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Abstract: Vibrations are a common issue in the machining and metal-cutting sector, in which the
spindle vibration is primarily responsible for the poor surface quality of workpieces. The conse-
quences range from the need to manually finish the metal surfaces, resulting in time-consuming
and costly operations, to high scrap rates, with the corresponding waste of time and resources. The
main problem of conventional solutions is that they address the suppression of machine vibrations
separately from the quality control process. In this novel proposed framework, we combine advanced
vibration-monitoring methods with the AI-driven prediction of the quality indicators to address this
problem, increasing the quality, productivity, and efficiency of the process. The evaluation shows that
the number of rejected parts, time devoted to reworking and manual finishing, and costs are reduced
considerably. The framework adopts a generalized methodology to tackle the condition monitoring
and quality control processes. This allows for a broader adaptation of the solutions in different CNC
machines with unique setups and configurations, a challenge that other data-driven approaches in
the literature have found difficult to overcome.

Keywords: Industry 4.0; CNC machining; metal cutting; vibrations; condition monitoring; quality
control; artificial intelligence

1. Introduction

Standards in modern manufacturing have been significantly raised over the past
years. Industries are continuously evolving their processes in order to cover user needs
by increasing their production, eliminating operating costs, possible errors, and defects,
and ensuring the final-product quality. CNC (Computer Numerical Control) machines
are broadly used by numerous industries for high-precision machining; these are tools
that convert a raw metal workpiece into a finished, complete product by using drilling,
milling, and turning operations to remove the extra material and give the final form to the
product [1]. Following the standards and requirements of Industry 4.0, CNC machines have
started using advanced control technologies, such as artificial intelligence (AI) systems and
machine-learning mechanisms [2,3].

This integration of advanced technologies has ushered in a new era of CNC machining,
one characterized by unprecedented capabilities and transformative potential. Industry
4.0 marks the confluence of digitalization, automation, data-driven decision making, and
connectivity, all orchestrated to enhance efficiency and drive innovation. CNC machines,
already celebrated for their high-precision and high-quality machining abilities, have seized
upon this wave of technological progress.

Many articles on CNC machining, artificial intelligence (AI), and machine learning
(ML) have been published over the past years, from state-of-the-art reviews to articles on
recent developments and real-life industrial applications [4]. The interest of the scientific

Sensors 2024, 24, 307. https://doi.org/10.3390/s24010307 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s24010307
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-1664-0224
https://orcid.org/0000-0002-5234-9795
https://orcid.org/0000-0002-2505-9178
https://orcid.org/0000-0001-6447-9020
https://doi.org/10.3390/s24010307
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s24010307?type=check_update&version=1


Sensors 2024, 24, 307 2 of 20

community has turned towards this direction because these machines have evolved into
intelligent entities that are capable of autonomous decision making, real-time monitoring,
and adaptive adjustments. They are no longer just tools but sophisticated partners in
the manufacturing process, equipped to optimize operations, reduce waste, and ensure
consistent quality. As CNC machines become increasingly interconnected within the
broader manufacturing ecosystem, they contribute to the creation of “smart factories”,
where data flows seamlessly from machine to machine, and insights derived from AI and
ML algorithms are used to fine-tune processes in real time. This connectivity fosters agility,
enabling a rapid response to market dynamics and customer demands [5].

Moreover, the parameters that influence the quality of the final product that is pro-
duced by the CNC machine have also been examined in many works. In the realm of CNC
machining, achieving exceptional product quality extends beyond the mere precision of
tool movements. It encompasses a wide array of factors, ranging from the tool selection and
cutting speeds to tool-path strategies and the workpiece material properties. Researchers
have delved into the minutiae of each of these parameters, dissecting their impact on the
final product with meticulous precision. Studies have explored the optimization of the
cutting parameters, seeking the ideal balance between the feed rates and spindle speeds
to minimize tool wear and maximize the material removal rates. The choice of cutting
tools, with their varying geometries and materials, can significantly influence the surface
finish and dimensional accuracy. Additionally, the workpiece characteristics, such as the
hardness and thermal conductivity, pose unique challenges that require tailored machin-
ing approaches for optimal results. Furthermore, investigations into tool-path-planning
and optimization strategies have revealed that the sequence in which the CNC machine
processes a workpiece can profoundly affect both the efficiency and quality. Researchers
have developed algorithms and methodologies to generate tool paths that minimize vi-
brations, reduce tool deflection, and optimize chip evacuation, ultimately contributing to
the enhancement of the product quality. An interesting review was published by Ntemi
et al. [6] in which all the studies on CNC machining were collected to find the non-directly
inferred related gaps among them.

Therefore, it is necessary to use advanced ML in order to monitor the machines and
ensure the high quality of the products. These techniques leverage real-time data and
algorithms to dynamically adjust the machining parameters, compensating for variations
in the material properties, tool wear, and environmental conditions. The result is a har-
monized, adaptive machining process that maintains exceptional product quality even in
the face of external disturbances. For this purpose, infrastructure monitoring (IM) and
rapid quality diagnosis (QD) tools for machine condition monitoring and product quality
monitoring are used, respectively, serving as indispensable components in CNC machining.
Machine condition monitoring aims to monitor and track the condition of the machine in
real time in order to identify possible errors or malfunctions and, if necessary, take actions
to prevent the errors or even correct them [7]. Product quality monitoring aims to offer
intelligent techniques that will improve the quality of the final product [8]. In this era of
smart manufacturing, the CNC machine’s role extends beyond precision; it is an enabler of
agility and competitiveness.

