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Abstract: Ultrasonic non-destructive evaluation in pulse-echo mode is used for the inspection of
single-lap aluminum adhesive joints, which contain interface defects in bonding area. The aim of
the research is to increase the probability of defect detection in addition to ensuring that the defect
sizes are accurately estimated. To achieve this, this study explores additional ultrasonic features (not
only amplitude) that could provide more accurate information about the quality of the structure
and the presence of interface defects. In this work, two types of interface defects, namely inclusions
and delaminations, were studied based on the extracted ultrasonic features in order to evaluate the
expected feasibility of defect detection and the evaluation of its performance. In addition, an analysis
of multiple interface reflections, which have been proved to improve detection in our previous
works, was applied along with the extraction of various ultrasonic features, since it can increase the
probability of defect detection. The ultrasonic features with the best performance for each defect type
were identified and a comparative analysis was carried out, showing that it is more challenging to size
inclusion-type defects compared to delaminations. The best performance is observed for the features
such as peak-to-peak amplitude, ratio coefficients, absolute energy, absolute time of flight, mean
value of the amplitude, standard deviation value, and variation coefficient for both types of defects.
The maximum relative error of the defect size compared to the real one for these features is 16.9%
for inclusions and 3.6% for delaminations, with minimum errors of 11.4% and 2.2%, respectively.
In addition, it was determined that analysis of the data from repetitive reflections from the sample
interface, namely, the aluminum-adhesive second and third reflections, that these contribute to an
increase in the probability of defect detection.

Keywords: NDT; ultrasonic features; adhesive bonding; interface defects; multiple reflections;
detectability

1. Introduction

The development trends and main demands in the automotive and aerospace indus-
tries are the reduction in fuel consumption and carbon dioxide emissions as well as the
maintenance of high safety for environmental and human health at the same time [1–3].
Adhesive bonding is an attractive joining technology that meets the above-listed require-
ments due to characteristics such as high strength-to-weight ratio, a uniform distribution
of loads between joined parts and a decrease in the weight of a structure due to the exclu-
sion of all metal bolts and rivets [2,4,5]. Other advantageous characteristics of adhesively
bonded joints are the ability to join similar and dissimilar materials, vibroacoustic damping
properties, high fatigue life, impact resistance, residual strength, sealing capabilities and
cost effectiveness. However, adhesively bonded joints also have some limitations: inability
to disassemble the structure for examination, and the influence of temperature, moisture
and other environmental conditions on the bonding strength [2,4–6]. During the manufac-
turing process, the durability of adhesive joints can be affected by poor curing and surface
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preparation, moisture, contamination, adhesive thickness and overlap length. Therefore,
there are two dominant factors: (1) a proper surface treatment ensuring the prevention
of contamination; and (2) ensuring the proper curing conditions, which are essential for
adhesive bonding strength [1,5,7]. During its service life, the continuous loading of a
structure as well as the influence of environmental conditions can cause the occurrence of
various defects, including delaminations, disbonds, inclusions, voids, porosity, or weak
bonds [4,7,8]. These defects are located at the interface of the structure and are hidden from
the human eye. It is not possible to determine their occurrence, presence and assess the
severity of these defects on the integrity of the structure via visual inspection. However,
the estimation of bonding strength depends on the type of defect present in the adhesive,
its extent and location [6]. To detect defects in such multi-layered adhesively bonded
structures is a challenging task. Despite all the advantages that adhesive bondings have,
the application of this technology in the aerospace industry is still limited due to a lack of
knowledge on the reliability of the non-destructive testing (NDT) techniques [2,7].

