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Abstract: There is a significant risk of injury in sports and intense competition due to the demanding
physical and psychological requirements. Hamstring strain injuries (HSIs) are the most prevalent
type of injury among professional soccer players and are the leading cause of missed days in
the sport. These injuries stem from a combination of factors, making it challenging to pinpoint
the most crucial risk factors and their interactions, let alone find effective prevention strategies.
Recently, there has been growing recognition of the potential of tools provided by artificial intelligence
(AI). However, current studies primarily concentrate on enhancing the performance of complex
machine learning models, often overlooking their explanatory capabilities. Consequently, medical
teams have difficulty interpreting these models and are hesitant to trust them fully. In light of
this, there is an increasing need for advanced injury detection and prediction models that can aid
doctors in diagnosing or detecting injuries earlier and with greater accuracy. Accordingly, this
study aims to identify the biomarkers of muscle injuries in professional soccer players through
biomechanical analysis, employing several ML algorithms such as decision tree (DT) methods,
discriminant methods, logistic regression, naive Bayes, support vector machine (SVM), K-nearest
neighbor (KNN), ensemble methods, boosted and bagged trees, artificial neural networks (ANNs),
and XGBoost. In particular, XGBoost is also used to obtain the most important features. The findings
highlight that the variables that most effectively differentiate the groups and could serve as reliable
predictors for injury prevention are the maximum muscle strength of the hamstrings and the stiffness
of the same muscle. With regard to the 35 techniques employed, a precision of up to 78% was
achieved with XGBoost, indicating that by considering scientific evidence, suggestions based on
various data sources, and expert opinions, it is possible to attain good precision, thus enhancing the
reliability of the results for doctors and trainers. Furthermore, the obtained results strongly align
with the existing literature, although further specific studies about this sport are necessary to draw a
definitive conclusion.

Keywords: machine learning explainability; sport medicine; hamstring injuries; soccer player;
XGBoost

1. Introduction

In sports and intense competition, there is a substantial risk of sustaining injuries
arising from the demanding physical and psychological pressures. These injuries impact the
athletes and have ripple effects on coaches, sponsors, teams, and clubs, compounded by the
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substantial medical expenses involved [1–4]. In sports like soccer, lower extremity injuries
claim a significant share, amounting to 92% of the total injury count [5–8]. The sport’s
physical demands and specific characteristics contribute significantly to this heightened
injury incidence [5,9]. Notably, hamstring strain injuries (HSIs) represent the most prevalent
injury in football, making up 12% of all reported injuries. Alarmingly, the recurrence rate for
this injury ranges between 12% and 41% within the first year of returning to the sport [1,2].
Despite this, a recent meta-analysis revealed that seemingly, high-level soccer teams do not
implement any injury prevention protocols [10].

Considering the multi-factorial nature of injuries, identifying the most crucial risk
factors and their interplay, and devising effective prevention strategies present consider-
able challenges [11,12]. In response, attention has turned toward the potential of artificial
intelligence tools [13]. By leveraging expansive datasets and predictive models, healthcare
professionals can diagnose, predict, and treat their patients with heightened confidence [14].
Examples include forecasting post-cardiac surgery complications [15], predicting ICU mor-
tality due to COVID-19 [16], anticipating outcomes following knee surgery [17], diagnosing
pathologies in lumbar spine MRIs [18], and foreseeing surgical risks [19], among others.
However, many machine learning (ML) models often lack user-friendliness for individuals
interacting with them. Achieving an understanding, termed explainability or interpretabil-
ity, is critical for human users to comprehend and trust the machine’s decision-making
process [20]. While the development of explainable models is relatively recent, their value
in interpreting ML models has been acknowledged by various experts [21,22]. Notably,
decision trees have emerged as prominent tools in healthcare, as many health professionals
are already familiar with them in their practice, considering that clinical, serological, or
radiological data often underpin similar medical decisions [14]. With this in mind, this
study aims to determine the biomarkers of hamstring injuries in professional soccer players
through biomechanical analysis using machine learning techniques, emphasizing a certain
level of explainability. To achieve this, this study will implement 35 machine learning
classification algorithms, explicitly focusing on applying the XGboost (extra gradient boost-
ing) technique. XGboost represents an implementation of decision trees with gradient
boosting, offering the added advantage of automatically providing estimates of the feature
importance within a trained predictive model [23]. By implementing machine learning
algorithms, we aim to not only improve accuracy in predicting results and player perfor-
mance but also provide clear and understandable insights for coaches, players, and fans.
This novel approach focuses not only on optimizing results but also on the transparency
and understanding of the decisions made by the model, thus opening up new possibilities
for the effective application of machine learning in the field of soccer.

