized as follows:

• Fully utilizing current information, in such a situation, on how to extract useful infor-
mation from images is crucial. Direct methods are proposed not only for discarding
feature extraction but also to exploit the intensity information of images, making it
possible to build correspondences with the current system. That is why direct methods
also outperform feature-based methods. Unfortunately, intensity information is unsta-
ble compared with features and can be severely interfered with by photometric noise.
Structure feature extracts useful information from another perspective. Line and plane
are the common geometry similar to points and benefit for building correspondences.
However, introducing these relatively complex geometries to the system undermines
its efficiency and complexity. What is more, because of the limited FOV of the camera,
the system will possibly face a structure-degeneration problem. On the one hand,
direct methods need to reduce the influence of photometric noise such as photometric
calibration and exposure control, or they need to combine with the feature extractor to
provide more stable information, subsequently improving robustness. On the other
hand, structure feature-based methods need to simplify the geometry expression and
reduce system complexity to improve efficiency.

• Gathering more information, a texture-less environment usually means partial texture
deficiency, because it is hard to find somewhere totally without texture. Therefore,
simply enlarging the FOV of the sensor is a useful solution to gather more information
and support to build correspondence. Subsequently, more data are inputted into the
SLAM system, which will cause inefficiency and minimal improvement while in a
rich texture environment. Therefore, reducing data redundancy, improving system
efficiency, and building data connection (for multi-camera) is essential.

3.3. Dynamic Environment

We emphasize the static environment in the traditional visual SLAM problem. How-
ever, a real-world environment is always complex and dynamic. The moving objects
presented in the image can interfere with the pose estimation and cause it to fail. Therefore,
how to solve the SLAM problem in a dynamic environment has attracted attention in recent
years, and is also the foundation of many applications. To solve this problem, several SLAM
algorithms are presented and can be categorized into two types. The first type detects and
removes the dynamic points or objects in front-end tracking; this method sees dynamic
information as outliers, and it processes only static information to simplify the dynamic
problem as a static problem, which is an easy and efficient way but fails to take advantage
of dynamic information. The second type tracks the moving object while performing
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SLAM; this method tracks self-motion by constructing a map with a stationary background
and moving objects that utilize the dynamic information and achieve more accuracy than
removing them. Furthermore, object-oriented SLAM extracts the semantic information of
the environment, including static objects and dynamic objects; joint optimization can be
performed by building a consistent object-level map of the environment.

3.3.1. Discarding Dynamic Information

RANdom SAmple Consensus (RANSAC) [82] is a popular method to remove outliers
and improve system robustness. It randomly samples the data to fit the model contain-
ing the most significant number of inliers. PTAM, ORB-SLAM, and many visual SLAM
algorithms have used this method to remove outliers, which keeps algorithms stable in
slightly dynamic environments, which may fail when a large part of the image is dynamic.
A prior-based adaptive RANSAC algorithm to handle the scene with many dynamic points
was proposed by [83]. This algorithm is similar to the standard version but considers the
distribution of inliers to fit the model accurately. While the above algorithms use RANSAC
as the main scheme for outlier ejection, Ref. [84] proposed a depth edge-based RGB-D
SLAM system. By weighting the points and edges to determine whether it is static or
dynamic by creating the keyframe with a static feature, the frame-to-keyframe registration
is performed for recovering the motion. A dense scene flow representation of the environ-
ment, to detect moving objects, was used by [85]. This algorithm performs coarse-to-fine
estimation, first estimating the state in a regular way of odometry and later discarding
the outliers to obtain more accurate results. For removing the object-level dynamic outlier,
Ref. [86] used a Convolution Neural Network (CNN) to perform image segmentation with
a priori dynamic objects. This algorithm builds upon the ORB-SLAM2 framework and
segments the dynamic object using the Mask R-CNN module; furthermore, it can not only
maintain a map with static points but also synthesize the frame without dynamic object
occlusion by using a background inpainting module. These algorithms use the simplest
way to perform SLAM in a dynamic world to remove the dynamic outlier, which is efficient
and valuable. Still, if we utilized the dynamic information instead of discarding it, we
could create a high-level understanding of the surrounding environment and even improve
tracking accuracy.