The main contributions of the AI-powered data-driven approaches that have been
adopted by the CNC manufacturing industry are summarized as follows:

• Ensuring the final surface quality: The estimation of the final surface quality is per-
formed by correlating the processing conditions (axial and radial depths of cut, axis
feeds, spindle rotation speed, workpiece material, tool geometry) with the final work-
piece quality, which requires an artificial intelligence (AI)-based tool that is capable of
extending over multiple dimensions. Appropriate testing sessions allow for training
the algorithm with the provision of quality measurement, performed after the process
ends with a Mitutoyo surface roughness tester;

• Chatter detection: A fast Fourier transformation (FFT) analysis of the vibrations
and their correlation with the current processing conditions (spindle speed rotation,
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number of tool flutes) allows for determining whether chatter is taking place during
the process. An empirical stability diagram is built during a testing campaign to
support the implementation of an AI-based algorithm for the online-chatter-presence
removal (through specific feed and spindle speed override signals);

• Evaluation of the machine tool condition: Big Data solutions are required to analyze
the trends of the processing signals, such as the positions, speeds, currents, and torques,
collected during the periodical execution of dedicated reference tests. Variations in
these parameters during otherwise identical tests allows for identifying degradation
patterns (compared to nominal conditions) via an unsupervised-machine-learning
(ML) approach, as well as possible faulty components (failure modes). New processing
constraints are imposed on the equipment to reduce the impact of the failures on the
process while waiting for maintenance intervention.

2. Related Work

In this section, we provide an overview of the existing research and developments
in the field of vibration monitoring for CNC machines. Vibration monitoring plays a
pivotal role in ensuring the accuracy, reliability, and efficiency of CNC machining processes.
Chatter affects the product quality significantly [9,10]. For this reason, a plethora of works
have emerged over the past decade studying vibrations [11].

Many monitoring tools rely on sensor signals. For example, Ref. [12] utilized a wireless
sensor network tool to improve the efficacy of the data acquisition within the context of
a real-time, automated monitoring platform developed for smart manufacturing. The
wireless sensor networks have been proven to be very efficient, as they are cost-effective,
easily installed, and provide physical mobility when it is required. Smart infrastructure
monitoring is not only restricted to the acquisition and tracking of sensor signals that
are installed in industrial environments. It is also responsible for estimating the status
of the production lines and processes through the analysis of the sensor signals, and for
providing proactive alerts if a harmful event is estimated to be present [13]. Timely and
highly accurate problem detection may ensure a minimum downtime in the production
line. ML has been widely used for this purpose. ML for smart infrastructure monitoring
involves process monitoring, problem detection, quality control, process status diagnosis,
machine status monitoring (e.g., health), and predictive maintenance [14].

The manufacturing industry’s CNC machining processes are a prime example of an
advanced infrastructure-monitoring application. Due to component deterioration and
subpar machine tool parameters, the integration of monitoring techniques into these pro-
duction lines has been shown to be incredibly successful in predicting impending machine
failures and product defects. As a result, expensive machinery failures and production
line stops can be avoided, enabling a manufacturing process that is more effective. Tool
wear or component degradation in CNC cutting processes is caused by the cutting tool’s
constant contact and relative sliding with the workpiece. Friction dynamics produce this
phenomenon, which has a significant impact on the final surface quality of products. This
is the reason why machine-learning researchers all over the world are interested in tool
wear prediction. Tool wear is typically the dependent variable, and the feed rate, cutting
time, spindle speed, and cutting depth are the independent variables. Through the use of
a multi-sensor tool wear prediction method based on stationary subspace analysis (SSA),
support vector machines (SVMs) have been successfully applied for tool wear prediction,
tool status identification, and fault diagnosis [15–17]. Without any prior knowledge, multi-
sensor signals are converted to stationary and non-stationary sources. Tool wear estimation
for small data samples is performed using least squares (LS) and support vector regression
(LS-SVR). The incorporation of SSA significantly improved the LS-SVR tool wear predic-
tion performance, despite the limited data sample size. Because of their capacity to (1)
infer statistical relationships between the tool wear condition and observed sensor signals,
and (2) model the transition between different tool conditions, hidden Markov models
(HMMs) have been widely applied for tool wear monitoring [18]. In [19], an enhanced
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online HMM is suggested to calculate the tool wear state and forecast the RULs of cutting
tools, taking into account switching the cutting conditions. Artificial and deep neural
networks (ANNs, DNNs) have been used extensively in tool wear detection recently due
to their exceptional performance in handling large volumes of data and solving nonlinear
problems [20–22]. Tool wear has also been detected using convolutional neural networks
(CNNs) on machined surface images [23,24]. Convolution and pooling processes exhibit
high detection accuracies because they can describe the internal relationship from the input
feature maps that are taken from machining images. Nevertheless, they necessitate the
costly installation of cameras on the CNC machinery. Recurrent neural networks (RNNs)
have been extensively used for tool wear monitoring over the last ten years because of
their exceptional ability to capture long-term dependencies and track time-evolving entities
closely [25–28]. For example, in [29], online one-timestep-ahead and two-timestep-ahead
tool wear prediction is performed by combining a Gated RNN (GRNN) with an LSTM
NN. In other words, using past tool wear data, the objective is to forecast the tool wear
at a given timestep or at a later one. The fact that this method can be applied to various
machine tools and scenarios is one of its main advantages.