Different methods of NDT are used to test adhesively bonded joints. For example,
in order to detect defects such as porosity and voids, X-ray radiography is well suited.
Some recent works have been performed to characterize such defects in adhesively bonded
joints [3,5,9–11]. Unfortunately, this method is too hazardous to human health due to
radiation, and it is financially costly, especially for industry use. For non-volumetric defects
such as delaminations and disbonds, a more common NDT method with high perfor-
mance is a conventional ultrasound. Various configurations of ultrasonic methods based
on the measurement of the difference in amplitude of reflected signals from defective and
non-defective interfaces have been used to detect interface defects [12–16]. In addition,
the following ultrasonic features, which characterize the signal response, were extracted
to evaluate the adhesive quality: phase shift [12], ratio coefficients of peak-to-peak am-
plitudes [2], the decibel drop between ultrasonic pulses [17,18], maximum correlation
between pulse response and excitation signals to obtain time reversal signals of Lamb
waves [19], mean value, root mean square, standard deviation, skewness, kurtosis and
crest factor, as well as modal frequency, modal mode and damping [20]. A number of
works have been carried out using numerical evaluations and modeling to study the fea-
sibility of different NDT methods [2,7,21,22]. Advanced post-processing algorithms of
the collected data have been developed to provide C-scan images of the interface defects
in multilayer structures, improve detection quality or extract features from the signal re-
sponses [2,3,16,19,20,23]. Furthermore, machine learning is also being applied to study
the defects in the structures [1,24–26]. In our previous works [2], a novel post-processing
technique was developed for the detection of disbonds in multilayered structures and
it eliminated some influential factors and improved detectability. The work of Jakub
Kowlaczyk et al. [18] also investigated influential factors such as longitudinal wave velocity,
elastic properties, the surface roughness, anisotropy and microstructure of the material as
well as attenuation. Jasiuniene et al. [3] proposed a multidimensional fusion technique that
combined the resultant data received from ultrasonic and X-ray inspections for adhesively
bonded components used in aerospace. Due to the fusion of the data from different NDT
methods, the probability of bonding defect detection was improved. Samaitis et al. [1]
applied linear ultrasound and machine-learning algorithms to detect weak bonds in ad-
hesive joints. In this work, it was shown that a classical ultrasonic pulse-echo method
along with LDA (linear discriminant analysis) feature transformation and SVM (support
vector machine) classifier algorithms can detect deviations in bonding integrity. LDA
explores the importance of extracted features and classification accuracy, and then SVM
compares the accuracies between the different features. Yilmaz et al. [15] carried out a
comparison of the performance of different ultrasonic NDT methods in the evaluation of
bonding quality in multilayered structures. The following methods, including bulk waves
and guided waves, were studied: contact, immersion and air-coupled. As a result, some
methods, such as air-coupled guided waves, performed well in detecting the presence
of the defects, whereas bulk waves showed higher performance in defect sizing. Each
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method has its own advantages and disadvantages; therefore, the selection of the method
depends on the objective to be achieved. Wojtczak et al. [27] investigated CFRP/steel
adhesive joints using ultrasonic guided waves. Three-staged algorithms were proposed for
damage imaging: estimation of dispersion curves of the component, novel weighted root
mean square (WRMS) parameters for damage identification and the recording of guided
wavefields by laser vibrometer. Recently, Rao et al. [28] proposed an ultrasonic method
based on the supervised fully convolution method (FCN) to reconstruct quantitatively
hidden disbonds in multilayered structures with high contrast. This method reconstructs
longitudinal wave velocity models from the measured ultrasonic data by extracting fea-
tures from the component. In addition, many other works have been performed using
NDT methods, such as ultrasonic guided waves [4,12,20,29–32], thermography [10,33],
non-linear ultrasound [34], laser ultrasound [8,31,35] and eddy current [36], to investigate
the integrity of adhesive bonding.

However, the reliability of the inspection techniques still remains challenging due
to many aspects of the specific sample, the defect type under investigation, as well as
many other influential factors such as the geometry of the sample, multilayered structure,
thickness of adherends and adhesive layer, different elastic and acoustic properties, surface
and internal layer roughness and unevenness, defect structure and position in the adhe-
sive layer, as well as ultrasonic wave interference, reverberations and overlapping. The
development of a technique that will take into account all these factors and will produce
high efficiency for the detection of interface defects, where it is also possible to apply
various algorithms for data processing, with the possible use of artificial intelligence, and
the automation and optimization of processes represent an up-to-date task [2,3,15].