3.3.2. Utilizing Dynamic Information

For real-world applications of autonomous robots, a solution of Simultaneous Local-
ization And Mapping (SLAM) and Moving Object Tracking (MOT) is desired, providing
the fundamental function for high-level tasks such as autonomous driving and a higher
understanding of the environment. A new discipline for this problem in theoretical and
practical perspectives was established by [87]. Theoretically, it proposes a mathematical
model to solve the SLAM and MOT problems jointly and builds a solid foundation. From a
practical standpoint, it develops an algorithm to model perception, motion, and data
association. SLAM++ [88] uses the ICP registration to track live images and detect 3D
objects by leveraging prior knowledge through tracking 6DoF objects. An efficient pose
graph optimization is performed with camera and object pose. DynamicFusion [89] is
presented, which can track the non-rigid dynamic scene motion in real time using a single
depth camera. This algorithm warps the scene geometry into the live frame to recover
the scene motion without prior information. MaskFusion [90] is presented to track the
multiple rigid objects in the scene by image-based instance-level semantic segmentation;
this algorithm uses a mask network to update the new frame and then perform the motion
tracking and object-level mapping. However, those two algorithms are designed for indoor
scenes and still fail to utilize dynamic information to enhance the system’s performance.
ClusterSLAM [91] proposes a back end for a stereo visual SLAM system that uses static
and dynamic landmarks. By clustering the motions of dynamic rigid components, a de-
coupled factor graph optimization can be performed to estimate camera egomotion, static
landmarks, and dynamic rigid motion. While the ClusterSLAM is only a back end that
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heavily relies on landmark tracking and association quality, ClusterVO [92] is proposed to
contain a complete pipeline for either camera or moving object estimation. This algorithm
extracts the ORB features and semantic bounding boxes and creates multi-level probabilistic
association. For clustering the landmarks into rigid moving objects, the heterogeneous
CRF module is used and, finally, state estimation is performed with sliding windows BA
optimization. DynaSLAM2 [93] and VDO-SLAM [94] integrate the camera poses, static and
dynamic points, and object motion into a BA factor graph optimization and utilize ynamic
information, result in excellent performance.

In conclusion, discarding dynamic information is a simple but useful strategy to
deal with dynamic problems and is especially suitable for indoor low dynamic scenes,
since moving objects are random and relatively uncommon, simplifying problems from
dynamic to static to maintain an efficient system. Utilizing dynamic information is more
complex and suitable for outdoor scenes because pedestrians or cars usually have regular
movements. However, whether discarding or utilizing dynamic information, localization is
supported mainly by static information. Dynamic points filtering, semantic segmentation
culling, object tracking, and scene flow tracking undermine and eliminate the disturbance
of dynamic information. To this end, while static information is not enough, dynamic
problems become texture-less problems. To deal with a highly dynamic environment,
combining the direct method, structure feature, and FOV expansion is a practical scheme.
Additionally, to enhance those SLAM systems coupled with a deep learning module such
as semantic segmentation, the generalization, efficiency, and complexity of the model must
be considered.

In this section, we first introduce the development of the visual SLAM algorithm
structure, from filtering-based to optimization-based, from single-thread to multi-thread.
This modern pipeline decouples localization and mapping from hard real-time constraints
and changes the real-time requirement of the SLAM algorithm to the odometry algorithm.
This parallelizing pipeline allows researchers to study and modify, helping engineering
applications and academic research. We discuss two real-world problems and how the
SLAM algorithm deals with a texture-less and dynamic environment. In texture-less envi-
ronments, we emphasize direct-based algorithms, one of the two main branches of visual
SLAM. Dense, semi-dense, and sparse methods show the development of this method. Sub-
sequently, other methods that structure feature extraction and FOV expansion are briefly
discussed. Two strategies are adopted in dynamic environments: discarding or tracking the
dynamic points. The former is a simple scheme to handle dynamic environments, turning
a dynamic problem into a standard static problem. The latter utilizes dynamic information
to improve performance, incorporating optical flow, MOT, and semantic segmentation
techniques. For both academic and engineering purposes, we list several open source visual
SLAM algorithms and summarize their sensor inputs and features in Table 2.

Table 2. Open source visual SLAM algorithms.

Odometry Method Algorithm Sensor Feature

Feature-based

Mono-SLAM [58] Monocular EKF-based
PTAM [67] Monocular parallel tracking and mapping

ORB-SLAM [22] Monocular multi-threads
DynamicFusion [89] RGB-D non-rigid dynamic scene motion tracking

ORB-SLAM2 [23] Monocular, stereo, RGB-D multi-configurations
PL-SLAM [72,73] Monocular, stereo point, line feature extraction
Dyna-SLAM [86] Monocular, stereo, RGB-D segment dynamic objects
MaskFusion [90] RGB-D tracks multiple objects

VDO-SLAM [94] RGB-D joint optimization including camera poses, static,
dynamic points, and object motion

PLP-SLAM [78] Monocular, stereo, RGB-D point, line, plane feature extraction



Sensors 2024, 24, 2980 14 of 24

Table 2. Cont.