2. State of the Art

Thigh muscles are commonly injured in soccer players due to the movement pattern in
performing rapid accelerations and decelerations, causing the muscles to overstretch [11].
Risk factors for hamstring injuries are a matter of debate, and many studies have been
conducted to investigate possible predictors. A systematic review evaluating high-quality
prospective studies in soccer players recognized previous injury as the only significant risk
factor [11,24]. Furthermore, the authors concluded that, among other factors, body mass
index (BMI), height, weight, and player exposure were likely insignificant. Furthermore,
there is evidence supporting age as a possible risk factor for hamstring injury in soccer
players [5,25,26]. The literature has shown conflicting evidence on the influence of muscle
strength, although one high-quality prospective study found that hamstring and quadriceps
strength deficits are weak risk factors for a hamstring injury and some authors question
their clinical relevance. More recent studies have found a significant relationship between
the isokinetic strength of knee flexors (hamstring) and extensors at 60°/s, as well as in the
flexor/extensor angular velocity ratio of 60°/s, with the occurrence of injury in soccer [27].
Another prospective study of 146 professional players found that soccer players with low
levels of isokinetic hamstring strength and low hamstring–quadriceps strength ratio have
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an increased risk of acute hamstring injury [28]. In general, a decreased hamstring strength
variable increases the risk of acute injury [29].

Quadriceps peak torque was considered a risk factor in a recent systematic review
and meta-analysis. This marker was found in four soccer-related studies. Consequently,
quadriceps peak torque may be considered a predictive factor in soccer, although more
soccer-specific studies are needed for a conclusive statement [30]. A large number of
potential predictors of hamstring injuries have been investigated, but there is currently
insufficient evidence to draw conclusions. The most important factors are age [11,30–32],
previous injury [11,30,31,33,34], increased quadriceps torque [11,30,32], asymmetry of
eccentric hamstring strength [11,30], lower body stiffness [11,35,36], and single-leg bridge
test [11,30]. Furthermore, according to the book Return to Play in Football: An Evidence-
based Approach [11], the psychological component or position in the game is also a
relevant factor.

Regarding ML techniques, there are a few studies found in the literature that discuss
explainable machine learning. From these studies, it was determined that the most popular
techniques are classifiers [37–39], post-explanatory ML techniques [40–44], and feature
selection [42,45]. From the studies using feature selection, it was observed that it can
improve the performance of prediction models and make the results more interpretable. In
this regard, one study proposed a method to identify the most important features for the
assessment of joint-space-narrowing progression in patients with knee osteoarthritis [46].
Another study employed fuzzy logic to combine multiple feature importance scores, which
were used for the identification and interpretation of knee osteoarthrosis risk factors. The
presented methodology was able to select a subset of risk factors that increased the accuracy
of several ML models compared to popular selection techniques [45], indicating that feature
selection is a good option when the goal is to enhance the explainability of the results.

3. Soccer Player Injury Classification Architecture

In this study, we present an injury classification architecture based on four distinct
biomechanical measures derived from professional soccer players. The architecture is
depicted in Figure 1 and comprises various stages, including the collection of the dataset
for biomechanical testing, pre-processing, classification, and the final classification re-
sults. We provide a detailed explanation of each stage of the proposed architecture in the
following sections.

Figure 1. Proposed architecture for the soccer player injury classification based on muscle biome-
chanical analysis.
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3.1. Dataset for Biomechanical Tests

In this work, 110 male professional soccer players were evaluated to build the proposed
dataset, corresponding to three of the main first-division soccer teams in Chile. For each
player, we considered the player’s age, weight, height, and several biomechanical test
results, anthropometric measurements, and positions of the players within the team, which,
in total, represent 19 different features. All the experiments and evaluations were conducted
by kinesiologists at the Biomechanics Laboratory of the Innovation Center, located within
the MEDS Clinic in Santiago, Chile. The exclusion criteria encompassed injuries within
the last three months and a body mass index (BMI) below 24. All participants provided
informed consent before participation, and adherence to the exclusion and inclusion criteria
was verified before data acquisition. The data matrix was provided anonymously by the
MEDS clinic, thus guaranteeing the confidentiality of the data.

