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Abstract: In the past decade, automotive companies have invested significantly in autonomous
vehicles (AV), but achieving widespread deployment remains a challenge in part due to the com-
plexities of safety evaluation. Traditional distance-based testing has been shown to be expensive
and time-consuming. To address this, experts have proposed scenario-based testing (SBT), which
simulates detailed real-world driving scenarios to assess vehicle responses efficiently. This paper
introduces a method that builds a parametric representation of a driving scenario using collected
driving data. By adopting a data-driven approach, we are then able to generate realistic, concrete
scenarios that correspond to high-risk situations. A reinforcement learning technique is used to
identify the combination of parameter values that result in the failure of a system under test (SUT).
The proposed method generates novel, simulated high-risk scenarios, thereby offering a meaningful
and focused assessment of AV systems.

Keywords: autonomous vehicles; testing; edge case generation; scenario-based testing; parametric
representation; data-driven method

1. Introduction

The Society of Automotive Engineers (SAE) outlines six levels of driving automa-
tion [1]. As automation levels increase, autonomous systems must ensure safety without
human intervention. Therefore, comprehensive evaluations are crucial before deploying
these systems on public roads. Unlike deterministic approaches like distance-based testing,
scenario-based testing (SBT) offers a promising alternative by assessing systems against
meaningful driving scenarios and reducing test efforts for safety assurance [2–4]. SBT
concentrates on creating high-risk traffic situation test cases for evaluating a system’s
performance. In SBT, there are three levels of representations [5]:

• Functional scenarios, which comprise the highest abstraction layer and contain a lin-
guistic description of a scenario.

• Logical scenarios, which detail the range and distribution of parameters that describe a
specific event.

• Concrete scenarios, which arise from specifying a value for each parameter, and are
sampled from the distribution defined in the logical scenario.

Moreover, concrete scenarios can be classified into the following three types based on
their occurrence probability: typical, critical, and edge case scenarios.

• Typical scenarios represent common, real-world operating behaviors with a low likeli-
hood of leading to high-risk situations.

• Critical scenarios entail higher-risk situations with safety concerns, occurring less
frequently than typical scenarios.

• Edge cases refer to statistical outliers, presenting challenging scenarios that are rarely
encountered in normal driving activities.
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Identifying a combination of parameter values that describe realistic scenarios is chal-
lenging due to the complex, non-linear relationships between parameters. A considerable
effort is required to pinpoint the optimal combination of parameters that accurately capture
all aspects of a given scenario.

Highly automated vehicles (HAVs) will eliminate the need for human drivers, making
it crucial to evaluate their operation in edge case scenarios to ensure safe deployment [6].
A representative test case, for example, is a cut-in scenario where the HAV might collide
during a lane change.

In the literature, generating concrete scenarios for critical events is a burgeoning
research area in SBT. Prior studies have centered on manually constructing simulated
scenarios utilizing expert knowledge [7–9]. However, these methods may produce scenarios
that do not accurately reflect real-world traffic participant behavior. Moreover, many
existing techniques focus on scenario generation without giving adequate attention to edge
cases [2,10,11]. A recent study by De Gelder et al. applied kernel density estimation to fit a
distribution to three parameters from a given scenario [2]. This work generates test cases
using Monte Carlo simulation but does not explicitly direct the search toward edge cases.

Generating high-risk scenarios for testing HAVs is important in ensuring their safety
and reliability. These scenarios, particularly edge cases, are crucial for assessing how these
vehicles perform in rare or unexpected situations, thereby establishing public trust and
meeting regulatory safety standards. By simulating realistic driving conditions, including
rare and unusual situations, these tests provide a comprehensive evaluation of autonomous
systems, thus uncovering potential weaknesses that might not be evident in normal driving
conditions. This approach is more efficient than traditional distance-based testing methods
and crucial for the overall advancement of autonomous vehicle technology. It allows for
focused and effective testing, thus ensuring the vehicles are well equipped to handle a wide
range of driving scenarios.