Odometry Method Algorithm Sensor Feature

Direct

KinectFusion [33] RGB-D dense surface reconstruction
DTAM [69] Monocular monocular dense tracking and mapping

DVO-SLAM [32] RGB-D tracks motion by minimizing both photometric and
geometric errors

LSD-SLAM [28] Monocular large-scale estimation
SVO [38,71] * Monocular, Multiple camera hybrid odometry

DSO [29] Monocular sparse direct formulation
BAD-SLAM [34] RGB-D fast direct BA formulation

* SVO is a semi-direct odometry, using both photometric and geometric error.

4. Visual–Inertial Fusion for UAV Localization

The pure visual SLAM algorithm obtains information from the external surrounding
environments and fails to sense self-motion. Environmental conditions (over-exposure,
dusty conditions, and dark regions) can directly lead to deadly error in the algorithm.
Therefore, IMU is needed to significantly reduce the influence of environmental conditions,
especially in UAV applications [95–97], where robust localization is required to prevent
accidents, such as losing control or dropping from the sky. Since self-motion can be attained
and integrated into the visual SLAM algorithm, there are several advantages to integrating
visual and inertial measurements:

• Inertial measurements provide extra constraints for pure visual back-end optimization
and improve its accuracy and robustness.

• The real-world scale can be recovered for monocular SLAM algorithms to solve the
scale ambiguity problem.

• The high-frame-rate inertial measurements can fast propagate the odometry informa-
tion for autonomous robot agents.

• While visual tracking fails to maintain the odometry, inertial measurements could
provide a temporary prediction for keeping the system working.

At the same time, integrating inertial measurement brings new challenges for the visual
algorithm. On one hand, the high-frame-rate inertial measurement needs to be processed
appropriately to fit the low-frame-rate visual system. On the other hand, the accumulated
bias and error of IMU measurement need to be fixed by utilizing the visual information.
For UAV applications, visual–inertial solutions have gained plenty of interest, and this sensor
configuration significantly improves the algorithm performance in a relatively simple way
against complex structure design, algorithm optimization, and mathematical formulation.

4.1. EKF-Based Visual–Inertial SLAM

Similar to pure visual SLAM, this technique also starts with filtering-based algorithms.
In [98], an EKF-based visual inertial odometry uses static features to constrain inertial
propagation. The algorithm is computationally efficient and can precisely estimate large-
scale real-world environments. ROVIO [99] is proposed to use the photometric error of the
multi-level patch as an innovation term in EKF propagation. By parametrizing features,
the filtering operations can be applied. Overall, this algorithm propagates robot-centric
rotation, translation, velocity, the transformation of IMU and camera, IMU bias, and feature
parameters, and employs QR-decomposition to maintain computational efficiency. These
EKF-based visual–inertial algorithms have experimentally demonstrated robustness and
accuracy by integrating inertial and visual measurements. However, the optimization-
based system could perform better in terms of robustness and accuracy by constructing a
factor graph for joint optimization.
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4.2. BA-Based Visual–Inertial SLAM

In [100], a tightly coupled visual–inertial SLAM was proposed, introducing the IMU
error term integrated with feature reprojection error for joint optimization. A marginaliza-
tion scheme was employed to maintain the visual constraints of keyframes for bounding
computation complexity. ORB-SLAM-VI [101] proposes zero-drift localization by re-using
the map; this algorithm performs optimization within a local window but considers a fixed
window connected by a co-visibility graph and loop closure with a pose graph. In addition
to this, a novel IMU initialization method is proposed that computes scale, gravity direction,
velocity, and biases.

VINS-MONO [102] is a tightly coupled monocular inertial system. In [102], they
propose a robust initialization procedure that performs vision-only initialization and then
aligns metric IMU pre-integration with the visual-only result to recover scale, gravity,
velocity, and biases. For front-end tracking, the system tracks the existing features by the
KLT sparse optical flow algorithm and detects new features to maintain a minimum number
of features in the current frame; simultaneously, IMU measurements within two frames
are pre-integrated. If the system is initialized, a tightly coupled optimization includes
pre-integration terms, features, and poses in a sliding window. Furthermore, they adopt
the DBoW2 to detect and close the loop by 4-DOF global pose graph optimization, since
IMU can provide absolute pitch and roll observation.

