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Abstract: In this study, we propose a knowledge distillation (KD) method for segmenting off-road
environment range images. Unlike urban environments, off-road terrains are irregular and pose a
higher risk to hardware. Therefore, off-road self-driving systems are required to be computationally
efficient. We used LiDAR point cloud range images to address this challenge. The three-dimensional
(3D) point cloud data, which are rich in detail, require substantial computational resources. To
mitigate this problem, we employ a projection method to convert the image into a two-dimensional
(2D) image format using depth information. Our soft label-based knowledge distillation (SLKD)
effectively transfers knowledge from a large teacher network to a lightweight student network. We
evaluated SLKD using the RELLIS-3D off-road environment dataset, measuring the performance
with respect to the mean intersection of union (mIoU) and GPU floating point operations per second
(GFLOPS). The experimental results demonstrate that SLKD achieves a favorable trade-off between
mIoU and GFLOPS when comparing teacher and student networks. This approach shows promise
for enabling efficient off-road autonomous systems with reduced computational costs.

Keywords: knowledge distillation; off-road; LiDAR point cloud; self-driving; point cloud projection;
range image

1. Introduction

With the increasing use of autonomous systems in vehicles, detection in the real world
has become a crucial task [1]. Among the various detection tasks, identifying a traversable
region to ensure safe driving in changing conditions accounts for a significant proportion of
the system’s workload. This task can be divided into two parts: performance in urban and
off-road environments [2,3]. Urban environments are equipped with signals such as traffic
lights, road lanes, and kerbs on pavements. In contrast, off-road environments include
irregular driving conditions and obstacles such as trees, stones, and puddles. In addition,
off-road environments lack clear boundaries, such as lanes and kerbs; therefore, there is
a lack of detail about traversable regions in off-road environments compared with urban
areas. Therefore, it is advantageous to use three-dimensional (3D) spatial information to
recognize off-road environments. LiDAR sensors are a suitable choice for this. Existing
research on determining driving areas has primarily been conducted through segmentation
based on images [4–6]. However, because an image contains only two-dimensional (2D)
information, it is difficult to determine the specific shape, space, and depth of the real
world [7]. This problem is being addressed by the emergence of 3D point cloud data,
leading to more effective solutions.

As 3D point cloud technology draws attention and evolves, various LiDAR-based stud-
ies have flourished. Notably, areas such as SLAM [8], object detection [9,10], and semantic
segmentation [11] have seen significant developments. Through these studies, tasks such as
terrain analysis, obstacle avoidance, and environmental monitoring in autonomous driving
can be accomplished. Substantial research is needed to further the progress of autonomous
driving in light of these advancements. However, 3D point cloud data comprise higher
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dimensions than images, which are larger, more complex, and irregular. This means that
point cloud data are complex to process and require a higher computational cost, meaning
that the segmentation of a point cloud is challenging [12–14]. Therefore, a method has
been devised to project a 3D point cloud onto a 2D image and use it as a range image [15].
Unlike 3D point clouds, range images can be processed as images. In addition, because
each point is projected with a pixel, it contains the distance and depth information in the
form of a 2D image. This means that the point cloud can be used with less computational
power, but with richer information than the 2D image.

On an unpaved road, the overall driving area is rough and dangerous; therefore,
the risk of damage to hardware is higher than that on a paved road. In the event of
hardware damage, emergency services and repair centers are well established in urban
areas. However, off-road environments lack sufficient infrastructure compared to the
level of risk, as seen in urban areas. In addition, because it is used for purposes such as
reconnaissance missions, agriculture, and mining industries, it is challenging to schedule
frequent maintenance due to its extended operational time [16–18]. It is burdensome to
mount high-priced, high spec equipment for hardware with these issues that is used in
off-road environments; thus, conducting studies to reduce computational cost in such
environments is crucial [18]. Therefore, network compression is attracting attention for
reducing computational costs when processing point clouds, images, and various other
forms of data in deep learning applications [19]. Many studies have been conducted
on knowledge distillation (KD), which divides the knowledge of a large, cumbersome
teacher network into lightweight student networks [20–22]. In this study, we proposed
a KD method for segmenting range images in off-road environments. The experiments
were performed using the off-road environment dataset RELLIS-3D. The proposed soft-
label knowledge distillation (SLKD) performs KD on off-road range image segmentation,
obtaining both depth information and segmentation output at a low computational cost. In
summary, the main contributions of this paper are summarized as follows:

• We propose soft label knowledge distillation (SLKD) for off-road range view images.
To the best of the authors’ knowledge, SLKD is the first method that distills knowledge
for semantic segmentation of 3D point cloud range image in off-road view;

• We conduct experiments on the RELLIS-3D benchmark and demonstrated that SLKD
achieves a significant improvement in mIoU performance when using the same com-
putational costs;

• We evaluated the distillation performance with several student encoders, demonstrat-
ing the robustness of SLKD.

2. Related Works
2.1. Point Cloud Processing

Point cloud data have three main characteristics. First, as shown in Figure 1a, depend-
ing on the sensor’s measurement position, the target object is measured densely in some
areas and sparsely in others. This is called an irregularity. Second, as shown in Figure 1b,
there exists a feature that does not follow any structural pattern or rule, and the distance
between all points is not constant; this is called an unstructured feature. Third, as shown in
Figure 1c, all points are not aligned and, as a set, the point clouds are permutation-invariant.
This characteristic is expressed as an unordered point cloud. Various methods have been
devised to address irregular, unstructured, and unordered point clouds.

PointNet [12] was the first method designed to directly process a point cloud. Each
layer of the network processes all the points identically or independently. Max pooling
is used to learn the criteria for choosing interesting informative points and to encode
the basis for these criteria. Next, the results of the max pooling were collected using FC
layers and converted into a global descriptor. This descriptor is used for entry shape or
per-point labels. However, PointNet does not fully reflect the information in the metric
space in which a point exists when learning the local structure. To overcome this problem,
PointNet++ [23] was developed. PointNet++ introduced hierarchical natural networks
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that nested the partitioning of the input point set and recursively applied PointNet to this
structure. Thus, local features can be learned with improved contextual scaling. With this
process, PointNet++ enables the capture of both local and global features of the point cloud,
making it more effective for various applications, such as 3D object recognition.

Figure 1. Characteristics of the point cloud data. (a) Represents irregularity; (b) represents the
unstructured nature; (c) represents the unordered nature.

Instead of a raw point cloud, the voxel-based method uses points in the form of a
voxel that divides the 3D space into a certain grid. VoxelNet [24] creates features of voxels
using the points in each voxel through a voxel feature encoding (VFE) layer. Voxels that
obtain features integrate the local voxel features through 3D convolution. The point cloud
is then utilized as an input to the region proposal network. SqueezeSeg [15] proposed a
method for reorganizing a point cloud into a spherical range image for use as an image.
The label map for each point was output by utilizing the reconfigured point cloud as the
input for the CNN. The label map was then reinforced using a conditional random field
(CRF) implemented as a recurrent layer. Similarly, SalsaNext [25] processes the full 3D
LiDAR point cloud by projecting it onto a 2D range image. SalsaNext is the next version
of SalsaNet [26] and has an encoder–decoder architecture, where the encoder unit has a
set of ResNet [27] blocks and the decoder part combines up-sampled features from the
residual blocks. A pixel-shuffle layer was added to the decoder, whereas SalsaNet’s ResNet
encoder blocks were replaced with a new residual dilated convolution stack. Methods for
applying the 3D point cloud range image as an input to the U-Net [28] structure have also
been studied [29].