This paper presents a method for generating realistic and challenging concrete sce-
narios to evaluate HAV subsystems using real-world data. We exemplify our approach
using lane change events on urban roads. However, the proposed methodology can be
extended to accommodate various road scenarios, thereby highlighting its versatility and
applicability. In this work, we used the CARLA simulator, a tool that is engineered to
facilitate autonomous urban driving system development, training, and validation [12].
This versatile software allows us to control all digital assets, which encompasses static and
dynamic actors, thus enabling the creation or playback of diverse scenarios.

We transformed raw data into meaningful scenarios through a three-step process.
First, we extracted lane change maneuvers from the collected data and converted them into
a parameterized representation [13], thereby validating the parameterization’s effectiveness
using metrics to compare the parameterized scenario representation with the original real-
world trajectory. Next, we constructed a search space, or parameter space, using extracted
parameter values, and we then compared the following three different representations:
independent univariate normal, multivariate normal, and a multimodal–multivariate
distribution. Finally, we treated CARLA’s open-source simulation tool’s collision avoidance
system (CAS) as the system under testing (SUT). We employed an RL method to optimize
the parameter values for realistic and challenging scenarios, with the reward function
biasing learning toward edge cases.

We summarize our paper’s contributions as follows:

• A novel method for identifying and parameterizing real-world lane change sce-
narios, thereby demonstrating a strong resemblance between reproduced and real-
world trajectories.

• A unique urban lane change dataset (81 cut-in and 53 cut-out) with raw parameter
values and OpenSCENARIO representations for each event (available online).

• An extended data-driven methodology [14] for generating problematic concrete sce-
narios for a specific CAS, which was evaluated through quantitative and qualita-
tive analysis.
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2. Related Work

This section provides an overview of the previous works on scenario extraction meth-
ods, scenario datasets, and concrete scenario generation methods.

De Gelder et al. in [15] implemented a scenario extraction method that relies heavily
on real-time tagging. Although the technique enabled automated tagging in real-time and
used a combination of tags to mine scenarios, extracting scenarios using other published
datasets is not easy. Moreover, the approach was highly dependent on the accuracy
and consistency of the real-time tagging process, which may not be reliable. In contrast,
Krajewski et al. in [16] demonstrated a more robust scenario extraction process for lane
change maneuvers by measuring when the vehicles crossed a lane in the data collected
from cameras fitted to drones. This method did not depend on real-time tagging, which
made it more reliable and easier to apply to other datasets. Xinxin et al. in [17] presented a
scenario extraction framework that relied on various computer vision techniques to extract
scenarios from video data. While this approach showed promise, it also had limitations,
particularly regarding the accuracy of the extracted scenarios. Similarly, the study of [18]
proposed a methodology to generate concrete scenarios by extracting scenario parameters
from the HighD dataset for assessing an active lane-keeping system (ALKS). While their
approach was promising it also had limitations, particularly regarding the complexity of
the generated scenarios and the need for accurate data to ensure their validity. Despite
their limitations, both of the studies of [17,18] proposed scenario extraction frameworks
and generated scenarios in a standard format, which may be helpful for researchers and
practitioners in the field.

Several literature contributions have focused on the publication of verification and
validation datasets. For instance, the Safety Pilot Model Deployment (SPMD) [19] program,
launched by the University of Michigan Transportation Research Institute (UMTRI) with the
support of various US departments, collected 73 miles of data and stored it in a text format.
However, extracting scenarios from this dataset requires extensive post-processing, which
can be time-consuming and inconvenient for end users [20]. Krajewski et al. [16] published
the HighD dataset, one of the most extensive highway vehicle trajectory datasets. While
it consists of over 16 h of measurements from six locations with around 100,000 vehicles,
the trajectories were recorded from a bird’s eye perspective. In the study of [18], a method
to extract scenario parameters from the HighD dataset to create concrete scenarios was
proposed. While this method is promising, it focuses primarily on highway scenarios, which
limits its usefulness for researchers and practitioners interested in urban driving scenarios.