ORB-SLAM3 [24] further extended ORB-SLAM—which supports both visual and
visual–inertial sensor configurations, including monocular, monocular inertial, stereo in-
ertial, etc.—and introduced Atlas to save a set of disconnected maps that can be used for
loop detection and relocalization, and which merge smoothly with the current connected
map. This algorithm is based on ORB-SLAM2 and integrates the IMU measurements;
it initializes the system in three steps: visual-only, inertial-only, and visual–inertial joint
initialization. In the tracking thread, the algorithm continuously pre-integrates IMU mea-
surements and estimates the pose by feature extraction and matching. When the tracking is
lost, the system will attempt to predict motion by IMU measurements, and if this does not
work, the relocalization mode will be executed. In the mapping thread, the IMU constraints
will be added to the graph for joint optimization and will perform IMU scale refinement.
In the loop closure thread, while the system detects a loop in ATLAS, two maps will be
merged into one map, and essential graph optimization will be performed. This algorithm
is complete, supports almost all visual sensor configurations and different camera models,
and contains short-term, mid-term, and long-term data associations; therefore, it shows
excellent accuracy and robustness.

VI-DSO [103] and DM-VIO [104] are monocular visual–inertial odometry, which
minimize the photometric errors of sparse pixels with high-intensity gradient and IMU
measurement errors. VI-DSO introduces a novel marginalization procedure called dynamic
marginalization that maintains several marginalization priors to adapt the scale estimation
dynamically. Preventing the scale is fixed by the marginalization prior, while it needs to
be better estimated. DM-VIO proposes delayed marginalization to solve marginalization
that is hard to reverse. This approach can inject the IMU information after initialization to
the pure visual prior and replace the prior. At the same time, the scale estimate changes in
the same way as VI-DSO. Additionally, a weighted photometric BA is proposed to adjust
the weight of visual residuals dynamically. Those algorithms improve the marginalization
procedure to better compute the priors in BA optimization. DM-VIO exceeds the state-of-
the-art visual–inertial stereo algorithms and has shown its effectiveness. Table 3 summarizes
the above algorithms with three basic components.

In conclusion, this technique builds upon visual SLAM and achieves excellent per-
formance, in terms of robustness and accuracy, by integrating IMU measurements. Mean-
while, in UAV applications such as unknown-space perception, industrial-defect inspection,
and military operations, this technique provides a suitable solution for localization. Specifi-
cally, for navigation, robust localization enables the UAV to fly in challenging environments
with low illumination, over-exposure, and poor texture. For exploration and reconstruction,
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accurate localization provides a solid foundation to improve the quality and consistency of
reconstruction. For flying control, more body states such as velocity and accelerated veloc-
ity and high-rate odometry information propagated by IMU support aggressive control to
utilize the flexibility of UAV.

Table 3. Open source visual–inertial SLAM algorithms.

Algorithm Odometry Method Optimization Loop Closure

MSCKF [98] feature-based EKF-based -
OKVIS [100] feature-based Local BA -
ROVIO [99] direct EKF-based -

ORB-SLAM-VI [101] feature-based Local BA PGBA
VINS-Mono [102] feature-based Local BA PGBA

VI-DSO [103] direct Local BA -
ORB-SLAM3 [24] feature-based Local BA, GBA PGBA

DM-VIO [104] direct Local BA -

5. Learning-Based Enhancement for UAV Perception

In UAV applications, obstacle avoidance, path planning, and real-time reconstruc-
tion, a dense or semi-dense map will be required. However, for robustness, accuracy,
and efficiency of localization, visual SLAM algorithms usually retain a sparse map for joint
optimization. To this end, another denser map is constructed by obtaining depth images
and associated odometry. Depth images are projected using a camera model to produce
a dense point cloud, which is aligned by the odometry of the SLAM algorithm [105,106].
This approach usually requires depth sensors, such as Realsense D435i, Realsense D455,
and Kinect v2, to provide depth images. This approach is limited by the performance of
depth sensors like RGB-D cameras, which will be disrupted by sunlight and will fail to
measure the depth of outdoor long-range scenes. Therefore, gathering the depth from origi-
nal visual SLAM inputs gains excellent interest, reducing the sensors’ cost and improving
the synchronization between depth image and odometry, since the depth sensor probably
needs to be better synchronized with SLAM algorithm inputs. With the advancement of
GPUs, Jetson developer kits such as Jetson Xavier NX, Jetson TX2, and Jetson Orin integrate
GPUs into embedded devices to enable the implementation of learning-based modules.
These low-cost devices are suitable for autonomous mobile robots such as UAVs and have
been successfully applied in commodity drones such as Skydio. There are some advantages
of learning-based enhancement for UAV perception:

• Learning-based methods are good for extracting texture information in images, and
usually perform better than traditional methods.

