
Citation: García-Luna, M.A.;

Ruiz-Fernández, D.; Tortosa-Martínez,

J.; Manchado, C.; García-Jaén, M.;

Cortell-Tormo, J.M. Transparency as a

Means to Analyse the Impact of

Inertial Sensors on Users during the

Occupational Ergonomic Assessment:

A Systematic Review. Sensors 2024, 24,

298. https://doi.org/10.3390/

s24010298

Academic Editors: Jesús Fontecha and

Iván González

Received: 14 November 2023

Revised: 19 December 2023

Accepted: 3 January 2024

Published: 4 January 2024

Correction Statement: This article

has been republished with a minor

change. The change does not affect

the scientific content of the article and

further details are available within the

backmatter of the website version of

this article.

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Systematic Review

Transparency as a Means to Analyse the Impact of Inertial
Sensors on Users during the Occupational Ergonomic
Assessment: A Systematic Review
Marco A. García-Luna 1,* , Daniel Ruiz-Fernández 2, Juan Tortosa-Martínez 1 , Carmen Manchado 1 ,
Miguel García-Jaén 1 and Juan M. Cortell-Tormo 1

1 Department of General and Specific Didactics, Faculty of Education, University of Alicante,
03690 Alicante, Spain; juan.tortosa@ua.es (J.T.-M.); carmen.manchado@ua.es (C.M.);
m.garciajaen@ua.es (M.G.-J.); jm.cortell@ua.es (J.M.C.-T.)

2 Department of Computer Science and Technology, University of Alicante, 03690 Alicante, Spain; druiz@ua.es
* Correspondence: marco.garcia@ua.es; Tel.: +34-965-903-400 (ext. 2142)

Abstract: The literature has yielded promising data over the past decade regarding the use of inertial
sensors for the analysis of occupational ergonomics. However, despite their significant advantages
(e.g., portability, lightness, low cost, etc.), their widespread implementation in the actual workplace
has not yet been realized, possibly due to their discomfort or potential alteration of the worker’s
behaviour. This systematic review has two main objectives: (i) to synthesize and evaluate studies that
have employed inertial sensors in ergonomic analysis based on the RULA method; and (ii) to propose
an evaluation system for the transparency of this technology to the user as a potential factor that
could influence the behaviour and/or movements of the worker. A search was conducted on the Web
of Science and Scopus databases. The studies were summarized and categorized based on the type
of industry, objective, type and number of sensors used, body parts analysed, combination (or not)
with other technologies, real or controlled environment, and transparency. A total of 17 studies were
included in this review. The Xsens MVN system was the most widely used in this review, and the
majority of studies were classified with a moderate level of transparency. It is noteworthy, however,
that there is a limited and worrisome number of studies conducted in uncontrolled real environments.

Keywords: transparency; IMU; inertial; accelerometer; ergonomics; RULA; wearable; implementation

1. Introduction

Excessive load on the musculoskeletal system during certain tasks represents a ma-
jor occupational ergonomic problem that can trigger various musculoskeletal disorders
(MSDs) [1]. MSDs are currently the most prevalent disorders worldwide [2,3]. They form
the majority of occupational pathologies, explaining countless causes of work disability,
loss of work time, and, consequently, early retirement [4,5]. MSDs can be considered to
increase wage compensation and work-related medical expenses, as well as to reduce
productivity and quality of life [6,7].

The body areas most frequently affected by these work disorders are generally the
lower back, neck, shoulders, elbows, forearms, wrists, and hands [8–10]. According to
the literature, the best incidence prevention and/or reduction strategy is to minimise
exposure to MSD risk factors [11,12]. For this reason, an essential field in occupational
ergonomics is the identification of high-risk postures during the workday [13], since
correcting and/or adapting these postures diminishes MSD risks and effectively improves
work performance [14,15].

Understandably therefore, a large amount of time and effort has been invested in
assessing the risk of improper workplace posture across most job sectors [16–18]. Many
methods exist but Burdorf and van der Beek [19] grouped them into three basic categories:
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(i) those based on subjective judgments (e.g., questionnaires and measurement scales);
(ii) those measured directly; and (iii) systematic observation methods. Discarding the first
group owing to their subjectivity, the methods based on direct measurement appear to be
the most accurate and reliable [20], although they require significant means to be correctly
implemented. Finally, systematic observation methods offer certain advantages such as:
simplicity (e.g., a video recording of the worker and, a posteriori, the completion of a series
of items based on the recording); greater flexibility (i.e., less—or no—interference with
the performed work tasks), and a lower financial cost [21,22]. For these latter reasons,
observational methods are the most widely implemented in many work sectors [17,18,23].