Because tool wear prediction depends on processing sensor signals, it is closely related
to time-series and signal-processing analyses. Because particle filters (PFs) can model
the nonlinear and non-Gaussian dynamics governing the sensor time series, they have
been used in several works to predict tool wear. The idea behind PFs is that, by using
the Monte Carlo method, a set number of particles, or samples, can represent any kind
of probability density function. In [30], a Fusion-PF (FPF) was used to apply fusion on
simulated and sensor data in order to closely monitor the evolution of the tool wear over
time. Applying the USUI tool wear model to values obtained through finite element model
(FEM) simulation, in which the wear rate is a function of the absolute temperature, relative
velocity, and constant pressure at the contact surface, yields cutting simulations. The
evolution of tool wear is controlled by dynamic characteristics that vary over time and
are nonlinear. To account for this, a PF in [31] models the nonlinear dynamics of the tool
wear evolution over time using Bayesian inference. This model is then incorporated into
an LSTM NN to forecast the in-process stochastic tool wear progression using past data.
According to the PF, the degradation trend equation is the state transition equation. To
infer the instantaneous uncut chip thickness, nonlinearities resulting from tool run-out and
trochoidal cutting-edge trajectories are combined with the in-process stochastic tool wear
values. The input to the PF-LSTM is formed by the translated in-process tool wear data and
the measured cutting forces and tool vibration signals. Experiments have demonstrated
that by accounting for the influence of the stochastic tool wear, the prediction accuracy can
be significantly increased, and the useful life of the cutting tool can be extended by 19%.

Fuzzy logic theory uses multi-valued variables to describe the partial correctness and
partial wrongness of a state, instead of using the bi-valued variables (such as 0 and 1)
suggested by classical logic. This approach eliminates the need for explicit mathematical
modeling. As a result, numerous fuzzy techniques have been put forth to identify tool
wear [32,33]. Tool wear detection is one area in which the adaptive neuro-fuzzy infer-
ence system (ANFIS) has been extensively used [34]. Takagi–Sugeno fuzzy inference is
the foundation of the adaptive multi-layer feed-forward network technique known as
the ANFIS. It maps inputs onto an output by utilizing fuzzy reasoning and NN schemes.
It models nonlinear functions, predicts chaotic time-series evolution, and identifies the
on-line nonlinear components of a system by combining gradient descent, least-squares,
and back-propagation algorithms [35]. The ANFIS is used extensively for chatter detection
and is taught by the vibration and communication particle swarm optimization algorithm
(ANFIS-VCPSO) in [36], allowing for real-time tool wear monitoring. To determine the
ideal set of milling parameters, the VCPSO algorithm evaluates the multi-objective opti-
mization based on the minimum cutting power, surface roughness, and maximum material
removal rate. Tests have demonstrated that ANFIS-VCPSO performs better than the most
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advanced techniques, and that the newly introduced VCPSO algorithm has the capability
of global optimization.

QD is a fundamental component of industrial intelligence, in which the product quality
is evaluated, and critical feedback is produced to suggest corrective actions and improve
the product quality [37]. To ensure highly accurate product quality estimations, intelligence
should be utilized in inference systems. Such intelligent systems extract latent complex
insights about the product quality from sensor signals and provide proactive warnings or
alerts about imminent defects [38]. Several ML methods have been proposed over the past
years for product quality estimations [39,40].

The two main focuses of the CNC-related industrial segment are surface roughness
prediction and chatter detection. Chatter, which is the vibration produced during the ma-
chining process, is one of the most significant underlying reasons for poor product quality.
It is possible for the workpiece to move slightly while the machine tool is operating, which
can result in non-resonant vibrations. Chatter is associated with self-excited vibrations
produced by the regenerative effect in the tool or workpiece. The effect mentioned above is
brought about by a periodic modulation of the uncut chip thickness that is incorporated
into the structure’s eigenfrequencies [41]. It is a self-excited-vibration phenomenon brought
on by friction created between the workpiece and the tool, thermomechanical effects, and
the relative motions of the machine’s parts. Because of the internal or external movement
of the machine’s structure, the vibrations cause disruptions to the machine’s normal opera-
tion. This can result in low productivity and faulty parts, which can damage the machine
over time. Consequently, the research community has become interested in chatter and is
working to identify, forecast, and eradicate it. The tool operators need to properly regulate
the cutting parameters, like the rotational speed and cut depth, to prevent chatter. Stability
lobe diagrams (SLDs) are used to track the stability of the cutting parameters and can help
operators to identify the best set of parameters to reduce chatter; however, analyzing them
is a time-consuming and difficult task [42]. PCA has been widely used in numerous smart
manufacturing monitoring approaches and has been mentioned as a useful substitute for
other feature selection techniques [43,44]. Another suggestion for chatter identification is
made in [45], where the detection technique is predicated on using logistic regression (LR)
to classify the status. In [46], after performing a spectrum analysis on the acceleration sig-
nals gathered from a CNC milling system, an HMM-based chatter classification model was
used. Because deep-learning approaches to monitoring, and ANNs in particular, perform
better than statistical approaches, they are becoming increasingly common in chatter detec-
tion systems. A deep multi-layer perceptron (DMLP)-based chatter detection framework
is presented in [47]. This framework is capable of formulating nonlinear solutions, which
leads to a more accurate capturing of the relationship between the cutting parameters and
chatter presence estimations.