• Learning-based perception uses the same inputs as in localization, improving consis-
tency and, at the same time, saving the cost of sensors.

• With the rapid development of GPUs and Artificial Intelligence, learning-based meth-
ods have become mainstream.

Similar to embedded CPUs, embedded GPUs also suffer from power limitations that
require the implemented learning-based module to be simple and efficient.

5.1. Monocular Depth Estimation

Monocular depth estimation, a technique to estimate the depth of pixels in 2D images,
is significantly enhanced by deep learning. CNNs can extract richer and more complex
feature representations than traditional approaches, which usually rely on hand-crafted
features, scene assumption, and manual parameters adaption, subsequently achieving
better results for depth estimation. In [107], two CNN stacks were used for monocular
depth estimation: one stack to estimate the global scale depth, and another to refine the
local detail. In [108], the same multi-scale architecture as in [107] was adopted to predict
depth, surface normals and semantic labels. In [109], a unified deep CNN framework was
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used to learn the potential of a continuous Conditional Random Field (CRF), estimating the
depth of general scenes without geometric priors and extra information. On the contrary,
Ref. [110] did not rely on refinement or CRF, and proposed a full CNN architecture to
estimate depth. This architecture was built upon ResNet, and it outperformed previous
methods. In [111,112], the sparse pixel depth provided by the visual SLAM algorithm was
used to improve the accuracy and reliability of depth estimation. Monocular depth esti-
mation algorithms rely on deep learning-based methods that focus on estimation accuracy
but with increasing computational complexity. To this end, FastDepth [113] proposed a
lightweight encoder–decoder network to efficiently estimate the monocular depth map,
which achieves comparable accuracy with embedded GPU devices in real time. In [114],
a proper trade-off was achieved between accuracy and efficiency, assembling two encoder–
decoder subnetworks to solve spatial information loss caused by the feature extractor.
These efficient networks provide an alternative solution for UAV depth sensing, which gets
rid of the limitations of depth sensors. Incorporating accurate localization, a promising
dense depth map can be constructed.

5.2. NeRF-Based SLAM

Neural implicit fields (NeRF) [115] are novel representations that reconstruct high-
fidelity surfaces and arbitrary view renderings of scenes. Compared to traditional point
cloud reconstruction, NeRF-based reconstruction produces realistic illumination and high-
quality images, resulting in excellent performance of complex scenes and detailed re-
construction. Visual SLAM incorporated with NeRF for camera tracking and dense re-
construction has recently been investigated and called NeRF-based SLAM. Unlike the
traditional dense visual SLAM, this technique overcomes the drawback of failing to jointly
optimize the structure and poses since this implicit representation is differentiable. The first
NeRF-based SLAM to track an RGB-D camera pose in real time and to jointly optimize
poses with a dense map was iMAP [116]. Following the traditional visual SLAM pipeline,
tracking and mapping are run in two parallelizing threads to decouple the hard real-time
constraints. NICE-SLAM [117] further improves the efficiency of tracking and mapping,
incorporating multi-level local information. This algorithm is more scalable and robust
than other NeRF-based SLAM algorithms. NeRF-based SLAM is a new trend in visual
SLAM research. Therefore, some problems still need solutions. Urgently, the efficiency of
algorithms needs to be improved to reduce the hardware requirement, which is usually
a desktop setup. More recently, 3D Gaussian splatting [118] has been used for real-time
radiance field rendering. By improving efficiency, these algorithms can be applied in
UAVs, which will be a milestone for UAV reconstruction. In addition, current NeRF-based
SLAM algorithms only support small-scale indoor scenes, with a solution still needed for
large-scale outdoor scenes.