The generation of concrete scenarios has been explored in the literature, but these
methods have limitations that must be considered. For instance, Barbier et al. proposed
in [10] a technique to evaluate a system’s behavior by formulating it as a statistical model-
checking problem. While they computed the statistical characteristics of the system under
test (SUT) by identifying the system failures in randomly generated scenarios in a sim-
ulation, they did not bias their search toward edge cases. In contrast, in [2], real-world
scenarios were parameterized and stored in a database. Monte Carlo simulations were
then employed to generate test cases from the parameterized representation. However,
the Monte Carlo simulation is a random search. Depending on the scenario, it may be
less likely to find a falsification result than a directed search, as described in this paper.
Zhao et al. in [11] extracted a statistical model of vehicle behavior from real-world data in a
lane following scenario, and they then skewed the statistical model to create more critical
scenarios. The performance of this model-based approach depends on having an adequate
model representation of real-world behavior, which may not always be the case.

Recent research has focused on generating concrete scenarios using a manually built
combination of parameters. For instance, Gangopadhyay et al. proposed using Bayesian
optimization (BO) to create challenging scenarios [7]. BO utilizes the Bayes rule to learn
the model, and it then finds challenging scenarios by using the learned model. Similarly,
in [8], an evolutionary algorithm (EA) was employed to search for critical scenarios from
parameter space. Also, Zhou et al. [21] introduced a challenging scenario generation
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approach for automated driving systems through using genetic-based algorithms. Other
researchers, such as Koren et al., Liu et al., and Lu et al. [9,22,23], have employed an
RL-based approach to search for collision scenarios from a manually built search space.
These methods do not account for real-world traffic participant behavior in the scenario
generation process, as their parameter space does not consider the correlations between the
different variables.

The authors in [24] presented a novel scenario generation method that utilizes kernel
density estimation (KDE) to approximate the probability density function (PDF) of scenario
parameters, thus enabling the generation of realistic scenarios. In addition to that, they
introduced a novel metric to quantify the extent to which the generated scenarios reflect real-
world scenarios. This work was limited as it did not explicitly demonstrate the generation
of more critical scenarios.

In our previous work, ref. [14], we proposed a method to generate concrete scenarios
for assessing the performance of CAS at pedestrian crossings. Our approach had the
advantage of biasing the learning toward high-risk events, which enabled the creation of
many concrete scenarios through using a parameter space built from expert knowledge.
However, it did not fully encode realistic traffic participant behavior, as expected in a
data-driven approach. In this paper, we address this limitation by building the parameter
space from real-world data, which enables the generation of more realistic and challenging
scenarios in the context of a lane change maneuver.

3. Background

This section introduces several fundamental concepts used in our approach to generate
concrete scenarios for assessing the performance of collision avoidance systems. These
concepts include REINFORCE RL, responsibility sensitive safety (RSS), OpenX formats,
the data collection vehicle, coordinate frames, and the lane change scenario types used in
our method.

• Reinforce RL

Reinforcement learning (RL) algorithms aim to find an optimal policy that maxi-
mizes reward by interacting with the environment modeled as a Markov decision process
(MDP) [25]. RL is typically implemented in three ways: dynamic programming, Monte
Carlo methods, and temporal difference learning. Our approach employs the Monte Carlo
method REINFORCE, a policy gradient algorithm that directly manipulates the policy to
find the optimal one that maximizes expected return [26]. In this algorithm, the policy
is defined by the weights of the neural networks [27]. The learning process updates the
weights to find the optimal policy that predicts the desired action given a state.

• Responsibility Sensitive Safety (RSS)

Responsibility Sensitive Safety (RSS) is a formal method proposed by Intel’s Mobileye
that computes the minimum distance required to keep a vehicle safe [28]. RSS aims to
guarantee that an agent will not cause an accident rather than to ensure that an agent will
not be involved in an accident [28]. Our work focuses on the safe longitudinal distance, as
well as on the minimum distance required for the ego vehicle to stop in time if a vehicle or
object in front brakes abruptly.

• OpenX Formats: OpenSCENARIO and OpenDRIVE

The OpenX formats, including OpenSCENARIO and OpenDRIVE, enable the con-
struction of simulations based on real-world scenarios using programs that support the
format [29–31]. These formats facilitate the sharing of test scenarios that have the potential
to influence safety profoundly. OpenSCENARIO describes the dynamic contents, such
as the behavior of the traffic participants and weather conditions, while OpenDRIVE can
represent a road network and the surrounding environment. Our approach uses version
1.1 for both formats, stored as XML files.
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• Data Collection Vehicle

Our data collection vehicle is a Volkswagen Passat station wagon fitted with Ibeo
and SICK lidars. The Ibeo HAD feature fusion detection and tracking system provides
tracking data for capturing the trajectory of dynamic traffic participants. The algorithms
and methodology presented in this paper are not specific to this exact sensor arrangement.
It is possible to employ this framework on a different platform with minor modifications to
the code.