2.2. Traversable Region Detection

A method to determine the traversable region during self-driving was developed for
semantic segmentation. Semantic segmentation is a computer vision task that involves
precise labeling of individual pixels in an image or video to determine the specific class
or category to which each pixel belongs. Applying semantic segmentation to a road envi-
ronment can help us to understand the class to which each pixel belongs, such as roads,
sidewalks, vehicles, and pedestrians. Similarly, segmentation in the point cloud can be
considered a task to determine the class to which each point belongs. The gated-shape CNN
(GSCNN) [30] utilizes two streams: a regular stream and a shape stream. Verifying the
network using the Cityscapes dataset [31] demonstrated sophisticated traversable region
detection in an urban environment. Xie et al. [32] proposed a semantic segmentation frame-
work that unified transformers using lightweight multilayer perception (MLP) decoders.
The proposed SegFormer [32] showed robustness in the evaluation of a cityscape dataset
and identified drivable areas. Yan et al. [33] proposed a fusion-based approach that uses
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both a camera and LiDAR for semantic segmentation. The performance of the proposed 2D
priors-assisted semantic segmentation (2DPASS) was verified with semantic KITTI [34], a
LiDAR point cloud dataset for urban environments. Cylinder 3D [35] also effectively per-
formed 3D urban view semantic segmentation using the semantic KITTI. Although studies
on determining traversable regions for urban environments are being actively conducted,
studies on off-road views are lacking. For urban scenes, there are various datasets such
as Cityscapes [31], Semantic KITTI [34], Nuscenes [36], Waymo [37], and BDD100K [38].
In contrast, there are fewer datasets available for off-road scenes. Here, the three main
datasets for off-road scenes are RELLIS-3D [39], RUGD [40], and Deep-Scene [41].

Off-road self-driving can be used in a variety of fields; however, compared to urban
areas, it is difficult to collect data owing to the unstable and rough driving environment.
Therefore, this field needs more research. This study was conducted to determine the
traversable regions in an off-road environment rather than in an urban scene.

2.3. Knowledge Distillation

Recently, various KD techniques have been proposed to reduce the computational
cost of deep learning [42–45]. The goal of KD is to transfer the knowledge of a large,
cumbersome teacher network to a lightweight student network. Many types of KD have
been studied, and knowledge transfer can be broadly divided into response-, feature-, and
relationship-based.

Response-based knowledge transfer generally refers to the response of the last output
layer of a teacher network. This can be considered as directly mimicking the final prediction
of the teacher network. Hinton et al. [22] proposed logit distillation using response-based
knowledge. The proposed vanilla KD reduces the performance gap between the two
models by distilling knowledge and allows for more efficient use of the student network.
Feature-based knowledge uses the characteristics of deep learning with multiple layers. In
addition to the response of the last output layer used in the response-based knowledge, a
feature map, which is the output of the middle layer, is used as feature-based knowledge.
The feature map of the teacher network can be used as knowledge of the student network.
Romero et al. [46] proposed a method for directly matching a teacher’s feature activation
to that of a student. The proposed FitNets performs even better than the teacher network
using fewer parameters. Response-based and feature-based knowledge utilize the specific
layer’s output of the teacher model as knowledge. Relation-based knowledge explores the
different layers of data samples. Yim et al. [42] proposed a method to distill knowledge by
comparing the relationships between the features of teacher and student networks. The
proposed flow-of-solution process (FSP) summarizes the relationships among feature map
fairs. Using the proposed method, they achieved faster optimization.

The SLKD proposed performs logit distillation using response-based knowledge.
Using our SLKD, we can effectively transfer a teacher’s knowledge to a student in the range
image of an off-road environment. To the best of our knowledge, SLKD is the first study
that applies KD-to-LiDAR point cloud range images in off-road environments.

3. Method
3.1. RELLIS-3D

Many self-driving datasets exist, including the Semantic KITTI, BDD100K, Cityscapes,
Waymo, and nuScenes. However, the aforementioned datasets and other public datasets
primarily represent urban environments. Off-road environment datasets are unusual
compared to urban autonomy datasets because of the difficulties in collecting irregular
driving environments. RELLIS-3D, RUGD, and Deep-Scene datasets include off-road
environments. Among these, RELLIS-3D is the only one that includes LiDAR scans, unlike
RUGD and Deep-Scene. The RELLIS-3D dataset was deployed for robust and safe semantic
scene understanding in off-road environments. This dataset was collected at the Texas
A&M university campus and includes RGB camera images, LiDAR point clouds, etc. It
contains annotations for 13,556 LiDAR scans and 6235 images and consists of a total of 20
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classes such as dirt, grass, tree, and pole. However, in RELLIS-3D’s LiDAR scan, as shown
in Figure 2, grass, trees, and bushes account for approximately 80% of the total point labels,
and the distribution by point class is unbalanced. Various methods exist for resolving
class imbalances in a dataset, such as undersampling [47], SMOTE [47], and multiclass
classification [48]. Unlike in a city, distinguishing between traffic lights and signs during
off-road autonomous driving is meaningless.