Regular pipelines of the above three schemes are depicted in Figure 5. In conclusion,
along with the development of GPU-based hardware, the accurate and excellent perfor-
mance of learning-based techniques for UAV perception have shown us new solutions.
Lower sensor complexity and better performance make UAVs more simple and powerful.
However, due to the limited computational source of embedded devices, the main prob-
lem or research direction for these learning-based modules to be applied in UAVs is the
efficiency of algorithms.
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Figure 5. Three schemes to build a dense map (experiment dataset [119]): (a) and (b) use different
ways to produce depth image, the former measuring depth by depth sensors, while the latter estimates
depth by deep learning modules and reconstructs a dense map by retrieving the pose of the depth
images; (c) a NeRF-based SLAM produces a NeRF representation of environments. Other dense
SLAM algorithms usually result in poor performance because of the lack of joint optimization.

6. Conclusions

This paper reviewed the development of visual SLAM in three aspects: real-time
performance, texture-less environments, and dynamic environments. Introducing state-
of-the-art and recently presented algorithms, we illustrated the mainstream of pipeline
design and the two main applied environment problems. Furthermore, localization and
perception for UAV applications were discussed, based on visual SLAM. For localization,
we emphasized the widely applied visual–inertial SLAM to show how inertial measure-
ments improve UAV localization and subsequently improve other tasks such as exploration.
For perception, we demonstrated the capabilities of the newly presented learning-based
methods. GPU integrated into embedded devices can make implementing learning-based
modules for UAV perception possible.

Through decades of development, visual SLAM has become more complete and
powerful, providing outstanding localization and mapping for various robotic applica-
tions. Recent rapidly developed learning-based approaches have continued to improve
this technique, to transform traditional hand-crafted algorithms into data-driven algo-
rithms, replacing conventional feature extraction, odometry, and even the whole system.
However, while these data-driven algorithms perform better than hand-crafted ones, their
generalization ability, interpretability, and efficiency are still open to question. Meanwhile,
traditional visual SLAM modules can be improved for more challenging environments,
hardware, and motion. To provide a strong foundation for UAV applications, multi-sensor
fusion is an efficient scheme for localization and perception. Among these configurations,
visual–inertial fusion is undoubtedly a simple and effective way to improve localization.
Multi-camera fusion also improves perception and localization by enlarging the FOV.
For multiple data inputs, efficiently processing them could be a crucial problem that filters
redundant or wrong information and uses essential information to enhance performance.
Additionally, the later keyframe decision, BA optimization, and map management need to
be considered to adjust multiple inputs so that they can be fully utilized.

To handle complex scenes and missions, autonomous UAVs are required to be more
reliable and intelligent. Therefore, robust localization and intelligentized perception are
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essential trends in autonomous UAV applications. Further explanations are discussed
as follows:

• Robust localization: UAV localization may not be so accurate but is robust, espe-
cially for applications that require the UAV to cross various scenes, such as unknown
space exploration. As in military investigation, dusty disturbance, complex environ-
ments, and the requirement for fast movement severely interfere with the data inputs.
In cave or tunnel exploration, partial darkness, and reduced environmental texture
also weaken information support for localization. These potential factors bring chal-
lenges to UAV localization, and only robust UAV localization can deal with various
challenging environments, meeting the needs of the day-by-day growing complexity
of applications.

• Intelligentized perception: A regular dense point cloud map or grid map is built
for point-driven navigation; however, it is not adequate to support more and more
intelligent missions, such as object searching in an unknown space. For instance,
in disaster rescue, the regular map for navigation only supports the UAV to mechani-
cally search victims, and it is inefficient. Intelligentized perception means a high-level
understanding of surrounding environments: with this understanding, the UAV can
infer potential victims by obtaining environmental clues, such as blood or a piece of
clothing. Moreover, manual intervention can be significantly reduced and UAVs can
take charge of strategy decisions, parameter adjustment, and risk prevention.

Additionally, there is the popular concept of lifelong SLAM [120] with continuous
localization and mapping in the long term. Robust localization meets the needs of long-term
localization in complex and changing environments. In addition, intelligentized perception
helps the system to understand changes in scenes and objects for long-term mapping.
Moreover, this understanding supports the system in mission planning and decisions.

This paper summarizes the research, including visual SLAM, visual–inertial SLAM,
and learning-based SLAM, from different aspects, to comprehensively understand this
technique. Furthermore, we have discussed the problems, advantages, and future trends of
these relative approaches. With the advent of Artificial Intelligence, it is worth reviewing
these conventional approaches, to ascertain potential and understand the foundation of
this technique.
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