• Coordinate Frames

Our scenario extraction framework runs on the robot operating system (ROS). Two co-
ordinate frames, base_link and odom, reference the vehicle’s position in the environment.
The Frenet reference frame is used to represent the positions of the traffic participants, thus
enabling the trajectories and interactions to be described with fewer parameters.

Lane Change Scenario Types

Our approach considers two lane change scenarios: cut-in and cut-out. A cut-in
scenario is when a vehicle moves into the ego vehicle’s lane, while a cut-out scenario is
when a front vehicle moves out of the ego vehicle’s lane. These scenarios are essential for
assessing the performance of collision avoidance systems.

4. Edge Case Focused Concrete Scenario Generation

This section describes our methodology for generating concrete scenarios, which
involves extracting lane change scenarios from real-world data and generating edge case
concrete scenarios. The process, as shown in Figure 1, consists of two stages.

Figure 1. Architecture of the proposed method. The concrete scenario generation method is an
end-to-end approach that involves identifying and converting real-world scenarios into a parametric
representation to build a dataset and generate concrete scenarios from these parameters.

4.1. Lane Change Scenario Extraction

In the initial stage, we propose a novel approach for extracting lane change scenarios
from real-world data and represent them in a parameterized form. The set of parameters,
previously introduced in our work [13], characterizes the scenarios. We transform the
extracted parameterized collections of lane change interactions into OpenSCENARIO files,
thus allowing us to replay the trajectories in a simulator. The proposed scenario extraction
technique utilizes the point clouds obtained from the rear, downwards-facing SICK lidar
that are configured in a push-broom layout in combination with odometry and object
tracking data. This module generates individual scenarios in the OpenSCENARIO format
and their corresponding road structure in the OpenDRIVE format. The values of each
parameter are stored in JSON files. The framework of the scenario extraction is depicted in
Figure 2.
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Figure 2. The scenario extraction approach pipeline involves the identification and parameterization
of lane change scenarios in an open format using the data logged by the sensor system.

4.1.1. Tracking and Point Cloud Processing

The data collection vehicle is equipped with an object-tracking system to capture
the road participants’ trajectories in real-time. We used the TF transformation module in
the robot operating system (ROS) to convert the tracking relative observations from the
base_link (ego vehicle) frame to the odom (map) frame.

We used the lidar readings to find the location of the road lane markings, which helped
us to find where and when a lane change occurs. To achieve this, we filtered the point cloud
data from the push-broom lidar. Initially, the lidar points were sorted from the road center
toward the lane boundaries. Then, we evaluated the first and second derivatives of the
angle between the adjacent points to obtain the points hitting the road [32]. This allowed
us to identify the curbs, as well as the separate road and non-road points. We grouped the
points belonging to the lane markings by utilizing the intensity information in the point
cloud. The reflective paint used to draw lane markings typically produces higher intensity
readings than other road points.

After identifying and grouping the lidar points belonging to the lane markings, we
converted them to the global odom frame and merged them to form the lanes. A more
detailed explanation of this process can be found in [33]. We assigned a numerical label to
each lane, and its location and tracking information were converted into a Frenet frame,
where the data is represented in longitudinal s and lateral displacement t. This lane
representation allows us to detect lane change scenarios based on specific criteria such as
a lateral displacement to the lane center, which is not directly available in the Cartesian
coordinate system.

4.1.2. Scenario Extraction Logic and Parameters

To detect the lane change scenarios, we compared the lane number and lateral distance
of the tracked vehicles to the ego path at each time step. A cut-in scenario was detected
when the lateral displacement between any front and side vehicle and the ego vehicle lane
approached zero, while a cut-out scenario was detected when a tracked vehicle moved
away from the ego vehicle’s lane and the lateral displacement increased. The scenarios’
duration was set from eight seconds prior to the lane crossing to four seconds ahead,
thereby capturing a total of 12 s of trajectory for each scenario, which is longer than the
average lane change duration estimated by Toledo et al. [34].