Numerous studies have been conducted on the topic of efficiently detecting and
predicting chatter in industrial cutting machinery by combining statistical learning tech-
niques with signal processing. In [48], the effectiveness of various statistical classifiers was
compared in a chatter detection scenario with signal-processing methods, like ensemble
empirical mode decomposition and wavelet packet transform. An intelligent chatter detec-
tion method with a similar pipeline-based diagnosis strategy is proposed in [49]. In order to
identify chatter, the system first collects three-axis vibration signals from the accelerometers.
Then, it uses signal processing, feature extraction and selection, and classification. In addi-
tion, the authors of [50] examine the idea of dimensionality reduction in chatter diagnosis
and state change detection in machine processes. In [51], a different deep-learning method
for chatter detection is put forward. Its basic idea is to monitor online chatter using a
self-organizing map (SOM) neural network. When it came to chatter detection, fast Fourier
transform (FFT) was unquestionably the gold standard in signal processing for a very long
period [52,53]. The FFT enables the shift to a frequency domain where identifying the
resonant chatter frequencies is simpler. Local peaks that indicate the existence of chatter
can be used to identify the dominating frequency bands in the FFT spectrum analysis
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of the vibration signals. Chatter is presumed to be present if the high-energy vibration
frequencies are near the milling machine’s inherent frequencies. The feature extraction
potential of variational mode decomposition (VMD) has also been examined in a number of
studies. When the energy distribution in the frequency spectrum is modeled in conjunction
with VMD, chatter may be effectively detected. A variant of VMD known as optimized
VMD (OVMD) is suggested in [54,55] in conjunction with multi-scale permutation entropy
(MPE) to detect noise in milling operations. VMD is also employed in [56], in which the
kurtosis of the vibration signals is used to automatically determine the settings. A kurtosis
rise results from the signal’s distribution departing from its steady state when chatter
occurs. Fuzzy-logic-modeling methodologies are chosen when the underlying system’s
complexity and ambiguity make it impossible to precisely simulate the milling process.
Fuzzy logic techniques have gained a lot of traction in chatter detection because of their
ease of use and ability to handle nonlinear situations [57]. In order to predict the presence
of chatter, a CNC cutting machine’s acoustic signals were collected and the ANFIS was
applied in [58]. The ANFIS was also utilized in [59] to investigate the relationship between
the cutting parameters and the intensity of chatter. Resonant vibrations cause the spindle
and other mechanical components that regulate the machine’s motion to move when the
generated vibrations approach the machine’s natural frequency. Such erratic movements,
improper cutting parameters, and even tool wear [60] can leave grooves on the surface of
the workpiece, which lowers the quality of the final product. Surface roughness is therefore
a direct indicator of the quality of a machined product, and any deviation from the nominal
surface form results in increased production costs because of the need to rework or discard
failed parts.

A major limitation of the models described here is the inability to generalize them (i.e.,
the inability to apply them in real machining production processes). Specifically, the models
identified in the literature exhibit limitations when faced with changes in the machining
conditions, as they are often trained on specific parameter ranges and fixed labeled datasets.
The absence of annotated data in real-life industrial conditions further complicates the
model inference, necessitating the estimation of tolerance parameters for the dependent
variable. A plethora of experiments and real-life application scenarios have shown that both
the IM and QD tools confront this issue, as they have been used successfully in different
use cases and datasets through the exploitation of the vibration data, which are prevalent
in CNC machining.

3. Methodology

We address the mentioned problem by combining advanced vibration-monitoring
methods with the AI-driven prediction of the quality indicators. First, a novel add-on kit
to monitor the behavior of the cutting process was developed and integrated. This kit
includes a smart flange that integrates accelerometer and temperature sensors working
very close to the source of the vibration. These signals feed AI-driven (machine learning),
trained algorithms that predict (in-process) the expected quality (e.g., in terms of the surface
roughness) of the machined workpieces. Based on the predicted quality, the AI algorithms
recommend the best configuration of the CNC adaptive controller’s process parameters
in the case that some drift/deviation is detected. The process is complemented, at least in
the training phase, with data coming from the inspection of already-machined workpieces
to refine the AI models and algorithms. As a result, the solution reacts in advance to
deviations that could cause undesired defects on the surface, producing workpieces with
smoother surfaces. The solution aims to increase the quality, productivity, and efficiency
of the process, as the number of rejected parts, time devoted to reworking and manual
finishing, and costs are reduced considerably.

3.1. Infrastructure Monitoring (IM)

The goal of infrastructure monitoring (IM) is to efficiently notify users when an
issue is identified by combining a variety of monitoring tools with predictive failure-
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alerting mechanisms. It tracks and analyzes industrial sensor signals to keep an eye on
the production lines and processes. In order to offer input regarding the best possible
operation of the machines, it also keeps track of the real-time analysis results that are
provided by other solutions. To identify or foresee impending issues in the production
lines, it uses machine-learning algorithms. In addition to the proactive alerts, it offers the
parameter configurations of the observations for which an estimated failure is present.
This could help machine operators with any necessary decision making when it comes to
reconfiguring the parameters to avoid irreversible machine failures. Figure 1 shows the
conceptual framework of IM.
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3.1.1. IM Framework for Component Degradation Detection

The strategic steps that were taken to design the machine-condition-monitoring tool
that comprises a fully functional component degradation detection framework, which
can be generalized and easily used in different monitoring use cases (and the respective
datasets), are the following:

1. Find a well-established public component degradation dataset similar to that of
the user’s;

2. Select a set of classifiers that have already been successfully applied on a similar
problem, according to the literature;

3. Conduct experiments using the public dataset and evaluate the detection performance
of the classifiers;

4. Apply feature engineering on the user’s dataset;
5. Choose the classifier that performed the best;
6. Apply the best-performing classifier to these datasets;
7. Fine-tune/optimize the algorithm to achieve optimal detection accuracy;
8. Design/develop the final output of the solution;
9. Create the user interface.