In this work, the detection and accurate sizing of interface defects in adhesively
bonded aluminum joints such as inclusions and delaminations is of interest. This study was
motivated by the lack of a reliable method of testing adhesive joints that could guarantee
high reliability and performance, and which could increase the usage of bonded structures
in the aeronautical industry. Therefore, the scientific objective of the work is to increase
the probability of detection of interface defects in adhesive joints of multilayer structures.
Despite the progress made in the ultrasonic evaluation of adhesive joints, there are still
factors that affect the detectability of defects in multilayer structures that have not yet been
eliminated, leading to the need to improve the assessment of bond integrity. In order to
fill this gap and contribute to the detectability of inclusion and disbond types of defects,
signal responses utilizing signal processing for various ultrasonic feature extraction were
studied. In order to achieve the main objective, the features were determined based on
the knowledge of wave propagation physics and expertise; the performance of each was
evaluated and a comparative analysis was carried out. Thus, ultrasonic non-destructive
inspection of aluminum single-lap joints with different types of bonding defects was
carried out. Then, ultrasonic (UT) features which are capable of increasing the probability
of defect detection were determined and extracted. Then, an evaluation and analysis of the
performance of the extracted ultrasonic features, with respect to different types of bonding
defects, were performed.

2. Materials and Methods

This section provides an overview of the characteristics of joints of adhesively bonded
aluminum plates and outlines the workflow employed for the investigation. Signal prop-
agation through the layers of the structures was modeled to discern the interaction of
ultrasonic waves with various materials, interfaces and defects in the structures. Time
instants for signal reflections from the interfaces of the samples were calculated. Subse-
quently, an ultrasonic experimental investigation was conducted to collect the data for
further post-processing. The methodology for analyzing multiple interface reflections with
assessed time intervals is also presented. Additionally, the determination and extraction of
ultrasonic features, which can improve the probability of interface defect detection, are also
described in this section.
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2.1. Sample Description

Aluminum single-lap joints manufactured at Cotesa GmBH, Germany, were used
for the investigation. Two plates of aluminum 2024 were bonded using a 3M Scotch-
Weld structural adhesive film AF 163 k. One sample was produced with brass inclusions
between the aluminum sheet and the adhesive layer and another sample was produced
with delaminations on the interface. The delaminations were produced using the Wrigtlon
4600 release film. The release film was double-folded in order to obtain an air gap between
the two layers. The defects were rectangular. Defects in the case of brass inclusions and
delaminations were the same size, 12.7 mm in length and width. The dimensions of the
sample and the defects are presented in Table 1. Pictures of both samples are shown in
Figure 1 and the schematics of the joint are shown in Figure 2.

Table 1. Sample and defect dimensions.

Material Length, mm Width, mm Thickness, mm

Aluminum joint 280 215 3.36
Aluminum plate 280 120 1.6

Adhesive film 280 25 0.16
Defects 12.7 12.7 N/A
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2.2. Signal Modeling

Ultrasonic signal modeling was performed in order to collect the data, analyze the
propagation of ultrasonic waves in the structures, learn about the interaction of ultrasonic
waves with defects vs. perfect bonding, and determine what techniques of post-processing
could be applied to increase the probability of defect detection. The propagation of the
signal through the sample of the aluminum lap joint with interface defects was modeled
using MATLAB R2023a software. The paths of ultrasonic wave propagation and reflection
from each structure layer with corresponding time moments, as well as pulse responses,
are shown in Figure 3. The time moments of the arrival time of reflections are presented
in Table 2.
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Table 2. The time moments of the arrival time of reflections s.

Name of Signal Reflection Time Moment for the
Sample with Inclusions, µs

Time Moment for the
Sample with Delaminations, µs

ts 64.84 65.79
ti – 1 65.33 66.28
td – 1 65.35 -
td – 2 65.37 -
td – 3 65.39 -
tad – 1 65.48 -
tad – 2 65.62 -
ti – 2 65.82 66.77
ti – 3 66.31 67.26
ti – 4 66.80 67.75

Due to theoretical calculations and the modeling of ultrasonic wave propagation paths
for both samples with different defect types, it was possible to reconstruct the sequence and
order of the expected reflections from the boundaries. The obtained pulse response plots
characterized the arrival time of the reflected signals. The positive and negative polarity of
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the impulses characterizes the difference in the acoustic characteristics of the material of
each sample layer and phase change [2,23]. In the case of the joint with brass inclusions
(Figure 3a), it can be observed that the time difference between reflections is quite small,
which explains the occurrence of the signal overlap. This fact can make it much more
difficult to detect defects. In the case of the joint with delaminations, it can be observed
that ultrasonic waves reflect fully from the aluminum–delamination interface. This can
be explained by the fact that defects such as delaminations or disbonds are characterized
by the total debonding of two glued layers, implying the presence of air. As a result, the
time difference between the multiple reflections from aluminum–delamination interface is
0.49µs, which is still a very small value. Therefore, it is very important to take into account
the thickness of the upper layers before the defect and select the appropriate frequency of
the transducer as well as to have knowledge of the sequence, order and time of arrival of
the reflected signals for further processing [2,23].