To parameterize the real-world lane change scenarios, we used the list of parameters
from our previous work [13]. These parameters came from four control points: scenario
start, cut start, cut end, and scenario end. The scenario set the initial parameters for the ego
and adversary vehicles, and the remaining parameters configured the adversary vehicle’s
dynamic properties over time.

The output of this stage was the parametric representation of the extracted scenarios,
which we used to create OpenSCENARIO files that described the trajectories in simulation.
We also used OpenDRIVE files to describe the road network where the trajectories were
executed. To replay the parameterized scenarios, we used the OpenSCENARIO player
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Esmini [35]. Additionally, we stored the representations of each captured scenario in the
JSON files to facilitate the construction of the parameter space in the subsequent stage.
The collection of OpenSCENARIO, OpenDRIVE, and JSON files have been made publicly
available [33].

4.2. Edge Case Scenario Generation

The proposed method for concrete scenario generation involves building a parameter
search space based on the built scenario dataset and employing a reinforcement learning
(RL)-based approach, as illustrated in Figure 3. Specifically, this work focused on cut-in
scenarios, although the same process can be used for other road events.

Figure 3. Architecture of the concrete scenario generation technique.

The parameter space comprises the set of possible values for each parameter to gener-
ate new scenarios. In our previous work, independent distributions were introduced for
each of the five parameters, and these were randomly sampled to learn the combination
of the values that led to problematic scenarios. However, this approach was unable to
account for parameter correlations, thus potentially resulting in unrealistic scenarios. To
overcome this issue, this paper employed a multivariate–multimodal distribution to model
the values of seven parameters that describe the extracted scenarios, thereby providing
a more realistic range of values that account for the correlations observed in real-world
vehicle interactions. The parameters used to recreate lane-changing vehicle trajectories
were adversary vehicle trigger distance, velocity at the cut start, duration from start to cut
start, velocity at the cut end, time from cut start to cut end, final velocity, and the duration
from cut end to scenario end.

Algorithm 1 outlines the RL-based technique for generating concrete scenarios. In
earlier stages, for each episode, the controller predicts parameter values as actions to
generate a new concrete scenario in simulation by sampling from the parameter space. In
later stages, the controller indicates actions based on the learned policy.

The state in the RL context encapsulates the current conditions of the environment. For
the concrete scenario generation focused on lane changing, the state can be represented as
a vector of the current values of the following seven parameters: adversary vehicle trigger
distance, velocity at the cut start, duration from start to cut start, velocity at the cut end,
time from cut start to cut end, final velocity, and the duration from cut end to scenario end.
Formally, the state at time t can be represented as

St = [dtrigger, vstart, tstart, vend, tend, v f inal , tscenario]. (1)

The action taken by the controller is to generate a new set of parameter values for
the next scenario. Thus, an action At at time t can be represented as a vector of the new
parameter values:



Sensors 2024, 24, 108 8 of 16

At = [d′trigger, v′start, t′start, v′end, t′end, v′f inal , t′scenario] (2)

Algorithm 1: Pseudocode for the Proposed Concrete Scenario Generation Method
Result: Optimal policy πθ in which controller can generate a challenging scenario
1. Build a multivariate, multimodal distribution as parameter space;
while until the threshold do

if exploration_decay > threshold then
2. The controller generates action to create a scenario in simulation by
sampling from the distribution;

end
else

3. The controller generates action to create a scenario in simulation using
policy πθ ;

end
4. Run the scenario in simulation and get the reward;
5. Store the action and reward for 50 episodes;
if episode%50 == 0 then

6. Evaluate the gradient of the objective function J using the below
expression:

∇J(θ) ≈ 1
N ∑

τ∈N

T−1

∑
t=0

∇θ logπθ(At, St)R(τ) (3)

Where N is the number of trajectories and R is the total return of a
trajectory;

7. Update the weights of the controller using the above function;
end

end

The reward function guides the learning process by considering the minimum safe
distance using RSS and the occurrence of collisions. The reward function quantifies the risk
in the lane change maneuver. A high reward signifies a dangerous lane change, while a low
reward means the vehicles are driving safely. At the end of each episode, the total number
of high-risk timesteps is normalized between −0.1 and 0.1, which is denoted as n_highrisk
in the reward function.