Biomechanical Tests

• Eccentric asymmetry force test (Nordic Hamstring): The participants assume a kneel-
ing position with aligned hips and trunk support (see Figure 2a). An assistant or, in
this case, load cells, is responsible for securing the heels, ensuring continual contact
with the ground during the exercise. Load cells are utilized to measure the eccentric ac-
tivation of the hamstring muscles. This test yields two parameters: the maximum right
hamstring eccentric force (N) and the maximum left hamstring eccentric force (N).

• Eccentric force test (Maximum Force Quadriceps): The participants use a quadriceps
chair (Figure 2a) connected to load cells to measure the eccentric activation of the
quadriceps muscles. This test delivers the parameters of the right quadriceps muscle’s
maximal eccentric force (N) and the left quadriceps muscle’s maximal force (N).

• Single-leg bridge test: This clinical test assesses susceptibility to hamstring injury. The
participant is instructed to lie on the floor supine, with the heel of the designated leg
placed inside a 60 cm high box. With hands crossed over the chest, the subject must
push with the heel to elevate the glutes off the ground. Each repetition requires the
participant to touch the ground before raising the glutes again without resting (see
Figure 2b). This test yields the number of repetitions for the right leg and the number
of repetitions for the left leg.

• Muscle stiffness measure (Myotonometry): This technique involves an objective and
non-invasive digital palpation method for superficial skeletal muscles. The mea-
surement explicitly targets the hamstring muscles (see Figure 2c) and is conducted
using a MyotonPRO device. The parameter obtained for both extremities includes the
S–stiffness (N/m), which reflects the resistance to force or contraction that induces
structural or tissue deformation.

• Vertical jump test (Bosco test): This series of vertical jumps serves to evaluate various
aspects, including morphophysiological characteristics (muscle fiber type), functional
attributes (height and mechanical jump power), and neuromuscular features (utiliza-
tion of elastic energy and myotatic reflex, fatigue resistance) of the lower limb extensor
muscles based on the attained jump height and mechanical power in different types of
vertical jumps. The Bosco test employs three jumps on a force platform. The execution
of these jumps can be observed in Figure 2d, encompassing data from the counter-
movement jump (both two-legged and one-legged), squat jump (both two-legged and
one-legged), and Abalakov (both bipodal and unipodal) jump.
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Figure 2. Biomechanical test procedure.

3.2. Pre-Processing

In this study, a pre-processing stage was implemented to ensure the integrity and
reliability of the data for the subsequent machine learning classification stage. Scaling and
imputation techniques were applied to effectively handle missing data and standardize the
variables. Scaling was employed to standardize the force measures in relation to the body
weight of each player. This adjustment aimed to ensure a fair evaluation by mitigating the
dominance of participant-specific body variations, thus promoting an unbiased analysis.
Furthermore, to address the issue of missing data, zeros were used to fill in the gaps, given
that not all players were available for certain tests due to various reasons such as prior
injuries. This approach was pivotal in preserving the data’s completeness and preventing
potential biases during the analysis. Overall, these pre-processing methods significantly
contributed to preparing the data for comprehensive analysis and interpretation.

3.3. Classification

Once the data were pre-processed, we trained several ML algorithms to evaluate
and compare their classification performance. For this, a feature matrix with dimensions
of 110 × 19 was assembled, with 110 rows representing the participants and 19 columns
signifying the various biomechanical test results, anthropometric measurements, and
positions within the team (forward, defender, goalkeeper, or midfielder). Each sample
of the dataset was categorized into two classes. Class 0 represents no lower limb muscle
injuries during the playing season and class 1 represents lower limb muscle injuries during
the playing season. The database was constructed by physical therapists, kinesiologists,
and traumatologists from the MEDS clinic. It was this multidisciplinary team that reviewed
the injury history and placed the labels according to the hamstring injuries sustained in the
last year (last playing season).

To find the best possible classifier for our dataset, a total of 35 machine learning (ML)
techniques were implemented, including decision tree (DT) methods, discriminant methods,
logistic regression, naive Bayes, support vector machine (SVM), K-nearest neighbor (KNN),
ensemble methods, boosted and bagged trees, artificial neural networks (ANNs), and
XGBoost. We present a brief description and the configuration of each of the proposed
ML models in Tables 1 and 2, respectively. Then, we used a cross-validation evaluation
technique with k = 10 folds, where the dataset was divided into ten parts, allowing each of
the proposed models to be trained and evaluated ten times with different combinations of



Sensors 2024, 24, 119 6 of 13

training and test data. This means that for each of the ten experiments, we used 90% of the
data for training and 10% of the data for testing. This ensures a robust evaluation, avoiding
bias due to a single partition. Additionally, this method optimizes model generalization
by using multiple splits, handles the inherent variability of the data, and helps identify
overfitting or underfitting.