2.3. Ultrasonic Non-Destructive Evaluation

Aluminum single-lap joints with brass inclusions and delaminations were inspected
using a pulse-echo ultrasonic technique. The inspection in immersion mode was conducted
at the Ultrasound Research institute. The TecScan measurement system was used to carry
out experiments. The sample was fixed on a special table and immersed in a tank of water.
A 15 MHz focused transducer was placed in front of the sample and fixed perpendicular
to the sample surface. Additionally, the transducer perpendicularity and distance to the
surface zone were adjusted by observing the maximum amplitude of the reflected signal.
This configuration was used for scanning and recording the data, since it provides focus on
the sample surface and is able to provide results with higher detectability. The scanning area
was set in 2 directions with a step of 0.2 mm. The inspection set-up is shown in Figure 4.
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Figure 4. Set-up of ultrasonic inspection of aluminum lap joint [2].

After conducting the experimental investigation, the data were collected and analyzed
using MATLAB software. The A-scans at the selected points of the sample surface were
analyzed and displayed. From the previous works performed [2], it was found that an
analysis of multiple interface reflections one by one improves the probability of interface
defect detection. Therefore, in this study, the performance of each ultrasonic feature will be
investigated for the time intervals that correspond to multiple interface reflections, which
were determined using signal modeling (Figure 3; Table 2). A-scans with indicated time
intervals for multiple interface reflections are shown in Figure 5.

2.4. Determination and Extraction of Ultrasonic Features

In this section, different ultrasonic features, which can have an influence/impact on
defect detection, were determined based on wave propagation physics knowledge and
expertise, in order to evaluate their performance and to identify features and their subsets
with the best reliability [1,3]. Different features were extracted from time and frequency
domains and then analyzed.
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In total, the following ultrasonic features (Table 3) were determined and extracted
from the measurement data:

• Peak-to-peak amplitude;
• Ratio coefficients;
• Attenuation;
• Maximum amplitude in the frequency domain;
• Absolute energy;
• Frequency value at the maximum amplitude;
• Absolute time of flight difference;
• Kurtosis (tailedness);
• Mean value of the amplitude in the frequency domain;
• Skewness;
• Standard deviation value in the time domain;
• Standard deviation value in the frequency domain;
• Variation coefficient in the time domain;
• Variation coefficient in the frequency domain.

Table 3. Mathematical expressions of ultrasonic features.

No Ultrasonic Feature Mathematical Expression

1 Peak-to-peak amplitude, Upp
Upp = max(u(t))− min(u(t)), t ∈ tn ÷ tn+1,

n = 1,2,3,4 (interface reflections)

2 Ratio coefficients, K1, K2 K1 =
Uppn

Uppn+1
, K2 =

Uppn+1
Uppn

3 Attenuation, α α = 20log10
Uppn

Uppn+1

4 Maximum amplitude at frequency
domain, U f max

U f max = max(FT(u(t))), t ∈ tn ÷ tn+1, FT—Fourier Transform

5 Absolute Energy, A A =
tn+1

∑
tn

Up−p
2

6 Frequency value at the maximum
amplitude, fUmax

fUmax = FT(u(t)), t ∈ tn ÷ tn+1

7 Absolute time of flight difference, ∆t ∆t = |tn+1 − tn|

8 Kurtosis, k
k = FT E (u(tn÷tn+1 )−µ)4

σ4 ,
µ—is a mean of (u(tn ÷ tn+1)), σ is a standard deviation, E is the

expected value of the quantity (u(tn ÷ tn+1 )− µ)4
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Table 3. Cont.