Owing mainly to the specificity of the method itself, certain observational methods
may be more advantageous or appropriate than others in certain occupations [16]. Yet,
we can generally consider that the three most commonly used observational methods
are [24] the Ovako Working Posture Analysis System [OWAS] [25], the Rapid Upper Limb
Assessment [RULA] [26], and the Rapid Entire Body Assessment [REBA] [27]. Among
these three methods, RULA has been defined as perhaps one of the most cautious regarding
postural risk assessment [6]. That is, the RULA generally performs a more sensitive
posture assessment than the other two methods in the case of most industries, jobs, or
postures. In other words, the other two methods tend to underestimate the risks more than
RULA [6,16,28–31].

The use of systematic observation-based occupational risk assessment methods has
increased significantly over the past two decades [32], but these methods present limitations
that must not be ignored [23,33–35]. First, they rely on the visual inspection of certain
tasks or procedures by one or more workplace ergonomics professionals, who measure
and/or estimate the risk values of each factor under study [23]. This obviously implies a
financial expense, so for cost-efficiency reasons, there is always a much smaller number
of observers than workers under examination. Moreover, the analysis process is tedious
and sometimes imprecise [23]. Thus, occupational risk assessments are usually ultimately
limited to the execution of certain repetitive and periodic tasks in relatively controlled and
unrealistic environments. Second, in practice, there are variations in the way the different
occupational risk tools are implemented [33]. This latter fact is often overlooked, making it
difficult to repeat the study or reproduce the results. Third, many work environments are
dynamic and continuously change, presenting an ever-increasing heterogeneity of workers,
job types, and workplaces [33]. Consequently, occupational risk assessments often need to
be conducted more frequently to make them sensitive to these changes. Last but not least,
fatigue can cause worker kinematic alteration and/or reduce their control when performing
certain tasks [34,35], which is not easily observable with the human eye.

Clearly therefore, to improve occupational health and safety, it is necessary to precisely
and objectively quantify the risk factors associated with MSDs [20]. To overcome the
systematic observation-based method limitations mentioned above, alternatives based
on wearable inertial sensors have recently been advanced. Inertial sensors consist of
electromechanical instruments that typically combine an accelerometer, gyroscope, and
magnetometer, and are capable of directly measuring linear acceleration and rotational
velocity in space. They are arguably an extension of the single-axis inclinometers that have
been used by ergonomics and physiotherapy professionals for decades to determine the
angulation of any joint structure in the human body. Inertial sensors have been widely used
in the scientific literature for a broad range of objectives and applications, from their use
as simple, higher-accuracy inclinometers [36], to serving as estimators of physical activity
energy expenditure [37]. They have also served to directly evaluate kinematic workplace
information, like workers activity [38], physical workload [39], or physical fatigue [40]. The
occupational ergonomics sector has highlighted the significant role of this technology in
identifying physical risks in the workplace [41,42].

In this latter domain, wearable inertial sensors are today a possible solution with
respect to systematic observation-based methodologies in occupational risk assessment [43].
The advantages of the technology have been widely demonstrated, the most notable being
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its portability, lightness, and low cost [44]. Moreover, the sensors are non-invasive, and the
battery lasts for the whole working day, providing more objective, reliable, and consistent
results than observational or questionnaire-based methods [45,46]. However, inertial
sensors have not yet been adopted on a large scale by occupational risk companies, and
recent literature has suggested that this is due to some of their limitations [43,45,47,48].
First, these types of sensors are designed to repeatedly record acceleration or angular
velocity in space, though they are unable to interpret the situational context of the recorded
tasks [47]. Therefore, to identify the performed task type, additional methods are almost
always required, e.g., direct observations, self-measurements, specific additional sensors,
etc. [43]. Second, once the task type has been identified, the complexity lies in determining
the relevant kinematic and biomechanical characteristics, such as the recorded gesture
duration and number of repetitions. In this sense, inertial sensors are presently incapable
of determining the start and end of the task on their own. In addition, the repetition
count is usually based on postural thresholds linked to joint angulations [43,45], thus also
failing to consider relevant factors such as the mobilised load [48]. Third, it is difficult
to reproduce the published literature results reliably and objectively owing to the large
number of sensors used in some studies (up to 17) [43], as well as the lack of an end-to-end
data analysis [43,47].