3.1.2. Feature Engineering

Feature engineering was applied to enhance the classification efficiency. The total num-
ber of samples comprising the dataset is 104. The reason for such a small sample size is the
fact that different numbers of entries were recorded for each feature. Consequently, concate-
nation was not applicable. There are two possible solutions to this problem: (1) interpolate
the feature values and produce all the possible combinations as extra samples, or (2) com-
pute the average value of the feature values. The second solution was applied in order
to ensure computational feasibility. As a result, the number of samples is equal to the
number of experiments. Five-fold cross-validation was applied to construct a training set
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including 72 samples (70%) and a test set including 32 samples (30%). Furthermore, except
for the average value of each feature entry, the respective median value was computed to
introduce an extra feature enhancing the performance of the LGBM. Last, the fast Fourier
transform (FFT) of the position of the Y-axis was also introduced to enhance the tool wear
detection performance. The results are discussed next.

3.1.3. Choosing the Optimal Classification Approach

Because the objective is to estimate whether a milling tool is either worn or unworn,
binary classifiers have been utilized. For the experimental procedure, the support vector
machine (SVM), random forest (RF), extreme gradient boosting machine (XGBoost), and
light gradient boosting machine (LGBM) classifiers were implemented and evaluated:

• SVM: The objective of SVM is to find a hyperplane (or decision boundaries) in a
D-dimensional space (where D denotes the number of features) that provides the
maximum separability of the data points. That is, the ultimate objective is to find the
optimal hyperplane that has the maximum margin, ensuring the maximum distance
between the data points of two different classes, which, in our case, are degradation/no
degradation. To maximize the distance between the data points and hyperplane, a
hinge loss function is utilized. Next, the partial derivatives of the objective func-
tion with respect to the weights are calculated to compute the gradients and update
the weights;

• RF: The concept idea in decision trees is to predict the value of the dependent variable
by learning the decision rules based on the data features. RFs are ensemble-learning
methods, which utilize multiple learning approaches to provide an optimal estimation
performance. At each training timestep, it constructs a multitude of decision trees.
The final decision regarding the classification of an observation (RF output) relies on
the class selected by the majority of trees;

• XGBoost: The building block of this classifier is the gradient boosting machine algo-
rithm, which utilizes decision trees. The boosting technique is an ensemble method
that sequentially adds models to the ensemble. Here, the decision trees are added one
by one. The latter trees fit and correct the performances of the prior ones. The gradient
descent optimization algorithm and arbitrary differentiable loss functions are utilized
to fit each tree. The loss gradient is minimized when the model fits well;

• LGBM: This classifier is also a gradient-learning framework based on both the boosting
technique and decision trees. In contrast to the XGBoost, the LGBM utilizes histogram-
based algorithms to reduce the memory consumption and speed up the training
process, while adopting a leaf-wise growth strategy with depth constraints. The
histogram algorithm classifies floating-point eigenvalues into n number of bins and
constructs an n-th width histogram. This partitioning reduces the amount of required
memory and increases the execution speed, while the accuracy of the model is not
affected. Furthermore, the leaf-wise strategy for the growth of the decision trees is
much more efficient than the level-wise one used by the XGBoost. The leaves with the
highest branching gains are selected each time. In this way, more errors are reduced,
and the accuracy is significantly enhanced. Last, the LGMB allows for a plethora of
parameter tuning that can ensure overfitting elimination.

Experiments have shown that, out of the classifiers described in Section 3.1.3, the best-
performing classifier for the tool wear detection use case is the LGBM. More experimental
details and results are given in the next sections.

3.2. Rapid Quality Diagnosis (QD)

The goal of the product-quality-monitoring QD tool is to be able to diagnose the man-
ufacturing process conditions, manufactured product quality, and potential failure causes
quickly and effectively. In particular, by using ML techniques on industrial sensor signals,
it applies intelligent techniques to enhance the quality of the finished product. It also
performs sophisticated statistical analysis (e.g., causality analysis) on the manufacturing
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conditions and machine parameters to determine the factors that have the greatest impacts
on the product quality. This process is essential because industrial data typically exhibit
complex relationships and unpredictable dynamics, the exact signal evolution patterns are
not very deep, and latent factors that impact the manufacturing process as a whole are diffi-
cult for human operators to directly identify. For the purpose of optimally reconfiguring the
machine parameters and implementing corrective measures to mitigate potential product
defects, the analysis results are sent to alternative solutions or directly to the machine oper-
ators. When a defective product is found, the product-quality-monitoring tool generates
an output that includes the relevant parameter configurations of the observations where
the failure is thought to be present, along with an alert. Ultimately, it offers assessment
visuals to help the machine operators monitor the entire analysis process closely. Three
main objectives need to be met in order to achieve zero-defect manufacturing: (i) the cutting
of costs and waste, (ii) the elimination of defects, and (iii) the enhancement of the overall
quality of the production.

The primary features of this solution are quick product quality diagnosis and in-
telligent alerting upon the detection of a defective product. This is a microservice that
guarantees extremely precise product quality monitoring throughout the manufacturing
process. Additionally, it offers crucial parameter configurations that could lead to product
malfunctions and offers suggestions for quick reconfigurations. It finds flaws in the quality
of the product and generates alerts to notify a human operator, or finds other analytical
solutions in a timely manner, allowing the necessary corrective actions to be carried out
before the product fails permanently.

A diagram of the QD conceptual framework is shown in Figure 2.
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QD Framework for Chatter Detection

The QD tool has been effectively employed for identifying chatter in CNC machining
processes. Similar steps to those of the IM design process were taken to guarantee the
complete functionality of the chatter detection framework, with a focus on its ability
to generalize:

1. Employ a survey study to pick a set of robust classifiers that have previously been
utilized for chatter detection;

2. Apply feature engineering techniques on a real industrial chatter dataset;
3. Choose the most effective classifier from the experiments;
4. Optimize the top-performing algorithm to ensure a high level of detection accuracy;
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5. Finalize the QD tool, including the alerting mechanism, critical CNC parameter
configurations, and visualizations.