No Ultrasonic Feature Mathematical Expression

9 Mean value of the amplitude in
frequency domain, u f mean

u f mean =
N
∑

i=1
FT

(
ui(t)

N

)
,

t ∈ tn ÷ tn+1, ui—is each datum of amplitudes at selected time
interval, N—is a number of observations

10 Skewness, s
s = FT E (u(tn÷tn+1 )−µ)3

σ3

µ—is a mean of (u(tn ÷ tn+1)), σ is a standard deviation, E is the
expected value of the quantity (u(tn ÷ tn+1 )− µ)3

11 Standard deviation value in time
domain, σ

σ =

√
1

N−1

N
∑

i=1
ui(t)− u(t)

ui—is each data of amplitudes at selected time interval, u(t)—is a
mean value, N—is a number of observations

12 Standard deviation value in frequency
domain, σf σf = FT·

√
1

N−1

N
∑

i=1
ui(t)− u(t)

13 Variation coefficient in time domain, cv cv = σ
umean

14 Variation coefficient in frequency
domain, cv f

cv f = FT
(

σf
u f mean

)

Ultrasonic features and their mathematical expressions are presented in Table 3. All
listed ultrasonic features were calculated in time intervals of 4 repeated multiple reflections
from the interface (Figure 5). An example of the calculation of the peak-to peak amplitude
feature in time intervals of multiple interface reflections is shown in Figure 6. The remaining
ultrasonic features were calculated accordingly. The ratio coefficients were calculated as the
ratio of amplitudes of different time intervals of reflected signals from the aluminum–defect
interface. The kurtosis feature characterizes whether the data are heavy-tailed or light-
tailed in comparison to the normal distribution. Skewness measures the lack of symmetry
of the signal. The standard deviation value measures how the data of amplitude in relation
to mean value are dispersed. The variation coefficient value is a value between the standard
error and the mean value. In the case of the time of flight feature, different thresholds were
applied: 2%, −2%, 10% and −10%. The different values of thresholds were selected to
calculate the time of flight within the gate at different levels of signal crossing.
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3. Results and Discussion

All the listed features were extracted in the case of the samples with brass inclusions
and delaminations. The evaluation of each ultrasonic feature performance was performed
using the −6 dB drop method. This method includes monitoring the reflected signal from
the defective interface, which first reaches its maximum and then drops to 50% at the edges
of the signal height. The point where the signal is located at half of the maximum peak of
the ultrasonic A-scan is used to estimate the length of the defect. Consequently, flaw lengths
were sized in the middle of the defects along the x axis. C-scans and slices of the intensity
variation in the middle of the defects along the x axis (red dashed line), used to size each
defect, are presented in Figure 7. In addition, the −6 dB level on the intensity variation in
Figure 7 is also indicated with a red dashed line. These figures provide examples of defect
sizing performed for peak-to-peak and variation coefficient features. The resulting C-scans
of ultrasonic features, which presented the highest performance for both samples, as well
as estimated the mean value of relative error of defect sizing compared to reference defect
size, are presented in Tables 4 and 5, respectively. During the experimental investigation,
the measurement was performed 128 times and averaged in the TecScan system. The mean
value of the relative error and the error range (standard error of the mean) were calculated
on the basis of five measurements of the defects. The relative error percentage is calculated
according to the equation

%error =
|Vmeasured − Vreal |

Vreal
× 100% (1)

where Vmeasured is the experimentally received value and Vreal is the reference size of
the defect.
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Table 4. Cont.

Ultrasonic Features No Interface Reflection Relative Error, % C-Scans of Extracted Ultrasonic Features

u f mean ti − 3 2.6
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Table 5. Performance of ultrasonic features for the aluminum joint with brass inclusions and corre-
sponding C-scans.

Ultrasonic
Features

No interface
Reflection Relative Error, % C-Scans of Extracted Ultrasonic Features

∆t ti − 2 and ti − 3 (2%) 11.4
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Observing the C-scans reveals that some defects have a more complex structure. For 
example, brass inclusion No. 4 consists of double layers of brass, where the second layer 
has a rectangular shape of a smaller size. In the case of delamination No. 1, the amplitude 
variation in ultrasonic reflection drops in the center of the defect. The reason for such an 
effect may be the defect structure and/or the entire sample structure above this defect. 
Thus, such factors can affect the detection of defects as well as the ability to measure the 
defect dimensions. In this case, another technique to measure the sizes of the defects might 
be required, or some post-processing algorithms which will be able to eliminate the influ-
ence of these uncertain parameters can be developed [2]. However, the primary focus of 
this work was to investigate the performance of each ultrasonic feature. Therefore, defects 
in both samples were analyzed, compared and the results are presented in this paper. 