Figure 2. Number of points per class in RELLIS-3D. Grass, bush, tree classes account for about 80%
of the total point labels.

Therefore, Viswanath et al. [48] proposed a multiclass classification that integrates
objects such as people, pillars, and trees into one class called obstacles, and also integrates
other classes into a total of four classes, including traversable and non-traversable areas
and the sky. The proposed method performed pooling for an image class of RELLIS-3D. In
addition, when determining traversable regions, class pooling can improve the accuracy by
correctly judging a previously incorrectly determined class as a pooled class [49]. Therefore,
in this study, pooling [48] of the point classes of this dataset was performed, as shown in
Table 1, to resolve the class imbalance and obtain efficient segmentation performance.

Table 1. RELLIS-3D point clouds class pooling.

Class Sub-Class

Sky Sky
traversable region Grass, Dirt, Asphalt, Concrete, Puddle,

Mud
Non-traversable region Bush, Void, Water, Deep Water

Obstacle
Vehicle, Barrier, Log, Pole, Object, Building,
Person, Fence, Tree, Rubble

3.2. LiDAR Point Cloud Projection

Usually, a 3D LiDAR point cloud is represented by Cartesian coordinates (x, y, z) and
additional features such as intensity and RGB values. However, processing in dimensions
higher than those of image data requires more computational resources. So, Andres et
al. [11] proposed a method for converting a 3D LiDAR point cloud into an image using
spherical surface mapping. This method of converting a 3D LiDAR point cloud into a 2D
range image form facilitates processing of the point cloud and incurs a lower computational
cost. Each point (x, y, z) of the data was mapped to an image coordinate (u, v) by using the
following equation: (

u
v

)
=

( 1
2 [1 − arctan(y, x)π−1]w[

1 − (arcsin(z, r−1) + fdown) f−1]h

)
, (1)
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where (w, h) are the width and height, respectively, and r represents
√

x2 + y2 + z2. f
is defined as the sensor’s vertical field of view, f = | fdown|+

∣∣ fup
∣∣, where fdown and fup

represent the LiDAR’s vertical field of view in the downward and upward directions, re-
spectively.

Additionally, the 2D range image can be smoothed as a continuous image [50]. How-
ever, the post-process after the conversion of the raw 3D point cloud into a 2D range
image may lose many of the details of the original 3D information. Also, that kind of post-
processing process can distort the noise more than the original data and may also require
additional computational resources. Since this paper aims to determine the traversable re-
gion for the raw point cloud, only the described transformation is used. Figure 3 illustrates
the conversion of a 3D point cloud into 2D range image using RELLIS-3D. In this study, we
converted RELLIS-3D point clouds into range images with class pooling, as mentioned in
Section 3.1. In order to use point cloud in a form as similar to image processing as possible,
point cloud projection was used as a network input in the form of [w × h × 3]. After the
spherical projection, three channels consisting of (r, z, i) are used to resemble an RGB image.
This utilizes the distance information contained in the LiDAR point cloud but allows it to
be used in the same form as image processing.

Figure 3. Three-dimensional (3D) point cloud projection to 2D range image. Projection example
shows semantic labeled point clouds converted into range images. All points are mapped onto pixels
of the range image.

3.3. Network Selection

In deep learning, KD is used to transfer knowledge from cumbersome teacher net-
works to smaller and simpler student networks [22]. To transfer knowledge, the teacher
network must have a high prediction accuracy, and the student network must require less
computation than the teacher network. In this study, a model that performs with high
prediction accuracy for the RELLIS-3D dataset was applied as the teacher network based
on four benchmarking results conducted when the dataset was released. In traversable
region detection performed with RELLIS-3D images or point cloud input, the four networks
were GSCNN [30], HRNet+OCR [51], KPConv [52], and SaslaNext [25], where GSCNN
showed the highest accuracy in an off-road environment. Through this benchmarking, the
GSCNN was used as a teacher network to distil the knowledge of the proposed method.
The GSCNN is designed for the sharper prediction of object boundaries. It consists of
a regular stream, a shape stream responsible for shape processing, and a fusion module
that fuses information from the two streams. A regular stream is composed of a backbone
architecture that extracts the semantic region features. The shape stream consists of a gated
convolution layer (GCL) and local supervision and is designed to process boundary-related
information. The results for the two streams were fused using an Atrous Spatial Pyramid
Pooling (ASPP) fusion module. In addition, to verify the performance of the GSCNN, the
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segmentation accuracy was compared using DeepLabV3+ [53] as a baseline. Thus, the
GSCNN proved to be an effective network for the clear prediction of object boundaries.
Because DeepLabV3+ was initially chosen as a baseline for comparison with GSCNN, this
likely means that DeepLabV3+ performs reasonably well on the task at hand and fits the
problem domain. Thus, using DeepLabV3+ as a student network yields intuitive results for
the proposed distillation method.