The goal is to determine the presence or absence of chatter in the input observations.
This task involves binary classification, and, as a result, binary classifiers were employed
during the implementation phase. After multiple experiments, the LGBM was selected
based on its classification performance and scalability compared to the other classifiers
(SVM, RF, and XGBOOST).

4. Evaluation
4.1. Quantitative Results
4.1.1. IM: Experiments and Results

The evaluation was performed on a specific component degradation dataset from
Fidia [61]. It was divided into two different folders, with the degraded-component data
in the first case and the normal ones in the other case. A total of 67 JSON files (each
one corresponding to a different experiment) include information about the degraded-
component observations, while 37 JSON files include information about the normal ones.
The respective labels were constructed based on this categorization. Specifically, the
component degradation Boolean variable was introduced, which is equal to “1” in the
degradation presence case and to “0” if otherwise. The features (independent variables)
included in this dataset are as follows:

1. XVibration: vibration of X-axis (mm/s2);
2. YVibration: vibration of Y-axis (mm/s2);
3. ZVibration: vibration of Z-axis (mm/s2);
4. XPosition: position of X-axis (mm);
5. YPosition: position of Y-axis (mm);
6. ZPosition: position of Z-axis (mm);
7. XMotorCurrent: motor current of X-axis (A);
8. YMotorCurrent: motor current of Y-axis (A);
9. ZMotorCurrent: motor current of Z-axis (A).

The data are organized into chunks with information about the oldest, currently
supplied, and last available chunks. Extra information regarding the sampling techniques,
timestamps, etc. are also provided within each JSON file. The contributions of each feature
are gathered in Table 1.

Table 1. Feature contributions to prediction accuracy.

Features Used LGBM Detection Accuracy

XPosition 60%

YPosition 65%

ZPosition 65%

XMotorCurrent 65%

YMotorCurrent 80.2%

ZMotorCurrent 82.5%

XP_median 95.27%

YP_median 95.27%

ZP_median 95.27%

XM_median 95.27%

YM_median 95.27%

ZM_median 95.27%

YPosition_FFT 95.27%
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The percentages presented in the following tables refer to the individual contribution
of each feature to accurately detecting the presence of component degradation and machine
chatter of IM and QD, respectively. The binary classification accuracy was calculated based
on the following mathematical formula:

Accuracy =
TP + TN

TP + TN + FP + FN

The respective feature importance values are gathered in Table 2. These values refer
to the involvement that each feature had in the predictions of the model. Specifically, the
importance countifies the improvement in the accuracy or purity achieved by a split for
each decision tree classifier of which the LGBM is comprised. It is a measure of the quality
of a split based on a particular feature.

Table 2. Feature importance values (LGBM).

Feature Used Importance Value

XP_median 11

YMotorCurrent 9

ZMotorCurrent 5

XPosition 4

YPosition 1

ZPosition 0

XMotorCurrent 0

YP_median 0

ZP_median 0

YPosition_FFT 0

As can be seen, the most important feature, enhancing the component degradation
detection performance of the LGBM, is the median value of the X-axis position, while the
FFT of the Y-axis position does not contribute at all to the performance. An interesting fact
is that, in the XGBoost, the feature importance values are significantly different. Specifically,
the most important feature enhancing the tool wear/component degradation performance
is the motor current of the Z-axis.

The LGBM algorithm was fine-tuned in order to ensure its efficacy. The most significant
parameters that were fine-tuned were (1) the learning rate, which determines the step size at
each iteration while moving towards the minimum of a binary log loss function, and (2) the
number of estimators, which defines the number of gradient-boosted trees, equivalent to
the number of boosting rounds. The optimal parameters were computed by performing
a grid search, using 10-fold cross-validation for the aforementioned model parameters,
evaluating a series of values: (1) the number of estimators = (5, 10, 20, 50, 100), (2) the
learning rate = (0.001, 0.01, 0.02, 0.3). The maximum value for the learning rate was set
to 0.3 in order to ensure a detailed search and avoid skipping a possible minimum. The
results are summarized in Table 3.

As discussed in the previous section, in addition to the LGBM, the RF, SVM, and XG-
Boost classifiers were also evaluated in Fidia’s dataset. Table 4 gathers the experimental results.

The LGBM performed the best. This component degradation framework was also
successfully and easily applied on a public CNC tool wear dataset in Kaggle1, reaching a
test accuracy equal to 96.74%. This fact indicates that the generalization goal of the solution
was reached.
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Table 3. LGBM grid search results.

Features Used LGBM Detection Accuracy

‘learning_rate’: 0.001 ‘n_estimators’: 5 65%

‘learning_rate’: 0.001 ‘n_estimators’: 10 65%

‘learning_rate’: 0.001 ‘n_estimators’: 20 65%

‘learning_rate’: 0.001 ‘n_estimators’: 50 65%

‘learning_rate’: 0.001 ‘n_estimators’: 100 65%

‘learning_rate’: 0.01 ‘n_estimators’: 5 65%

‘learning_rate’: 0.01 ‘n_estimators’: 10 65%

‘learning_rate’: 0.01 ‘n_estimators’: 20 65%

‘learning_rate’: 0.01 ‘n_estimators’: 50 92.56%

‘learning_rate’: 0.01 ‘n_estimators’: 100 92.56%

‘learning_rate’: 0.02 ‘n_estimators’: 5 65%

‘learning_rate’: 0.02 ‘n_estimators’: 10 65%

‘learning_rate’: 0.02 ‘n_estimators’: 20 92.56%

‘learning_rate’: 0.02 ‘n_estimators’: 50 92.56%

‘learning_rate’: 0.02 ‘n_estimators’: 100 92.56%

‘learning_rate’: 0.3 ‘n_estimators’: 5 92.56%

‘learning_rate’: 0.3 ‘n_estimators’: 10 92.56%

‘learning_rate’: 0.3 ‘n_estimators’: 20 95.76%

‘learning_rate’: 0.3 ‘n_estimators’: 50 96.89%

‘learning_rate’: 0.3 ‘n_estimators’: 100 95.76%

Table 4. Performance comparison between RF, SVM, XGBoost, and LGBM.