Table 1. ML models, configurations, and description—Part 1.

No. Model Name Model Configuration Model Description

No. 1 Tree 100 splits

No. 2 Tree 20 splits

A flowchart-like structure where an internal
node represents a feature,
a branch represents a decision rule,
and each leaf node represents an outcome.

No. 3 Tree 4 splits

No. 4 Linear
discriminant

Full covariance
structure

A statistical technique for binary
and multiclass classification,
which finds the linear combination of
features that best separates classes.

No. 5 Quadratic
discriminant

Full covariance
structure

A method similar to linear
discriminant analysis,
but it assumes that the
features follow a Gaussian distribution
and estimates the covariance
between the classes.

No. 6
Binary GLM
Logistic
Regression

Binomial distribution

Logistic regression with
binary outcomes for estimating
the probability of a binary
outcome using a logistic function.

No. 7
Efficient
Logistic
Regression

L2 regularization,
alpha = 0.001,
one-vs-one coding

A regression analysis similar to
binary logistic regression but implemented
efficiently to handle large datasets
or high-dimensional data.

No. 8 Efficient
Linear SVM

L2 regularization,
alpha = 0.001,
one-vs-one coding

A supervised machine learning algorithm
used for classification and regression
analysis, which finds a hyperplane
that best separates classes.

No. 9 Gaussian
Naive Bayes Gaussian distribution

A probabilistic classifier, which assumes that
the presence of a particular feature
in a class is unrelated to the presence
of other features.

No. 10 Kernel
Naive Bayes

Normal kernel,
data standardization

A version of the naive Bayes classifier
that can handle non-linear
classification using kernel methods,
transforming data into higher dimensions.

No. 11 Linear SVM
Linear kernel,
one-vs-one coding,
data standardization

A supervised machine learning
algorithm used for classification, which finds a
hyperplane that best separates classes
in a linearly separable dataset.

No. 12 Quadratic SVM
Quadratic kernel,
one-vs-one coding,
data standardization

An extension of the SVM algorithm
that uses a quadratic kernel to handle
non-linearly separable data by mapping
it into a higher-dimensional space.

No. 13 Cubic SVM
Cubic kernel,
one-vs-one coding,
data standardization

An extension of the SVM algorithm that
uses a cubic kernel to handle highly
non-linearly separable data by mapping
it into an even higher-dimensional space.

No. 14 Fine
Gaussian SVM

Kernel scale = 1.6,
one-vs-one coding,
data standardization

An SVM with a fine Gaussian kernel,
suitable for datasets requiring high
precision and accuracy.

No. 15 Medium
Gaussian SVM

kernel scale = 6.5,
one-vs-one coding,
data standardization

An SVM with a medium Gaussian kernel,
suitable for datasets with moderate
complexity and dimensionality.

No. 16 Coarse
Gaussian SVM

Kernel scale = 26,
one-vs-one coding,
data standardization

An SVM with a coarse Gaussian kernel,
suitable for datasets with lower
complexity and dimensionality.
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Table 2. ML models, configurations, and descriptions—Part 2.

No. Model Name Model Configuration Model Description

No. 17 Fine KNN
Number of neighbors = 1,
Euclidean distance

A non-parametric classification algorithm,
that classifies a data point based on
the majority vote of its neighbors
with a fine-tuned distance metric.

No. 18
Medium
KNN

Number of neighbors = 10,
Euclidean distance

A non-parametric classification algorithm
that classifies a data point based on
the majority vote of its neighbors with a
moderately adjusted distance metric.

No. 19 Coarse KNN
Number of neighbors = 100,
Euclidean distance

A non-parametric classification algorithm
that classifies a data point based on
the majority vote of its neighbors with a
roughly adjusted distance metric.

No. 20 Cosine KNN
Number of neighbors = 10,
Euclidean distance

A variation of the K-nearest neighbor
algorithm that computes the cosine
similarity between data points to
measure their similarity.

No. 21 Cubic KNN
Number of neighbors = 10,
Euclidean distance

A non-parametric classification algorithm
that classifies a data point based on
the majority vote of its neighbors
with a cubic distance metric.