3.4. Soft-Label Knowledge Distillation (SLKD)

Hinton et al. [22] performed logit distillation using response-based knowledge. The
proposed method defines the distillation loss using the pre-trained teacher’s soft label and
the student’s soft prediction. In addition, student loss was defined using the student’s
hard predictions and the ground truth. Using these two losses, the teacher’s knowledge
was successfully transferred to the student. The main goal of the proposed SLKD is to
reduce the computational cost of traversable region detection using range images in off-
road environments. The range image created by projecting a point cloud has limited
heights of 16, 32, 64, 128, etc., owing to the characteristics of the LiDAR sensor. As the
number of channels increases, the price of LiDAR sensors also increases, and it is thus
difficult to always use LiDAR with a high number of channels. As a result, range images
inevitably lack vertical detail compared with regular camera images. Therefore, when
using hard predictions for student loss, similar to vanilla knowledge distillation (KD), it
is important to consider that the training process may be restricted to capturing detailed
vertical information. Considering this, it was expected that performing KD based on soft
prediction—which includes continuous probabilities in the range image and considers
uncertainty—would yield superior results. Based on this observation, we propose soft-label
knowledge distillation (SLKD) for off-road environment segmentation in the form of a
range image.

Using the RELLIS-3D range image, we first trained the teacher network using the pre-
trained teacher network, and SLKD had the purpose of minimizing the student network’s
loss as follows:

Ls = ∑
i∈input

LCE(Ns(i), GT), (2)

where LCE is the cross-entropy loss, N is the network, and GT is the ground truth. While
training the student network, the teacher network generated a prediction for the input
range image. The distillation loss is defined as follows:

Ld = LCE(Ns(i), NSt(i)), (3)

which is the cross-entropy loss between the teacher network’s soft labels and the student
network’s soft predictions. Student loss is defined as follows:

Ls = LCE(Ns(i), GT). (4)

Vanilla KD uses the student loss as the cross-entropy loss of the student network’s
hard prediction and ground truth. Using the soft prediction of a student network can affect
the backpropagation to obtain a softer probability distribution and less label noise. Total
loss is defined as follows:

Ltotal = w1LCE(Ns(i), Nt(i)) + w2LCE(Ns(i), GT), (5)

where w1 and w2 are the user parameters. The total loss supports the student network to
follow the teacher network’s distribution and compensates for the weak vertical information
of the point cloud range image. An overall pipeline of the proposed method is shown as
Figure 4.
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Figure 4. SLKD architecture. Input range image is constructed with 3 channels including (r, i, z). The
pre-trained teacher model generates a soft-label and the student generates soft-label prediction, which
creates distillation loss. Total loss is defined by the summation of student loss and distillation loss.

4. Results

In this section, we describe the implementation details of the proposed method SLKD.
We evaluated the proposed method using the RELLIS-3D dataset.

4.1. Implementation Details

The proposed method is implemented using PyTorch. For training, we used a reso-
lution of 64 × 1440 for the point cloud range image. The equipment used included one
graphics processing unit (GPU), specifically the NVIDIA RTX A5000. For all the exper-
iments, the total batch size was 16 and the learning rate was 1 × 10−6. The optimizer
used was stochastic gradient descent, with each training run consisting of 100 epochs. In
addition, we set user parameter w1 = w2 = 0.5. Following conventional segmentation, we
adopt the evaluation metric as the mean intersection of union (mIoU) as follows:

mIoU =
1
N

N

∑
i=1

TP
TP + FP + FN

, (6)

where TP, FP, FN represent TruePositive, FalsePositive, FalseNegative. In addition, to eval-
uate operational efficiency, GFLOPS was used for comparison.