R =

{
n_highrisk non collision

0.25 collision
(4)

Through experimentation, we found that a smaller reward value improves exploration,
resulting in a better chance of finding challenging scenarios, hence the values in the reward
function. The controller is updated after storing action–reward pairs for 50 episodes, and
the NN’s weights are updated to lead toward an optimal policy. The controller operates for
2500 episodes in this configuration.

The objective function J(θ) was used to evaluate and improve the policy. It was
approximated using the total return R of trajectories over a batch of episodes and logπθ .
The logπθ in the objective function is equivalent to categorical cross entropy, so we can use
categorical cross entropy as a loss function. The loss function is multiplied with return R to
enable the learning in the direction of the maximum return. The gradient of J with respect
to θ guides the update of the policy parameters, and it can be represented as follows:

∇J(θ) ≈ 1
N ∑

τ∈N

T−1

∑
t=0

∇θ logπθ(At, St)R(τ). (5)
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The controller (policy) iteratively samples actions (sets of parameter values) from the
parameter space, and the environment provides feedback in the form of rewards based on
the riskiness of the generated lane-changing scenarios. The goal is to learn an optimal policy
that maximizes the likelihood of generating challenging and realistic concrete scenarios.

5. Results

The proposed method uses a data-driven parameter space constructed from the para-
metric representations of real-world events to generate problematic scenarios. This section
presents the results of the scenario extraction process from the collected data and the RL
learning of high-risk scenarios.

5.1. Scenario Parameterization

We developed a novel technique for extracting lane change scenarios from real-world
data. The parameterized cut-in scenarios were replayed using the Esmini player. The
positions of the ego and challenging vehicles were recorded at six timesteps during a
cut-in maneuver.

To illustrate the comparison between the real-world scenario and its corresponding
simulated version, Figure 4a shows the trajectories of a cut-in scenario. The blue trajectory
represents the real-world data, and the red represents the parameterized scenario. The
numbers within the circles indicate the seconds that have elapsed since the beginning of the
lane change maneuver. The initial longitudinal positions of both trajectories were similar.
Toward the end, at the 9th second, we can see a slight variation in the longitudinal position.
Figure 4b shows a comparison of a parameterized cut-out scenario and its corresponding
real-world scenario. Our scenario extraction method allowed us to build a dataset of
lane change events from real-world data, which consists of 81 cut-in scenarios and 53
cut-out scenarios.

(a) (b)
Figure 4. Alignment of the temporal (seconds from the cut start indicated within circles) and spatial
parameters between the real-world scenarios and their corresponding parameterized cut-in and
cut-out scenarios. y and x axis correspond to longitudinal and lateral displacement in meters. (a) Cut
in. (b) Cut out.

5.2. Training

The proposed method aims to maximize the reward function using RSS and a binary
collision metric. The average reward was computed over 50 episodes. As shown in Figure 5,
the reward tended to increase with additional iterations, thus indicating that the generated
scenarios were of an increasingly higher risk. This suggests that the controller had learned
to predict the action that generates a challenging scenario with maximum return, which, in
this example, involved a collision.
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Figure 5. Average reward per episode showing the overall learning of the method.

Figure 6a,c show the highest-risk scenario learned by the method. As shown in
Figure 6a, the adversary vehicle initiated a lane change maneuver around the 4th timestep
and ended up in a collision with the ego vehicle on the 21st. The minimum safe distance
computed using longitudinal RSS is always higher than the actual relative distance between
the vehicles, thus indicating a higher risk profile. The parameter values for this scenario are
shown in Table 1. Upon analysis, we found that the collision occurred due to the restricted
field of view of the SUT, which failed to detect and respond to the adversary vehicle in the
blind spot.

(a) (b)

(c) (d)
Figure 6. The method learned challenging and non-challenging cut-in scenarios from the multivariate,
multimodal distribution, as illustrated in (a,b), where the y axis represents longitudinal displacement
in meters, the x axis indicates lateral displacement in meters, and the numbers inside the circles
denote the timesteps following the commencement of the cut-in. The safe threshold for RSS is also
shown along with the actual relative distance. In cases where the RSS distance was lower than the actual
distance, it indicated a dangerous scenario. (a) Challenging scenario representation. (b) Non-challenging
scenario representation. (c) RSS performance in a challenging scenario. (d) RSS performance in a
non-challenging scenario.