Classifier Accuracy

RF 91.3%

SVM 72.09%

XGBoost 91.27%

LGBM 96.89%

4.1.2. QD: Experiments and Results

First, feature engineering and pre-processing were applied on Fidia’s chatter dataset.
This CNC chatter dataset comprises 180,224 observations, with the fast Fourier transform
(FFT) calculated for the vibrations of the X, Y, and Z axes. The training set was created
using a five-fold cross-validation approach, encompassing 80% of the initial dataset, which
included 154,478 samples. The remaining 20% of the initial dataset was designated as the
test set, containing 25,746 samples.

Moreover, apart from computing the average value of each feature entry, the corre-
sponding median value was also computed to introduce an additional feature, thereby
enhancing the performance of the LGBM. Additionally, the FFT of the position of the Y-axis
was introduced to improve the chatter detection performance. The dataset is organized
into two distinct folders: one containing observations with chatter and the other containing
normal observations. In the first case, there are 11 JSON files providing information about
the observations with chatter, while the second case includes 16 JSON files with information
about the normal observations. Each JSON file corresponds to a unique experiment.
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To label the data, a Boolean variable representing chatter presence is assigned to each
observation. It is set to “1” for instances in which chatter is present and to “0” for instances
in which chatter is absent. The features of the observations are detailed as follows:

1. XVibration: vibration of X-axis (mm/s2);
2. YVibration: vibration of Y-axis (mm/s2);
3. ZVibration: vibration of Z-axis (mm/s2);
4. XPosition: position of X-axis (mm);
5. YPosition: position of Y-axis (mm);
6. ZPosition: position of Z-axis (mm);
7. XMotorCurrent: motor current of X-axis (A);
8. YMotorCurrent: motor current of Y-axis (A);
9. ZMotorCurrent: motor current of Z-axis (A).

The contribution of each feature to the detection performance of the algorithm is
presented in Table 5.

Table 5. Feature contributions to chatter detection accuracy.

Feature Used LGBM Detection Accuracy

XVibration_Values 61.2%.

YVibration_Values 68.5%

ZVibration_Values 68.5%

XVibration_Values_fft 65%

YVibration_Values_fft 80.2%

ZVibration_Values_fft 82.5%

XVibration_BW 95.27%

YVibration_BW 95.27%

ZVibration_BW 95.27%

The respective feature importance values are gathered in Table 6.

Table 6. QD feature importance values (LGBM).

Feature Used Importance Value

XVibration_BW 1144

YVibration_Values_fft 1029

YVibration_BW 958

XVibration_Values_fft 915

YVibration_Values 899

YVibration_Values 762

ZVibration_BW 0

ZVibration_Values 0

ZVibration_Values_fft 0

Clearly, the most important feature that enhances the chatter detection performance of
the LGBM is the Butterworth filtering of the vibrations of the X-axis. To find the optimal
parameter setting of the LGBM, a grid search was utilized. The results are gathered in
Table 7.
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Table 7. QD LGBM grid search results.

Features Used LGBM Detection Accuracy

‘learning_rate’: 0.001 ‘n_estimators’: 5 91.75%

‘learning_rate’: 0.001 ‘n_estimators’: 10 91.76%

‘learning_rate’: 0.001 ‘n_estimators’: 20 91.77%

‘learning_rate’: 0.001 ‘n_estimators’: 50 91.64%

‘learning_rate’: 0.001 ‘n_estimators’: 100 91.72%

‘learning_rate’: 0.01 ‘n_estimators’: 5 91.63%

‘learning_rate’: 0.01 ‘n_estimators’: 10 91.7%

‘learning_rate’: 0.01 ‘n_estimators’: 20 91.78%

‘learning_rate’: 0.01 ‘n_estimators’: 50 92.82%

‘learning_rate’: 0.01 ‘n_estimators’: 100 91.72%

‘learning_rate’: 0.02 ‘n_estimators’: 5 91.74%

‘learning_rate’: 0.02 ‘n_estimators’: 10 92.05%

‘learning_rate’: 0.02 ‘n_estimators’: 20 92.82%

‘learning_rate’: 0.02 ‘n_estimators’: 50 93.45%

‘learning_rate’: 0.02 ‘n_estimators’: 100 93.44%

‘learning_rate’: 0.3 ‘n_estimators’: 5 93.17%

‘learning_rate’: 0.3 ‘n_estimators’: 10 94.05%

‘learning_rate’: 0.3 ‘n_estimators’: 20 95.17%

‘learning_rate’: 0.3 ‘n_estimators’: 50 95.8%

‘learning_rate’: 0.3 ‘n_estimators’: 100 95.98%

Similar to Section 4.1.1, a performance comparison between the RF, SVM, XGBoost,
and LGBM classifiers was conducted to select the best-performing one. As can be seen in
Table 8, the LGBM performed the best once again.

Table 8. Performance comparison between RF, SVM, XGBoost, and LGBM for chatter detection.