Nevertheless, despite these limitations, it is hard to explain today why the technology
has not become massively used given its advantages. Potential explanations include
concerns about its shortcomings and associated discomfort, or because the system could
distract or burden workers [41,42,49]. Some of these reasons may be due to suspicions
that workers may alter their usual behaviours when they perceive that they are being
monitored by inertial sensors. This possible low-level of user transparency has not yet been
analysed in the literature, although we believe that it could play a key role in promoting
the large-scale implementation of this technology.

Therefore, the aim of this systematic review was twofold: (i) to synthesize and evaluate
studies that have used inertial sensors for ergonomic analysis based on the RULA method;
and (ii) to advance the “transparency” construct and a way of assessing it based on a
range of elements. We also sought to analyse transparency and its possible relationship
with other factors in the field of inertial technology as an occupational risk assessment
method. We focused only on the analysis of RULA method-based postural evaluations,
primarily to avoid biased comparisons between methods that analyse different body parts.
Additionally, we considered that the number of available studies that have utilized this
evaluation method was sufficient for an initial approach to this new way of analysing
system transparency on users.

2. Materials and Methods
2.1. Search Strategy

The present systematic review was conducted following PRISMA (Preferred Reporting
Items for Systematic Reviews and Meta-Analyses) guidelines. Two major social science
electronic databases (Web of Science and Scopus) were used to search for relevant pub-
lications up to 1 March 2023. Different combinations of keywords and synonyms of the
latter were entered in the title, abstract, or keyword search fields: (“inertial” OR “IMU” OR
“accelerometer” OR “wearable”) AND (“RULA” OR “Rapid Upper Limb Assessment”). In
addition, reference lists of retrieved studies were manually reviewed to identify potentially
eligible studies that were not detected in the electronic database searches.

The inclusion criteria were as follows: (i) English as a vehicular language; and (ii) the
study had to report the sample size as well as the type, number, and location of all sensors
used. We excluded (i) items using deformable or flexible sensors; (ii) proceedings papers;
(iii) those with no full-text access; (iv) book chapters; and (v) review articles and/or meta-
analyses. The detailed screening of the title and abstract of each pre-selected study was
conducted independently by two authors (MAG-L and JMC-T). The full texts were reviewed
to identify the articles that met the selection criteria. When discrepancies between the two
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authors appeared in the selection process, a consensus was reached with a third author
(DR-F).

2.2. Risk of Bias Assessment

The methodological evaluation process was conducted by two authors (MG-J and CM)
using an adapted version of the STROBE assessment criteria for cross-sectional studies [50].
Each article was evaluated based on 10 specific criteria (Table 1) and any disagreement was
resolved via consensus. Each of the 10 criteria (or items) was assessed as “1” (fulfilled)
or “0” (not fulfilled), and following the criterion of O’Reilly et al. [51], each study was
qualitatively categorised as follows: a study was considered of high quality (i.e., low bias
risk) when it scored “1” in eight or more criteria, and of low quality (i.e., high bias risk)
when it scored “0” in three or more criteria.

2.3. Data Extraction

The data was extracted to Microsoft Excel (Microsoft Corporation, Redmond, WA,
USA) following the Cochrane Consumers and Communication Review Group’s data ex-
traction template (Cochrane Consumers and Communication, 2016). The Excel spreadsheet
was used to evaluate the inclusion criteria and to then verify all selected articles. The pro-
cess was conducted independently by two authors (MAG-L and JT-M), and any eligibility
disagreement was resolved via a discussion with a third author (DR-F). Full-text articles
that were excluded were recorded with the reasons for exclusion. All results were stored
in the Excel sheet. The following information was extracted from the original articles:
(i) industrial sector; (ii) main objective; (iii) type and number of sensors used; (iv) body
elements analysed; (v) combination (or not) with other technologies; (vi) real or controlled
environment; and (vii) transparency level.

2.4. Transparency Assessment

Next, a proposal was advanced to qualitatively evaluate how the different data capture
devices affecting users. This impact could positively or negatively modify the development
of the test: it could have a positive effect because users could, for example, exert more effort
than usual in performing the exercises; and it could have a negative effect if the different
devices hindered users in their tasks or conditioned them psychologically.

We consider it relevant to emphasize the specific context in which we are seeking to
define the concept of “transparency” to avoid confusion. Transparency can be defined with
different and varied meanings, ranging from the absence of deceit to the quality of being
easily detectable or visible. Furthermore, given that privacy and confidentiality are relevant
issues in assessments based on IMUs [41,52], it could be easy to confuse and assume that
the concept of “transparency” presented in this work is related to them—but it certainly
is not.