4.2. Evaluation

The RELLIS-3D dataset consisted of 13,556 LiDAR scans for the training, testing, and
validation of 7800, 2413, and 3343 scans, respectively. Tables 2–4 list the experimental
outputs obtained using the RELLIS-3D LiDAR scan validation set. For student networks,
Kim et al. [54] showed that the MobileNet _v2 [55] encoder-based DeepLabV3+ is the most
efficient architecture for several segmentation networks. In addition, to verify the perfor-
mance of the SLKD, we tested the method with MobileNet_v2_120d and MobileNet_v3
(small and large) [56] encoders. MobileNet is a CNN architecture designed for efficient and
lightweight deep learning tasks, particularly on mobile and edge devices. The “120d” in
MobileNetv2_120d indicates the width multiplier, which controls the number of channels in
each layer. We use for evaluation that having more parameters produces a better output in
SLKD. Also, MobileNet_v3_large and small differ in the number of parameters they have.
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Table 2. Evaluation results of SLKD on RELLIS-3D. The values are in %. Increased value is shown
as bold.

Model Encoder Sky Traversable Non-Traversable Obstacle mIoU

Teacher (GSCNN) 95.76 44.50 45.20 53.45 59.73

MobileNet_v2 95.68 42.00 37.17 51.08 56.48

MobileNet_v2 (SLKD) 95.55 42.63 37.93 53.04 57.28

MobileNet_v2_120d 95.56 41.44 36.85 52.00 56.46

Student (DeepLabV3+) MobileNet_v2_120d (SLKD) 95.19 42.05 37.44 52.33 56.75

MobileNet_v3_large 94.59 38.23 34.01 50.60 54.37

MobileNet_v3_large (SLKD) 95.56 40.20 34.37 52.67 55.70

MobileNet_v3_small 94.95 42.28 36.78 51.01 56.25

MobileNet_v3_small (SLKD) 94.45 39.20 29.49 54.42 54.39

Table 3. GFLOPS and parameter size of teacher and student networks.

Model Encoder mIoU GFLOPS Parameter Size

Teacher (GSCNN) 59.73 8493.46 137.27M

MobileNet_v2 56.48
50.46 2.71M

MobileNet_v2 (SLKD) 57.28

MobileNet_v2_120d 56.46
84.99 5.04M

Student (DeepLabV3+) MobileNet_v2_120d (SLKD) 56.75

MobileNet_v3_large 54.37
52.13 4.71M

MobileNet_v3_large (SLKD) 55.70

MobileNet_v3_small 56.25
32.88 2.16M

MobileNet_v3_small (SLKD) 54.39

Table 4. Ratio between mIoU and GFLOPS.

Model Encoder mIoU/GFLOPS

Teacher (GSCNN) 0.007

MobileNet_v2 1.119

MobileNet_v2 (SLKD) 1.135 (+0.016)

MobileNet_v2_120d 0.664

Student (DeepLabV3+) MobileNet_v2_120d (SLKD) 0.667 (+0.003)

MobileNet_v3_large 1.042

MobileNet_v3_large (SLKD) 1.068 (+0.026)

MobileNet_v3_small 1.170

MobileNet_v3_small (SLKD) 1.654

Table 2 shows IoU per class and mIoU of the validation set. As shown in Table 2, the
SLKD performed better than the student network without distillation. The original student
network DeepLabV3+ with MobileNet_v2, MobileNet_v2_120d, and MobileNet_v3_large
achieved 56.48%, 56.46%, 54.37% mIoU, respectively, whereas applying SLKD achieved
mIoU values of 57.28%, 56.75%, and 55.70%, respectively. In particular, when SLKD is
applied to MobileNet_v3_large, it improves mIoU by 1.34% compared to before using our
method. Moreover, in the case of MobileNet_v2 and MobileNet_v2_120d, IoU of the ‘Sky’
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class decreases while the IoU for other classes increases. This indicated that network’s
prediction performance is stably normalized with SLKD. In the case of MobileNet_v3_large,
IoU increased for every class, and it can be seen that SLKD successfully improved the
network’s performance.