From the calculated mean relative errors in the case of the sample with brass inclu-
sions, the following ultrasonic features showed the best performance: absolute time of 
flight ∆𝑡 between ti − 2 and ti − 3 at the 2% threshold, variation coefficient in frequency 
domain 𝑐𝑣௙ at fourth multiple interface reflection ti − 4, kurtosis 𝑘 at ti − 1, ratio coeffi-
cients 𝐾ଶ of ti − 3 and ti − 2 interface reflection and 𝐾ଶ of ti − 3 and ti − 1 time intervals. In 
the case of the sample with delaminations, these features performed the best: absolute 
time of flight ∆𝑡 between ti − 2 and ti − 3 at the 2% threshold, peak-to-peak amplitude 𝑈௣௣ 
at ti − 3, mean value of the amplitude in frequency domain 𝑢௙௠௘௔௡ at ti − 3, variation coef-
ficient in time domain 𝑐𝑣 at ti − 3 and standard deviation value in time domain 𝜎 at ti − 3 
time interval. As a result, the absolute time of flight ∆𝑡 between ti − 2 and ti − 3 at the 2% 
threshold demonstrated the highest performance for both types of the defect. 

Bar graphs of all relative errors estimated for each ultrasonic feature are presented in 
Figures 8 and 9. The results of defect size error calculation at multiple interface reflections 
are presented in Table 6 and compared. 
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Table 5. Cont.

Ultrasonic
Features

No interface
Reflection Relative Error, % C-Scans of Extracted Ultrasonic Features

A ti − 1 16.9
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Observing the C-scans reveals that some defects have a more complex structure. For
example, brass inclusion No. 4 consists of double layers of brass, where the second layer
has a rectangular shape of a smaller size. In the case of delamination No. 1, the amplitude
variation in ultrasonic reflection drops in the center of the defect. The reason for such an
effect may be the defect structure and/or the entire sample structure above this defect. Thus,
such factors can affect the detection of defects as well as the ability to measure the defect
dimensions. In this case, another technique to measure the sizes of the defects might be
required, or some post-processing algorithms which will be able to eliminate the influence
of these uncertain parameters can be developed [2]. However, the primary focus of this
work was to investigate the performance of each ultrasonic feature. Therefore, defects in
both samples were analyzed, compared and the results are presented in this paper.

From the calculated mean relative errors in the case of the sample with brass inclusions,
the following ultrasonic features showed the best performance: absolute time of flight ∆t
between ti − 2 and ti − 3 at the 2% threshold, variation coefficient in frequency domain
cv f at fourth multiple interface reflection ti − 4, kurtosis k at ti − 1, ratio coefficients K2 of
ti − 3 and ti − 2 interface reflection and K2 of ti − 3 and ti − 1 time intervals. In the case of
the sample with delaminations, these features performed the best: absolute time of flight ∆t
between ti − 2 and ti − 3 at the 2% threshold, peak-to-peak amplitude Upp at ti − 3, mean
value of the amplitude in frequency domain u f mean at ti − 3, variation coefficient in time
domain cv at ti − 3 and standard deviation value in time domain σ at ti − 3 time interval.
As a result, the absolute time of flight ∆t between ti − 2 and ti − 3 at the 2% threshold
demonstrated the highest performance for both types of the defect.

Bar graphs of all relative errors estimated for each ultrasonic feature are presented in
Figures 8 and 9. The results of defect size error calculation at multiple interface reflections
are presented in Table 6 and compared.

It was determined that the performance of the ultrasonic features also depends on
the number of repetitive interface reflections from where these features are calculated.
Therefore, the tables above present appropriate numbers of interface reflections along
with the features. Eventually, in this work, it was demonstrated that an analysis of multi-
ple reflections from the interface provides a significant contribution in improving defect
detectability [2,3,23]. Upon comparing the bar graphs of calculated relative errors for
aluminum joints with brass inclusions, it was observed that, mostly by studying second
multiple interface reflection ti − 2, the sizing of the brass inclusions is better compared to
other time intervals. The third and fourth interface reflections ti − 3 and ti − 4 have a higher
relative error. This can be caused by the attenuation of the signal within multi-reflections
from the interface. In the case of the joint with delaminations, a better performance is
observed for second and third multiple interface reflections depending on the feature. The
exceptions are the variation coefficient in frequency domain cv f and skewness s, which
showed the best performance at ti − 4, kurtosis k and absolute energy A at ti − 1 for brass
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inclusions. The variation coefficient in frequency domain cv f and kurtosis k at ti − 4 as well
as skewness s (ti − 1) have also demonstrated high performance for sizing of delaminations.
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Table 6. Relative sizing error of the defects in aluminum joints with brass inclusions and delaminations.