Therefore, we shall use the term “transparency” hereinafter to relate the user task to
be performed with the possible device impact on movements or behaviours. Thus, the
transparency of a collection system can be defined as the greater or lesser degree to which
users are aware of the sensing of their movements. The degree of transparency is therefore
inversely proportional to the degree of impact of the data collection system and mainly
depends on the following variables:

• Number of devices. This variable refers to the number of devices included in the
data capture system. The greater the number of system devices, the greater the users’
perception that they are being monitored and, therefore, the greater the possible impact.
To quantify the variable, a low level was defined as 1 or 2 devices, an average level as
3 to 5 devices, and a high level above 5.

• Device visibility. The more visible the devices are, the more aware the user will be of
them and, therefore, the greater their possible impact. The distribution of this variable
was determined as follows: a low level if the devices are not visible; a medium level if
the devices are visible, but leave the user freedom of displacement (e.g., they are not
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restricted to a laboratory); and a high level if the devices are not only visible but also
limit user mobility across various situational contexts, rooms, or locations.

• Device contact. Some sensor elements may not be visible to users, but they are in
contact with them. The greater the degree of contact (whether according to surface
area or device size, or due to invasive devices), the greater the user’s perception and
the greater the risk of being affected by the devices. In this case, the following variable
gradation was defined: a low level in the case of no device contact; a medium level in
the case of contact with a reduced surface area (e.g., electrocardiography sensors); and
a high level in the case of contact with a large surface area or invasive sensors.

These variables can coexist in a capture system and interrelate with each other. To
assess the overall system transparency level, we defined one variable as the main one,
while the other two acted as transparency level modifiers, either raising or reducing it. The
variable we defined as the main variable was visibility. A high impact level of one of the
other variables increased the impact of this variable, and a low impact level reduced it. An
average level was considered neutral. As an illustration, we can picture a wireless system
made up of 3 electrocardiography sensors that connect to a mobile phone via Bluetooth.
In this case, the impact of the visibility variable would be low (the sensors located under
the clothing are not visible and neither is the mobile phone). Moreover, the contact is also
low-impact, further reducing the impact of the system as a whole. Finally, the number of
devices is 4 (i.e., 3 sensors plus the mobile phone), so the impact level would be average
and would not modify the system’s impact. In this case, the overall transparency would be
high (since the impact is low and transparency is inversely proportional to the impact).

Table 1. Risk of bias assessment of the included studies based on the modified STROBE criteria.

Study 1 2 3 4 5 6 7 8 9 10 Quality

Battini et al. [53] 1 0 1 1 1 1 0 0 0 1 6

Blume et al. [54] 1 0 1 1 1 1 0 1 1 1 8

Carbonaro et al. [55] 1 0 0 1 1 0 0 1 1 1 6

Colim et al. [56] 1 0 0 1 1 1 1 1 1 1 8

Maurer-Grubinger et al. [57] 1 0 1 1 1 0 1 1 1 1 8

Hokenstad et al. [58] 1 0 0 1 1 1 1 1 1 1 8

Holzgreve et al. [59] 1 0 1 1 1 1 0 1 1 1 8

Holzgreve et al. [60] 1 0 1 1 1 1 0 0 0 1 6

Huang et al. [61] 1 0 0 1 1 1 0 1 1 1 7

Humadi et al. [62] 1 1 0 1 1 1 0 1 1 1 8

Humadi et al. [63] 1 1 0 1 1 1 0 1 1 1 8

Ohlendorf et al. [64] 1 0 1 1 1 1 0 0 0 1 6

Reddy et al. [65] 1 0 0 1 1 0 0 1 1 0 5

Ryu et al. [66] 1 0 1 1 1 1 0 1 0 0 6

Vignais et al. [67] 1 0 0 1 1 1 1 1 1 1 8

Vignais et al. [68] 1 0 0 1 1 1 1 1 1 1 8

Weitbrecht et al. [69] 1 0 1 1 1 1 1 1 0 1 8

Item legend: 1. Present in the abstract a comprehensive and impartial overview of the conducted activities and
findings. 2. Express specific objectives, including any predetermined hypotheses. 3. Outline eligibility criteria,
along with the sources and methods used for participant selection. 4. For each variable of interest, provide data
sources and details regarding assessment methods (measurement). Discuss the comparability of assessment
methods if multiple groups are involved. 5. Clarify the approach taken to handle quantitative variables in the
analyses. If relevant, elaborate on the chosen groupings and their rationale. 6. Detail the characteristics of study
participants (e.g., demographic, clinical, social) and provide information on exposures and potential confounding
factors. 7. Summarize key results in relation to study objectives. 8. Delve into the study’s limitations, addressing
potential sources of bias or imprecision. Consider both the direction and magnitude of any potential bias. 9. Offer
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a cautious overall interpretation of results, taking into account objectives, limitations, the multitude of analyses,

findings from similar studies, and other pertinent evidence. 10. Disclose the funding source and elucidate the role

of funders in the current study and, if applicable, in the original study upon which the current article is based.