Classifier Accuracy

RF 82.93%

SVM 60%

XGBoost 90.47%

LGBM 95.98%

4.2. Qualitative Results
4.2.1. IM: Visualizations of Results

Some visualizations of the qualitative results regarding the component degradation
detection framework applied on Fidia’s use case are presented below. Figure 3 illustrates
the feature importance used in the LGBM. As can be seen, the most important feature
contributing to the detection performance is the median value of the X-axis position.

Figure 4 presents a visualization of the grid search conducted to optimize the parame-
ter configuration of the LGBM.
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4.2.2. QD: Visualizations of Results

To gain a more comprehensive insight into the analysis results, visualizations of the
variables that exert the most significant influence on chatter detection are provided. In
the case of machine vibrations, which are the variables under evaluation for Fidia, FFT
is employed to convert motion data, over time, yielding an understandable output that
quantifies the extent of the recorded vibrations, as depicted in Figure 5. The amplitude
signifies the intensity of the vibrations present, while the frequency indicates the number
of movements in hertz (Hz).

Apart from the FFT visualization (Figure 5), there is an option to represent machine
vibrations on the fly, offering the potential for real-time decision support. Consequently,
the vibration parameters are organized as time-series data. As illustrated in Figure 6, the
mean of the displayed sample is presented, and the Upper and Lower Critical Limits (UCL,
LCL) can be incorporated to define the desired quality range. It is important to note that
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this visualization relies on specialized technologies for handling data streams, necessitating
a pre-established connection to the relevant data stream.
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5. Discussion and Conclusions

Industry 4.0 has set standards and requirements, which smart industries are called to
follow. In order to meet these requirements, smart CNC machining requires high efficiency
and automated systems with the minimum or—if possible—no human interaction with
the machines. Therefore, CNC machines have started using advanced control technologies,
such as artificial intelligence (AI) systems and machine-learning mechanisms. Although
having a specialized CNC machine is expensive for an industry, it offers many benefits and
is necessary in order to achieve high-precision machining: it allows for much more control
over the machine, a larger exploitation of its manufacturing capabilities, and uncanny
access to the data.

With respect to the quality in CNC machining, the two most important characteristics
are the dimensional accuracy and the surface roughness, which are usually evaluated off-
line by adequate measurements of the processed pieces. Machine vibrations, corresponding
to the relative movement between the workpiece and the cutting tool, pose a serious threat
to this quality, as they affect the smoothness of the workpiece surface, reduce its accuracy,
produce harsh noise, and accelerate the tool wear, among other undesired consequences.
To address these formidable challenges and maintain a competitive edge in the CNC
machining landscape, companies like Fidia are engaged in a perpetual quest for innovation.
Their commitment to excellence extends beyond precision machining; it encompasses a
holistic approach to optimizing every facet of the manufacturing process.

The recent advancements in CNC tool wear prediction, chatter detection, and surface
roughness prediction present notable research gaps, particularly concerning the general-
ization ability of certain models to real-life CNC machining processes. Models like ANNs
and decision tree-based classifiers exhibit limitations in industrial settings, as they are
typically trained within specific parameter ranges and conditions, leading to decreased
monitoring accuracy when the conditions change and labeled data may not be readily
available. Moreover, while SVMs have been widely applied, their performance is highly
dependent on the parameter settings, and the computational complexity of optimizing
these parameters.

The integration of the tools that are presented in this article represents a pivotal mile-
stone in the pursuit of CNC machining excellence, aiming to tackle the generalization
problem though the adoption of a machine- and configuration-agnostic approach. This
approach ensures accurate predictions by relying solely on data derived from vibration
sensors, which are ubiquitous in CNC machines. The algorithm’s performance is further
optimized through the implementation of feature extraction techniques, enhancing the
existing vibration data and contributing to more robust and accurate predictions across
various CNC machine setups and configurations. This standardized and sensor-centric
methodology improves the solutions’ adaptability to diverse machining conditions, mit-
igating the limitations associated with specific parameter ranges and conditions. As a
result, the IM and QD tools have been meticulously designed to effectively address the
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multifaceted challenges encountered in high-speed machining processes related to vibra-
tions. Specifically, IM has been successfully applied for tool wear/component degradation
detection, while QD has been utilized for chatter detection, both achieving correct problem
prediction accuracies of over 95% in their corresponding domains. These tools serve as
the linchpins in addressing the machine vibrations and chatter problems that have been
meticulously analyzed using machine learning. By continuously monitoring the machining
environment and processing vast amounts of data, these tools can not only identify the
sources of vibration but also proactively mitigate them.

The result is a dramatic reduction in the adverse effects of vibrations, including im-
proved surface quality, enhanced dimensional accuracy, reduced tool wear, and a quieter
machining environment. These advanced technologies provide not just solutions to existing
challenges but also new horizons for optimizing production processes. The synergy be-
tween precision engineering and data-driven intelligence is set to redefine CNC machining,
setting new benchmarks for efficiency, quality, and innovation.

In light of the promising outcomes presented in this scientific paper, the future scope
of our research entails broadening the applicability of the proposed solution beyond its
current focus on metal machining. The next steps involve exploring and adapting the
methodology to diverse manufacturing industries, such as plastic injection molding and
wood machining. By extending the reach of our proposed solution to these domains, we
aim to evaluate its effectiveness in addressing unique challenges and optimizing processes
across a spectrum of materials and manufacturing techniques. This expansion not only
contributes to the versatility of the proposed approach but also enhances its potential
impact on industrial practices, paving the way for more comprehensive and inclusive
advancements in the field.
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