Ultrasonic Feature No. of Interface
Reflection

Brass Inclusions Sample Delaminations Sample

Mean Error,% Error Range,% Mean Error,% Error Range,%

Upp

ti − 1 - - 7.5 ±1.6
ti − 2 16.6 ±1.3 3.6 ±1.3
ti − 3 18.4 ±1.4 2.4 ±1.1
ti − 4 25.1 ±2.2 5.2 ±1.5
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Table 6. Cont.

Ultrasonic Feature No. of Interface
Reflection

Brass Inclusions Sample Delaminations Sample

Mean Error,% Error Range,% Mean Error,% Error Range,%

K1
ti − 1 and ti − 2 - - 3.8 ±1.1
ti − 1 and ti − 3 - - 28.3 ±8.8

K2

ti − 2 and ti − 1 - - 4.1 ±1.5
ti − 3 and ti − 1 16.5 ±1.8 3.8 ±1.1
ti − 3 and ti − 2 12.3 ±2.4 5.4 ±1.2
ti − 4 and ti − 1 27.9 ±3.1 11.7 ±3.5
ti − 4 and ti − 2 60.8 ±10.1 6.3 ±1.6

α
ti − 1 and ti − 2 - - 6.7 ±1.8
ti − 2 and ti − 3 - - 34.9 ±17.6

U f max
ti − 2 16.9 ±1.5 5.0 ±1.2
ti − 3 21.7 ±2.2 - -

A

ti − 1 16.9 ±1.2 4.9 ±1.3
ti − 2 21.5 ±1.7 3.6 ±1.4
ti − 3 25.4 ±2.0 6.8 ±1.6
ti − 4 36.2 ±3.3 27.5 ±16.3

fUmax
ti − 2 - - 3.9 ±1.4
ti − 4 47.4 ±5.1 - -

∆t

ti − 2 and ti − 3 (2%) 11.4 ±2.7 2.2 ±1.4
ti − 3 and ti − 4 (2%) - - 2.9 ±1.5

ti − 1 and ti − 2 (10%) 47.2 ±8.3 - -
ti − 2 and ti − 3 (10%) 48.8 ±8.5 - -

ti − 2 and ti − 3 (−10%) 36.4 ±4.6 - -
ti − 3 and ti − 4 (−10%) 38.3 ±2.8 38 ±14.2

k
ti − 1 15.7 ±6.2 8.1 ±2.0
ti − 2 - - 18.6 ±3.5
ti − 4 19.7 ±1.3 5.5 ±1.7

u f mean

ti − 1 - - 6.5 ±1.7
ti − 2 16.9 ±1.3 3.9 ±1.5
ti − 3 18.5 ±1.3 2.6 ±1.3
ti − 4 24.3 ±2.3 6.6 ±1.8

s
ti − 1 - - 8.3 ±1.9
ti − 2 19.0 ±3.7 - -
ti − 4 18.1 ±2.2 - -

σ

ti − 1 - - 16 ±8.8
ti − 2 16.9 ±1.3 3.5 ±1.4
ti − 3 18.9 ±1.6 2.8 ±1.0
ti − 4 25.2 ±2.1 4.0 ±0.9

σf

ti − 1 - - 17.1 ±9.1
ti − 2 16.7 ±1.2 3.0 ±1.1
ti − 3 20.2 ±2.0 4.5 ±1.3
ti − 4 30.7 ±3.0 8.0 ±1.4

cv

ti − 1 - - 36.3 ±15.3
ti − 2 19.9 ±2.0 3.3 ±1.0
ti − 3 19.8 ±1.9 2.6 ±1.0
ti − 4 30.5 ±2.3 5.2 ±1.1