STROBE: STrengthening the Reporting of OBservational studies in Epidemiology.

3. Results
3.1. Search Results

The database search produced 83 results (Figure 1). After removing duplicates (n = 36),
the title, keywords, and abstract of 47 articles were analysed, and 17 were excluded because
they did not meet the inclusion criteria. The eligibility of the rest of the articles (n = 30)
was evaluated, and 17 articles were chosen for the final analyses. Among them, 14 were
published between 2021 and 2023, while only 3 of them were published between 2013 and
2020, thus reflecting the scientific community’s growing interest in the field.
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Figure 1. Search strategy Preferred Reported Items for Systematic Reviews and Meta-Analyses
(PRISMA) flow chart.

3.2. Risk of Bias Assessment

Table 1 shows the overall assessment of the methodological quality of the included
studies. A total of 10 (59%) of the 17 included articles presented high methodological
quality, while the remaining 7 (41%) were of low methodological quality. Of the latter,
none scored below 5 points in the checklist used. All analysed studies described the
data source and detailed the evaluation methods (item 4). In the same way, all included
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articles explained the management of quantitative variables in the analysis process (item 5).
Most studies sufficiently detailed the research participants as well as the study limitations
(items 6 and 8, 82%). Likewise, most authors interpreted the results with caution (item
9, 71%) and reported the source of funding (item 10, 88%). Many authors inadequately
reported, specified, or justified the objectives with their consequent hypotheses (item 2,
88%). Finally, most articles insufficiently detailed the sample selection criteria (item 3, 53%)
and lacked a summary of the key results based on the established objectives (item 7, 65%).
The assessments of the two authors were consistent and comparable, with mean review
scores of 7.12 ± 0.86 and 7.24 ± 1.03.

3.3. Industry Type and Objective

Table 2 summarises the main characteristics of each study included in this review.
The analysed works focused on several industries. Among the 17 studies, the most rep-
resented sector (n = 6; 35%) was industrial manufacturing and manual material handling
tasks [53,56,62,63,67,68]. Four (n = 4; 24%) were dedicated to the dental sector [54,57,60,64],
and another four (n = 4; 24%) to surgery [55,58,65,69]. Finally, two studies (n = 2; 12%) were
related to the construction sector [61,66] and one (n = 1; 6%) to a more generic field linked
to administrative tasks performed on a computer at a desk [59].

Table 2. Characteristics of each study.

Study Industrial
Sector Main Objective Type and Number of

Sensors Used

Body
Elements
Analysed

Combination
with Other

Technologies

Real or
Controlled

Environment

Trans
parency

Battini
et al. [53]

Furniture
manufacturing

To present a platform
that evaluates

4 ergonomic indices in
real time

Xsens MVN (17 MTw
Awinda IMU sensors);

G4 MOCAPSUIT
(29 Synertial IMU
sensors); AIDlab
activity tracker

(5 sensors: ECG, HR,
ST, RP, and MP)

Full body

Validation with
video recording

(contrasting
10 frames

representing
the postures)

Controlled Low

Blume
et al. [54] Dentistry

To analyse the
ergonomic risk of
dental students

Xsens MVN (17 MTw
Awinda IMU sensors)

Upper
body

Video as
reference Controlled Average

Carbonaro
et al. [55]

Surgery
(laparoscopy)

To present and describe
an instrument

designed to monitor
posture during surgery

Xsens MVN (3 MTw
Awinda IMU sensors)

Upper
body

Video as
reference Real High

Colim
et al. [56]

Furniture
manufacturing

To analyse MSD risk
before and after robotic

implementation

Xsens MVN (11 MTw
Awinda IMU sensors)

Upper
body No Controlled Average

Maurer-
Grubinger
et al. [57]

Dentistry

Methodological
development of the

quantification of
workplace ergonomics

based on RULA

Xsens MVN (17 MTw
Awinda IMU sensors)

Upper
body No Controlled Average

Hokenstad
et al. [58]