No. 22
Weighted
KNN

Number of neighbors = 10,
Euclidean distance

A variant of the K-nearest neighbor
algorithm that assigns weights to the
contributions of the neighbors
based on their distances.

No. 23

Boosted
Trees
with
AdaBoost
ensemble

Decision tree learner,
maximum splits = 20,
learning rate=0.1

An ensemble learning method that
constructs a strong classifier by combining
multiple weak classifiers such as
decision trees using the AdaBoost algorithm.

No. 24
Bagged trees
with bag
ensemble

Decision tree learner,
maximum splits = 109,
number of learners = 30

An ensemble learning technique that
combines multiple models such as decision
trees to improve classification
accuracy and stability.

No. 25
Subspace
discriminant
ensemble

Discriminant learner,
number of learners = 30,
subspace dimension = 10

An ensemble approach that combines
multiple discriminant analysis models to
improve the classification
performance of the system.

No. 26
Subspace
KNN
ensemble

Subspace ensemble method,
decision tree learner,
number of learners = 30,
learning rate = 0.1

An ensemble learning technique that
combines multiple K-nearest neighbor
models operating in different subspaces
to improve classification accuracy.

No. 27
RUSBoosted
Trees

RUSBoost ensemble method,
decision tree learner,
number of learners = 30,
learning rate = 0.1

It is a variant of the AdaBoost algorithm
that incorporates random under-sampling
to address class imbalance, particularly in
binary classification problems.

No. 28 Neural Network 1 layer, 10 neurons, 1k iterations

A network of interconnected nodes
inspired by the structure of the human brain,
capable of learning complex
patterns and relationships within data.

No. 29 Neural Network 1 layer, 25 neurons, 1k iterations

No. 30 Neural Network 1 layer, 100 neurons, 1k iterations

No. 31 Neural Network 2 layers, 10 neuron, 1k iterations

No. 32 Neural Network 3 layers, 10 neurons, 1k iterations

No. 33
SVM
Kernel

SVM learner,
lambda regularization = 0.01,
one-vs-one coding,
iteration limit = 1000

A variant of the SVM algorithm
that uses kernel methods to handle non-linear
data by transforming it into a
higher-dimensional space.

No. 34
Logistic
regression
kernel

Logistic regression learner,
lambda regularization = 0.01,
one-vs-one coding,

A variant of logistic regression that
uses kernel methods to handle non-linear
data.

No. 35 XGBoost
learning rate = 0.3,
L2 regularization alpha = 0.001,
sampling method = uniform

An optimized gradient-boosting
library designed for speed and performance,
effective for classification and regression.
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In addition, the feature importance analysis obtained using the XGBoost model was
utilized to identify the most important and differentiating characteristics of the dataset.
For this, multiple iterations were conducted, considering the best-performing character-
istics from N = 30 iterations. The evaluation metrics, including the cross-validation and
confusion matrix, were derived to validate the classification performance. These influential
characteristics, deemed as injury biomarkers, were used as the focus of the analysis in
this study.

3.4. Most Important Features

To obtain the features that contribute most to class differentiation, several iterations
were performed, and the features were considered in N iterations (where N was set to 30).
For this, the feature importance module of XGBoost was used.

3.5. Results

The testing results of applying 35 ML algorithms are shown in Table 1, along with
the configuration and description of each model. The accuracy values of each model are
visualized in Figure 3, where it can be seen that the best performance was obtained using
the XGBoost technique, achieving an accuracy of 78%, followed by the SVM, decision
tree, KNN, and logistic regression kernel techniques, which achieved accuracies of higher
than 70%.
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Figure 3. Comparison of ML models’ testing accuracies (with ten k-folds).

Table 3 shows the most important characteristics obtained by XGBoost, where the
variable with the greatest weight in the classification, or the one that was repeated the
most during 30 iterations, was the maximum left hamstring strength, followed by the right
biceps femoris stiffness and semitendinosus stiffness. Figure 4 shows an example of the
feature importance graph of the best-performing model, displaying the same variables as
in Table 3, indicating that the most important feature is the maximum hamstring force.

Table 3. Most important features (most repeated over 30 iterations) obtained by XGBoost.

Feature Number of Repetitions
Maximum Force Hamstring Left 28

Stiffness Biceps Femoris Right 28

Stiffness Semitendinosus Right 24

Maximum Force Right Quadriceps 21

Eccentric Force of Hamstrings 17

Age 16
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Figure 4. Feature importance.