Table 1. Parameter values for a challenging scenario.

Parameter Challenging

trigger_dist 4.0 m
cutin_vel 9.5 m/s

start_to_cutin_dist 8.0 m
cutin_end_vel 7.5 m/s

cutin_start_to_cutin_end_time 5.5 s
final_vel 8.0 m/s

cutin_end_to_final_time 3.0 s
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In contrast, an example of a low-risk scenario is illustrated in Figure 6b,d. In Figure 6b,
the adversary vehicle initiated a lane change maneuver at the 7th timestep and reached the
ego vehicle’s lane around the 18th timestep. The comparison of both vehicles’ longitudinal
positions at the 19th timestep indicated that the longitudinal position of the ego vehicle
was safely behind the adversary vehicle. Figure 6d illustrates the risk profile of a non-
challenging scenario, where the minimum safe distance computed by RSS is always lower
than the relative distance between the ego vehicle and adversary vehicle, suggesting lower
levels of risk.

As the seven parameters defined each scenario, the correlation between these pa-
rameters was encoded in a seven-dimensional space, which cannot be visualized directly.
To show a subset of this distribution, we used two-dimensional plots, as illustrated in
Figure 7. The green dots indicate the samples from the distribution that represent different
collected scenarios, while the red dot shows the collision scenarios generated during the
learning phase. The subfigures of Figure 7 illustrate the generated challenging scenarios
and the distribution samples related to the following three pairs of scenario parameters:
cutin_vel over trigger_dist (Figure 7a), start_to_cutin_time over cutin_vel (Figure 7b), and
cutin_start_to_end_time over cutin_end_vel (Figure 7c). Our proposed method utilizes cor-
related data during the learning phase, thus leading to generated challenging scenarios that
are consistent with the parameter space. In contrast, random sampling without considering
the correlation can lead to unrealistic scenarios that are unlikely to occur in the real world.

(a)

(b)
Figure 7. Cont.
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(c)
Figure 7. These graphs illustrate the multivariate, multi-modal distribution that represents the
seven-dimensional parametric representation of the dataset. Green dots indicate normal scenarios,
while red dots indicate collisions. The distribution is not uniform, and the correlations between the
parameters are captured. The generated scenarios from this distribution are more realistic than those
from uniform random sampling as they are more similar to the captured dataset. The parameter pairs
shown in the graphs highlight the different correlations in the dataset. (a) Cutin_vel vs. trigger_dist;
(b) start_to_cutin_time vs cutin_vel; and (c) cutin_start_to_end vs. cutin_end_vel.

5.3. Experiments

We compared three parameter spaces using independent univariate, multivariate
normal, and multivariate multimodal distributions. In the first experiment, we fitted an
independent multimodal distribution to each parameter. We used kernel density estima-
tion to fit a multivariate normal distribution for the second experiment, while the third
experiment used a multimodal, multivariate distribution to build the parameter space and
to sample new high-risk scenarios.

For the first experiment, we created a scenario by combining random samples from each
univariate distribution. The resulting learned high-risk scenario, as shown in Figure 8a,b,
depicted an adversary vehicle initiating a lane change maneuver when it was ahead of the
ego vehicle but ending up in a collision by hitting the back of the ego vehicle. However,
this type of interaction was not close to any of the scenarios from the real-world dataset,
and it was not representative of a common scenario.

(a) (b)
Figure 8. Cont.
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(c) (d)

(e) (f)
Figure 8. A qualitative analysis was conducted on the three different parameter spaces constructed
using different representations of the dataset. The RL process output was used for each parameter
space and a comparison was made. Figures (a,b) represent the learned scenario based on the indepen-
dent univariate distribution, (c,d) represent the multivariate normal distribution, and (e,f) represent
the multivariate multimodal distribution. The third parameter space, which is multivariate and
multimodal, generated a collision interaction that closely matched the trajectory of the real-world
data. The y axis represents longitudinal displacement in meters and the x axis represents lateral
displacement in meters, with the numbers inside the circles indicating the timesteps following the
commencement of the maneuver. (a) Independent. (b) Trajectory. (c) Multivariate. (d) Trajectory.
(e) Multimodal. (f) Trajectory.