Surgery
(hysterectomy)

To monitor the
operation and compare
it with another, guided

by ergonomic
recommendations

Opal, APDM (4 I2M
SXT IMU sensors)

Upper
body No Real Average

Holzgreve
et al. [59]

General,
undergraduate

students

To compare the
ergonomic risk of

working at home vs.
optimised workplace

Xsens MVN (17 MTw
Awinda IMU sensors)

Upper
body No Controlled Average

Holzgreve
et al. [60] Dentistry

To investigate
ergonomic risk in four

dental fields and
compare dentists and

assistants

Xsens MVN (17 MTw
Awinda IMU sensors)

Upper
body No Controlled Average
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Table 2. Cont.

Study Industrial
Sector Main Objective Type and Number of

Sensors Used

Body
Elements
Analysed

Combination
with Other

Technologies

Real or
Controlled

Environment

Trans
parency

Huang
et al. [61]

Construction:
shipbuilding

To develop and
validate an inertial

sensor-based system to
assess WMSD risk

Xsens MVN (17 MTw
Awinda IMU sensors) Full body

Video as
reference and

agreement with
experts

Controlled Average

Humadi
et al. [62]

Manual
material
handling

tasks

To investigate the
accuracy and reliability
of wearable technology

and markers (with
Kinnect V2) vs.

MOCAP

Xsens MVN (17 MTw
Awinda IMU sensors)

Upper
body

Validation
against

MOCAP 3D
(VICON with
8 cameras and
100 Hz sample

frequency)

Controlled Average

Humadi
et al. [63]

Manual
material
handling

tasks

To investigate the
accuracy and

repeatability of an IMU
system for RULA

evaluation

Xsens MVN (17 MTw
Awinda IMU sensors)

Upper
body

Validation
against 3D and

2D MOCAP
(VICON,
100 Hz)

Controlled Average

Ohlendorf
et al. [64] Dentistry

To investigate
ergonomic risk in four

workplace concepts
and compare dentists

and assistants

Xsens MVN (17 MTw
Awinda IMU sensors)

Upper
body No Controlled Average

Reddy
et al. [65]

Surgery
(microsurgery

for male
fertility)

To compare ergonomic
risk using 4K-3D

Exoscope vs.
traditional operating

microscope

Opal V2, ADPM (3
I2M SXT IMU

sensors)

Upper
body No Real High

Ryu
et al. [66]

Construction:
bricklaying

To investigate the
applicability of RULA,
REBA, and OWAS to

masonry

Xsens MVN (17 MTw
Awinda IMU sensors)

and Perception
(Notim) (17 Neuron

IMU sensors)

Full body Video as
reference Controlled Average

Vignais
et al. [67]

Industrial
manufacturing

To present an
innovative and

practical ergonomic
evaluation system

Trivisio GmbH (7
Colibri IMU sensors)

Upper
body

Goniometers
on the back of

the hand
(Bi-Axial SG65
Goniometers,

Biometrics Ltd.,
Newport, UK)

Controlled Low

Vignais
et al. [68]

Manual
material
handling

tasks

To analyse the
ergonomic risk of a

manual task in
combination with
video recording

CAPTIV (7 TEA
T-Sens Motion IMU

sensors)

Upper
body

Goniometers
on the back of

the hand
(bi-axial SG65
goniometers,

Biometrics Ltd.,
Newport).
Video as
reference

Controlled Low

Weitbrecht
et al. [69]

Surgery (oral
and

maxillofacial)

To analyse the
ergonomic risk of this

occupational group

Xsens MVN (17 MTw
Awinda IMU sensors)

Upper
body

Video as
reference Controlled Average

MSD: musculoskeletal disease; WMSD: work-related musculoskeletal disease; MOCAP: motion capture; IMU: in-
ertial measurement unit; RULA: Rapid Upper Limb Assessment; REBA: Rapid Entire Body Assessment;
OWAS: Ovako Working posture Assessment; ECG: electrocardiogram; HR: heart rate; ST: skin temperature;
RP: respiration; MP: microphone; IMU: inertial measurement unit.

Regarding the general objective of the included articles, six (n = 6; 35%) addressed
the development and presentation of systems based on inertial systems to analyse one
or more ergonomic indices [53,55,57,61,66,67]. Another six studies (n = 6; 35%) designed
their intervention based on an ergonomic risk comparison between different workstations
or workstation implementations [56,58–60,64,65]. Finally, three works were dedicated to



Sensors 2024, 24, 298 9 of 14

analysing ergonomic risk in a specific industry or task [54,68,69], and two others analysed
the accuracy and reliability of this technology for workplace ergonomic assessment [62,63].