4. Discussion

Contemporary research primarily focuses on optimizing the functionality of intricate
machine learning models, often neglecting their capacity for explanation. Consequently,
healthcare professionals encounter challenges in comprehending these models and struggle
to place trust in their outputs [44,47–49]. Thus, there is a growing demand for advanced
ML detection and prediction models that can aid doctors in early and precise disease
diagnosis [2,44,48]. Hence, both model performance and explainability are important in
facilitating sound decision making.

Studies have demonstrated that in research aiming to provide interpretability to results,
the most commonly employed ML techniques include random forests, decision trees, K-
nearest neighbors (KNN), and support vector machines. These simpler models are typically
favored when the emphasis lies on generating more comprehensible and interpretable
models [49]. Notably, the construction of these models is informed by scientific evidence,
suggestions based on various data sources, and expert opinions [14]. Some of these models
were implemented in this work, and their performance results are shown in Figure 3. The
best performance was obtained with model Nº 35, corresponding to the XGboost model,
which achieved an accuracy of 78%. This result aligns with another study that applied
several ML techniques and also found that XGBoost exhibited the best performance [50].

Figure 4 highlights the most influential iteration, showcasing the maximum force of
the left hamstring as the variable with the highest weight. The most significant features
contributing to the best results are detailed in Table 3. The findings suggest that the
maximum muscle strength of the hamstrings and the stiffness of the same muscle are the
key variables that distinguish the groups and could serve as effective predictors for injury
prevention. However, there is conflicting evidence concerning the influence of muscle
strength. A high-quality prospective study indicated that hamstring and quadriceps
strength deficits were weak risk factors for hamstring strain injuries (HSIs), casting doubt
on their clinical significance [25]. Conversely, a recent systematic review focused on
strength training as the primary approach to prevention [5]. Nonetheless, to establish a
definitive statement, further specific studies within this sport are required [5]. Regarding
team differences, aside from the significance of quadriceps strength, as mentioned earlier,
disparities in player age have also been identified. Evidence shows that age is a potential
risk factor for hamstring injuries in soccer players [5,25]. Hence, it becomes essential to
assess whether differences in the number of injuries per team are attributable to this factor
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and review the type of training programs each group employs, considering the potential
impact of these differences on performance.

It is worth mentioning that in developing this study, we made great efforts to build and
process an important and unique database that allows soccer player injury classification
based on muscle biomechanical analysis. In an attempt to broaden the scope of our
work and make our evaluation as fair as possible, we tested and evaluated 35 different
machine learning and deep learning algorithms, which cover the majority of the most
efficient classification algorithms such as SVM, K-NN, decision trees, bagged trees, logistic
regression, neural networks, and XGBoost. Additionally, we used cross-validation with
k = 10 folds in an attempt to make the evaluation as fair and unbiased as possible. In
future work, we will focus on the search and evaluation of potential new machine learning
algorithms that are specialized for this particular application.

5. Conclusions

A notable disparity exists between academic research outcomes and their practical
implementation in medical practice. Medical professionals hesitate to rely on decisions
generated by opaque black box models lacking comprehensive and easily understandable
explanations [51]. Consequently, ML techniques utilized in clinical settings typically avoid
complex models in favor of simpler and more interpretable ones, albeit at the expense of
precision or intricacy. In this context, applying the XGBoost technique instills confidence in
the outcomes and offers a more interpretable perspective from a medical standpoint. The
results from this technique indicate that favorable precision can be achieved by incorpo-
rating scientific evidence, suggestions based on diverse data sources, and expert opinions,
thereby enhancing the trustworthiness of the results for doctors and trainers. Moreover,
the obtained results strongly align with the existing literature, although additional specific
studies within this sport remain imperative to establish a definitive statement. As already
known, the prediction of hamstring injuries in soccer using machine learning techniques is
a constantly evolving area of research. In this sense, it would be ideal to consider additional
variables such as anthropometric measurements, training levels, nutritional conditions,
physiological variables, biometric data, medical images, on-field performance data, and
even genetic variables. In terms of ML analytics, the integration of machine learning models
with fuzzy logic can be investigated to create hybrid systems. These systems can leverage
the capabilities of machine learning and the interpretability of fuzzy logic to improve
accuracy and model understanding. The development of systems that use fuzzy logic to
translate the rules extracted by machine learning models into a language understandable
by sports professionals would facilitate both the interpretation of model decisions and
preventative action.
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