The semantic segmentation results of the RELLIS-3D dataset are shown in Figure 5. In
Figures 5 and 6, the blue, green, yellow, and pink colors represent the sky, traversable, non-
traversable, and obstacle regions, respectively. We can observe that the student network
without distillation in Figure 5c predicts the obstacle class comprehensively compared to
the teacher or ground truth. However, with the proposed SLKD, Figure 5d shows a more
detailed prediction following teacher’s predictions. In addition, by comparing (e) and (f),
(g) and (h), and (i) and (j) in Figure 5, SLKD-applied segmentation outputs are closer to
the ground truth than those of the original networks. The white boxes in Figure 5 show
that the predictions of the non-traversable regions are stable after applying SLKD. For
example, Figure 5c–i, in the white box, predict sparsely in the non-traversable region so that
this can cause wrong motion planning, leading to collisions or unstable areas. However,
using our proposed method, with the same computational cost, the non-traversal area
densely appears, as shown in Figure 5d,f,h,j. In addition, we can see that MobileNet_v2
performance is improved more than that of MobileNet_v2_120d. This suggests that having
more parameters does not always guarantee a higher receptive capacity for the teacher
network’s knowledge.

(a)

(b)

(c)

(d)

Figure 5. Cont.
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(e)

(f)

Figure 5. Semantic segmentation results of RELLIS-3D. (a) Ground truth; (b) teacher (GSCNN); (c)
DeepLabV3+ with MobileNet_v2 (upper image: w/o SLKD, below image: with SLKD); (d) DeepLabV3+
with MobileNet_v2_120d; (e) DeepLabV3+ with MobileNet_v3_large; (f) DeepLabV3+ with Mo-
bileNet_v3_small; In (c–f), the segmentation results located at the top correspond to the outcomes
without the application of the proposed SLKD, while those at the bottom represent the segmented results
with SLKD applied. The white boxes show that the predictions of the non-traversable regions are stable
after applying SLKD.

(a)

(b)

(c)

(d)
Figure 6. Semantic segmentation results of RELLIS-3D with SLKD of MobileNet_v3_small encoder.
(a) Ground Truth; (b) teacher (GSCNN); (c) DeepLabV3+ with MobileNet_v3_small(w/o SLKD);
(d) DeepLabV3+ with MobileNet_v3_small(with SLKD). The white boxes show that the predictions
of the non-traversable regions are stable after applying SLKD.

Additionally, it appears that MobileNet_v3_small exhibits a decrease in mIoU per-
formance, as shown in Table 2. However, the detection of the obstacle class is improved,
shown in Figure 5j, which is more similar to the ground truth than that in Figure 5i. In
addition, as shown in the white boxes of Figure 6c,d, the student network without SLKD
shows the incorrect detection of the obstacle, but when SLKD is applied, the output shows
a clear prediction. This shows that SLKD successfully supports the normalization of the
prediction. The reason for the decrement of mIoU performance is considered to be the
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fact that a parameter size that is too small, as shown in Table 3, cannot hold sufficient
knowledge from the teacher.

The results show the efficiency of SLKD by increasing the performance with the
ratio of GFLOPS to mIoU, which indicates the mIoU performance per one GFLOPS. As
shown in Table 4, MobileNet_v2 encoder-based DeepLabV3+ can perform most efficiently
when the same computational resources are obtained. In addition, the proposed SLKD
achieves a simple, smaller network to mimic the teacher’s knowledge so that it can perform
better than the original student network using the same computational cost. According to
the results obtained, the SLKD can create an autonomous driving system in an off-road
environment to perform traversable-region detection without relying on expensive GPU
resources. SLKD is an efficient, cheap, and highly accurate solution for processing point
clouds in off-road environments.

5. Conclusions

In this paper, we proposed a KD method for the segmentation of off-road view range
images called SLKD. The proposed method was evaluated using a well-performing off-
road view segmentation network and a smaller network using the off-road environment
multimodal dataset RELLIS-3D. Through evaluation, the student network that transferred
knowledge from the teacher network exhibited superior performance while incurring the
same computational cost as the student network without distillation. Additionally, the
robustness of the proposed method was verified using the experimental results of various
encoders. In future, we aim to apply the proposed KD method to driving cars in real-world
scenarios, rather than solely focusing on the test/validation sets of a dataset.
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