3.4. Technology Used and Body Elements Analysed

Firstly, in relation to the sensors used in each analysed study, the vast majority (n = 13;
77%) used the Xsens MVN system. Of these, most (n = 11) set up all sensors (i.e., 17 MTw
sensors) including the MVN system [53,54,57,59–64,66,69], and only two used 11 [56] and
3 [55] MTw sensors, respectively, from the Xsens MVN system. On the other hand, in
only four cases [58,65,67,68] was the Xsens MVN system not used, a different inertial
sensor system being employed in its place. One study was based on the I2M, SXT version,
ADPM [58] with four sensors; another on the Opal V2, Mobility Laboratory, ADPM [65]
with three sensors; another on the Trivisio GmbH’s Hummingbird IMUs [67], with seven
sensors; and, finally, the CAPTIV Motion IMUs from Tea, Nancy, with seven sensors was
applied in the last [68].

Secondly, only two studies (n = 2; 12%) combined inertial technology with 3D mo-
tion capture instruments (VICON) in order to validate the results obtained with inertial
sensors [62,63]. On the other hand, seven studies (n = 7; 41%) used video recording as a
reference when contrasting the data [53–55,61,66,68,69]. Finally, two studies (n = 2; 12%)
required the use of goniometers (bi-axial SG65, Biometrics Ltd., Newport) on the back of
the hand due to sensor system limitations [67,68], and seven studies (n = 7; 41%) did not
implement any combination with inertial technology [56–60,64,65].

Thirdly, the vast majority of the studies (n = 14; 82%) used protocols focused on
analysing the upper body [54–60,62–65,67–69]. Only three studies (n = 3; 18%) analysed
the entire body [53,61,66].

3.5. Environment and Transparency for the User

The vast majority of studies (n = 14; 82%) were conducted in a controlled environ-
ment, with the intention of simulating a real situation to a greater or lesser
extent [53,54,56,57,59–64,66–69]. Only three studies (n = 3; 18%) extracted their results
from a real environment in their respective industrial sectors [55,58,65].

Finally, based on the scale proposed in this study, transparency was average across
most (n = 12; 71%) studies [54,56–64,66,69]. Three papers (n = 3; 18%) presented low
transparency [53,67,68], and only two (n = 2; 12%) showed high user transparency [55,65].

4. Discussion

The systematic review presented here confirms the relevance of using inertial technol-
ogy to assess workplace posture. The large number of studies published over the last three
years compared to previous years (i.e., 14 vs. 3 studies in the last three years) demonstrates
the rising interest in the technology. In this sense, the use of inertial technology to assess
posture and its risks in the workplace has demonstrated its numerous advantages such
as portability, lightness, and low cost—both on a human and technological level [43–46].
However, despite its advantages compared to traditional observational methods, its appli-
cation has not yet become widespread in the workplace. Some of the reasons recently put
forward in the literature include the uncertainties surrounding possible discomfort, or low
levels of transparency for users [41,42,49,52]. Therefore, the aim of this systematic review
was to propose a novel way of assessing the user “transparency” of inertial technology and
its possible relationship with other factors in the field of occupational risk assessment.

In this work, we presented a pioneering method to qualitatively categorise inertial
capture system transparency to address the hypothesis that it may be affecting or condi-
tioning worker movements or behaviours. In short, transparency would be defined as the
degree to which users are aware that their movements are being monitored. The degree of
transparency is inversely proportional to the degree of user impact (i.e., low transparency
implies that it highly affects the system users, and vice versa). The aim was to relate
transparency to the rest of the factors analysed in order to better understand this concept.
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The diversity of work sectors found in this review was similar to that reported in other
recent reviews [43,45]. All studies conducted in the dental sector [54,57,60,64], the construc-
tion sector [61,66], and the computer-based administrative sector [59] reported average user
transparency. This average transparency level was also found in half the works conducted
in the industrial manufacturing and manual material handling tasks sector [56,62,63], as
well as in half of those in the domain of surgery [58,69]. The other half of the studies in
the field of industrial manufacturing and manual material handling tasks [53,67,68] and in
surgery [55,65] found low and high transparency, respectively. Instruments with average
transparency seem to have been mostly used in various professional fields. In this sense,
given that the number of used sensors largely depends on the sector and task type under
study [43], the form of measurement should be standardised according to task type to
obtain more consistent and comparable results. However, it seems unlikely that the type
of industry directly determines the transparency of the device to be used, since a range of
sectors apply instruments that are varyingly transparent.