cv f

ti − 2 - - 36.1 ±17.6
ti − 3 - - 29.9 ±9.4
ti − 4 14.0 ±2.7 2.9 ±0.6

Based on the obtained results, certain ultrasonic features demonstrate high perfor-
mance for the sizing of both inclusions and delaminations. These features are peak-to-peak
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amplitude Upp, ratio coefficients K2, absolute time of flight ∆t, absolute energy A, mean
value of the amplitude in frequency domain u f mean, standard deviation value in time and
frequency domains σ and σf , and variation coefficient in time and frequency domain cv
and cv f . In the case of absolute time of flight features, different thresholds were applied:
2%, −2%, 10% and −10%. Quite promising results were obtained for the absolute time of
flight feature ∆t between ti − 2 and ti − 3 at the 2% threshold for brass inclusions and de-
laminations. Ratio coefficients of the peak-to-peak amplitudes of repetitive muti-reflections
demonstrated consistent high efficiency for different types of defects. In the previous
work [2], these coefficients also helped to improve the probability of disbond detection
located in the middle of the adhesive layer in dissimilar material joints. In addition, Upp,
u f mean, σ and σf as well as cv show reliable results for almost all multiple reflections that
were considered. This could mean that these parameters will consistently exhibit high per-
formance across all types of defects [1,3,20]. However, some ultrasonic features have high
performance for the detection of brass inclusions and low performance for the detection of
delaminations and vice versa.

From the results obtained, it was revealed that the higher the mean relative error of
the features, the greater the dispersion of standard error of the mean in cases of both types
of defects. The dispersion of standard error of the mean is affected by the influential factors
that appear in the structure during inspection, such as ultrasonic wave interference in the
inner layers, overlapping and signal reverberation. In addition, the structure of the sample
and the defects, as well as their materials, also influence the accuracy of the results.

Moreover, sizing is more accurate in the case of the investigation sample with de-
laminations. The lowest relative error is 2.2%, while for the brass inclusion sample, the
lowest relative error is 11.4%. Such a significant difference can be explained by the material
characteristics of the defect. Since delaminations are characterized by the presence of air, the
acoustic impedance mismatch of structure materials is higher and more ultrasonic energy
reflects on such interfaces, returning back to the receiving sensor. Brass material does not
have a high difference in impedance compared to aluminum; therefore, more ultrasonic
energy is being transmitted through the aluminum–brass interface and less travels back to
the transducer [2,13].

This comparison of the results obtained with those of previous studies underlines
the consistency and reliability of the identified ultrasonic features for defect evaluation in
multilayered structures.

4. Conclusions

The purpose of this work was to select ultrasonic features that would enable us to
size different bonding defects in adhesively bonded aluminum joints more accurately. For
this, different valuable ultrasonic features which can have the ability to increase probability
of detection were determined, extracted and their performance was analyzed. In this
study, emphasis was placed on determining ultrasonic features with high performance for
inclusions and delaminations that are typical for multilayered structures.

The following was determined from the presented results:

1. It is more difficult to correctly size inclusion-type defects in the adhesive layer com-
pared to delaminations due to the similar acoustic properties of the defects;

2. The lowest error for delamination detection is 2.2%, and for brass inclusions it is
11.4%. The maximum errors of the features that performed the best are 3.6% and
16.9%, respectively;

3. Ultrasonic features that showed high performance for both types of defects are as
follows: peak-to-peak amplitude Upp, absolute time of flight ∆t, ratio coefficients K2,
absolute energy A, mean value of the amplitude in frequency domain u f mean, standard
deviation value in time and frequency domains σ and σf , and variation coefficients in
the time and frequency domain cv and cv f ;

4. In the case of brass inclusions, kurtosis k at ti − 1 and maximum amplitude at
frequency domain U f max ti − 4 also showed quite high performance, while in the case
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of delaminations, the variation coefficient in time domain cv at ti − 2 and at ti − 3
time intervals showed high performance.

5. The exploration of first interface reflection has the lowest possibility of correctly
sizing the defect. However, the defect presence is identified. For the sizing, second
and third interface reflections show better performance in the case of inclusions and
delaminations, respectively. The fourth reflection is characterized by signal damping
and a decrease in the performance of ultrasonic features.

The results obtained can be used for the optimization of the technique for the detection
and sizing of interface defects as well as for the development of automated algorithms. In
further research, we plan to investigate weak bonds in multilayered structures in the same
way and compare the results with those obtained in this work.
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