For the second experiment, we used kernel density estimation (KDE) to fit a multivari-
ate normal distribution that incorporated the correlations between the different variables.
The resulting collision scenario, as shown in Figure 8c,d, was closer to the trajectories
collected in the real-world dataset. However, the vehicle collided with the side of the ego
vehicle, and the adversary vehicle was slightly behind the ego vehicle at the 21st timestep,
thereby resulting in a side collision. The sampling from the multivariate, unimodal normal
distribution to the data was not likely to accurately represent the original data as most of
the parameters were multimodal.

For the third and final experiment, we used a multimodal, multivariate distribution
to describe the parameters in the dataset. We created these distributions to build the
parameter space and sampled from them to generate and extract new high-risk scenarios.
The resulting trajectory from our RL-based algorithm, as shown in Figure 8e, was much
closer to the original real-world dataset. The learned parameters were close to the original
data, and the algorithm was able to find a collision that was a cut-in scenario where
the adversary vehicle misjudged the merge and was slightly too close to the ego vehicle.
Figure 8f shows that the adversary vehicle began the lane change maneuver around the 4th
timestep and collided with the ego vehicle around the 21st.
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We conducted a quantitative analysis to compare the three different parameter spaces
based on their likelihood estimates. We employed the RL-based algorithm to generate
high-risk scenarios and used the Python library scipy to compute the likelihoods. We
compared the likelihoods of the scenarios generated using independent univariate, multi-
variate normal and multivariate multimodal distributions. We found that the multivariate,
multimodal distribution had the highest likelihood value of existing within the real-world
data, which we believe better represents the collected data. Therefore, we used it as the
ground truth model to compare the likelihood of a learned high-risk scenario. We fitted
the distributions using the gaussian_kde function, and we computed the likelihood of
the selected scenarios in the distribution using the pd f function. The likelihood for the
converged RL scenario using the independent univariate distribution was extremely low
(e−95). This result indicated that the learned scenarios based on this approach significantly
deviated from the original real-world dataset. The experiment based on the multivari-
ate normal parameter space gave a significantly higher likelihood of existing within the
real-world data (e−17). However, the likelihood was still far lower than the multivariate,
multimodal distribution, which had the highest likelihood value (e−12), thus indicating
that the scenarios generated using this distribution were more realistic and representative
of the original dataset.

6. Conclusions and Future Work

We propose a method that generates realistic and challenging scenarios in simulation
by using a data-driven parameter space and RL-based technique. Parameterized scenarios
from real-world data enable the reproduction of events and the building of data-driven
parameter spaces that encode realistic traffic behaviors.

We compared the following three parameter spaces for generating high-risk scenarios
in autonomous vehicle testing: independent univariate, multivariate normal, and mul-
tivariate multimodal distributions. The first experiment, using univariate distributions,
produced unrealistic scenarios that did not match real-world data. The second experi-
ment, employing a multivariate normal distribution, yielded more realistic side collision
scenarios but still lacked accuracy in representing complex real-world situations. The
third experiment was most successful using a multimodal, multivariate distribution, which
closely mirrored real-world driving scenarios (particularly in simulating realistic lane
change maneuvers).

Our quantitative analysis reinforced these findings, with the multimodal, multivari-
ate distribution showing the highest likelihood of resembling real-world scenarios. This
contrasted with the low likelihood values of the scenarios generated from univariate dis-
tributions. The multivariate normal distribution was better but less effective than the
multimodal approach. Our research demonstrates that a multivariate, multimodal distri-
bution is the most effective in creating realistic and challenging scenarios for autonomous
vehicle testing, which is crucial for ensuring the safety and reliability of these systems in
real-world conditions.

In future work, we plan to integrate more complex traffic situations to enhance the
robustness of our models. We also see potential in developing a more interactive simu-
lation environment, where the autonomous vehicle’s responses can dynamically alter the
scenario in real-timedh, thus providing a more comprehensive assessment of its decision-
making capabilities.
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