Regarding the type of objective of the included studies, the two studies [62,63] that
focused on analysing the precision and reliability of the instrument obtained average
transparency. Of the three which analysed ergonomic risk in a particular sector or task,
one [68] obtained low transparency and the other two [54,69] average transparency. The
studies that compared ergonomic risk designs between different workstations [56,58–60,64]
found that a majority of protocols presented average transparency compared to those with
high transparency [65]. Finally, among the six works that developed and presented new
inertial systems, low- [53,67], average- [57,61,66], and high-level transparencies [55] were
encountered. Thus, the type of objective does not seem to be determining the used system
transparency level either. The kinds of objectives observed were similar to that in other
recent reviews, and no clear associations with the technology type used appeared [43,45].

As in previous reviews [70,71], the Xsens MVN system seems to be one of the most
widely employed, whether all or part of the sensor system is applied. On the one hand,
of the 13 studies that used the Xsens MVN system, most implemented 17 MTw sensors,
leading to average transparency [54,56,57,59–64,66,69], and only 2 obtained low [53] and
high transparency [55], respectively. Another work for which average transparency was
encountered was the one that used the I2M system, SXT version, ADPM [58]. On the
other hand, the studies based on Colibrio IMUs of Trivisio GmbH, or the CAPTIV Motion
IMUs of Tea, Nancy, ultimately demonstrated low transparency [67,68], and the study that
used the Opal V2 system, Mobility Laboratory, ADPM, achieved high transparency [65].
The type of measuring system or instrument does seem to determine user transparency,
since each system is composed of a determined number of sensors and a specific sensing
method. In this case, the only two systems that showed high transparency were the
Xsens’ MVN and Opal V2 instruments, and both were used in a protocol with three-sensor
instrumentation [55,65]. Regarding device transparency categorisation, both protocols
shared low visibility and an average amount of sensors and contact. Therefore, though
we considered visibility as the main transparency categorisation variable, it seems that the
number of sensors could be key to achieving high user transparency. This is especially true
given that today at least, it would not be possible to eliminate contact using this type of
inertial technology [43,45].

Focusing on transparency in relation to the environment used, of the 14 studies that
were conducted in a controlled environment, the vast majority showed average trans-
parency [54,56,57,59–64,66,69]. Only a minority presented low transparency [53,67,68]. On
the other hand, of the three studies conducted in a real environment, two [55,65] presented
a high transparency level and the third [58] an average level. It is rather odd, to say the least,
that the only two instruments to have obtained high user transparency were those that
were used in real-world protocols. The reduced number of studies in real environments
does not allow us to explore any associations, but this subject could be addressed in future
studies. We thus suggest the effectiveness of this technology continue to be analysed in
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real uncontrolled environments, since a lack of studies in this field could be limiting its
large-scale implementation.

Considering all of the above, it seems obvious that to increase user transparency, not
only should the inertial sensor visibility be reduced as much as possible, but also the number
of sensors used [43]. However, this could lead to lowering the quantity and/or quality of the
information recorded by the technology. It would thus be necessary to weigh the benefits
of increasing user transparency (i.e., to affect their behaviour as little as possible) against
the cost of receiving limited and/or reduced information [43]. On the other hand, some of
the limitations of this technology could perhaps be solved thanks to promising advances in
artificial intelligence, machine learning, and/or neural networks [72]. Finally, regardless of
the associations exposed here between transparency and other factors, we cannot conclude
whether transparency directly affects worker behaviour or the large-scale applicability of
this technology. We suggest that future studies explore whether technology transparency
affects worker behaviour, movements, and posture. Moreover, they should evaluate
whether this or some other type of user transparency is preventing inertial technology from
being implemented in the domain of workplace ergonomic assessment generally.

5. Conclusions

In this work, we put forward a qualitative method to assess transparency levels
for users in the field of inertial technology-based workplace ergonomic assessment. In
addition, we reviewed transparency levels obtained in workplace ergonomics studies that
used inertial sensors and the RULA method. The most important ideas that can be extracted
from this review are the following:

• Most of the reviewed studies presented average transparency;
• The Xsens MVN system was the most widely used in the articles included in this

review;
• Last but not least, a concerning and insufficient number of studies were conducted in

real, uncontrolled environments. This shortcoming may be restricting the advancement
of knowledge and the large-scale application of inertial technology-based workplace
ergonomic risk assessment.
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