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Abstract: In this work, we address the single robot navigation problem within a planar and arbitrarily
connected workspace. In particular, we present an algorithm that transforms any static, compact,
planar workspace of arbitrary connectedness and shape to a disk, where the navigation problem
can be easily solved. Our solution benefits from the fact that it only requires a fine representation
of the workspace boundary (i.e., a set of points), which is easily obtained in practice via SLAM.
The proposed transformation, combined with a workspace decomposition strategy that reduces the
computational complexity, has been exhaustively tested and has shown excellent performance in
complex workspaces. A motion control scheme is also provided for the class of non-holonomic robots
with unicycle kinematics, which are commonly used in most industrial applications. Moreover, the
tuning of the underlying control parameters is rather straightforward as it affects only the shape of
the resulted trajectories and not the critical specifications of collision avoidance and convergence to
the goal position. Finally, we validate the efficacy of the proposed navigation strategy via extensive
simulations and experimental studies.

Keywords: motion and path planning; collision avoidance; autonomous vehicle navigation; artificial
potential fields

1. Introduction

The navigation of autonomous robots in cluttered environments is a widely studied
topic in the field of robotics. Popular methodologies that have been employed in the related
literature to address it include, but are not limited to, configuration space decomposition
approaches [1,2]; probabilistic sampling methods such as rapidly exploring random trees [3,4],
probabilistic roadmaps [5,6] and manifold samples [7,8]; and optimal control strategies
such as receding horizon control [9,10] and path homotopy invariants [11,12]. Apart
from the aforementioned discrete methods regarding the workspace and/or the decision
domain, Artificial Potential Fields (APFs) that were originally introduced in [13] generally
provide a simpler means of encoding collision avoidance specifications, with their negated
gradient functioning as a reference motion direction that drives the robot towards the
desired goal configuration. As shown in [14], despite their intuitive nature, this class
of controllers suffers unavoidably from the presence of unwanted equilibria induced by
the workspace’s topology, whose region of attraction may not be trivial. In their seminal
work [15], Rimon and Koditschek presented a family of APFs called Navigation Functions
(NFs) for point and sphere worlds, as well as a constructive transformation for mapping
workspaces cluttered by sequences of star-shaped obstacles into such worlds. However,
certain design parameters require tedious tuning to eliminate unwanted local minima
and render the transformation a diffeomorphism. In practice, this solution suffers by the
fact that the allowable values of the design parameters may cause both the potential and
the corresponding transformation to vary too abruptly close to the obstacles (the issue
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of “disappearing valleys” [15]), thus pushing the trajectories of the robot very close to
them. Density functions for remedying such drawbacks or adjustable NFs for relaxing
some generally conservative requirements are presented in [16,17]. Additionally, attempts
to extend the NF framework directly to non-sphere worlds can be found in [18,19]. Finally,
a novel approach based on power diagrams which can be used for designing tune-free
vector fields for navigation within convex workspaces is also presented in [20].

Artificial Harmonic Potential Fields (AHPFs) constitute an interesting subclass of APFs,
since they are free of unwanted local minima by construction. However, no simple method
exists for constructing safe (with respect to obstacle avoidance), harmonic potentials even
for simple workspaces. AHPFs suitable for navigation in realistic environments were
originally utilized in [21], where computationally expensive numerical techniques were
employed to solve the associated Dirichlet and Neumann problems. Several extensions of
the aforementioned methodology followed [22,23], addressing issues such as numerical
precision and computation, dynamic environments, etc. The panel method was also
employed in [24–26] to build harmonic potentials to coordinate the motion of single and
multiple robots in polygonal environments. In [27,28], well-known closed-form solutions
of the uncompressed fluid flow around simple geometries was used in order to safely drive
a robot among moving obstacles. Harmonic potential fields have also been used in [29,30]
to address the Simultaneous Localization and Mapping problem (SLAM) by coordinating
the robot motion in unknown environments. Moreover, a methodology based on the
evaluation of the harmonic potential field’s streamlines was used in [31,32] for mapping
a multiply connected workspace to a disk, collapsing inner obstacles to line segments or
arcs. In a recent work [33], the problem of designing closed form harmonic potentials in
sphere worlds was addressed by the introduction of a diffeomorphism [34], which allows
mapping such workspaces to the euclidean plane with some of its points removed. Finally,
extensions of this work addressing topologically complex three-dimensional workspaces or
multi-robot scenarios by introducing appropriate constructive workspace transformations
can be found in [35,36], respectively.

1.1. Contributions

We address the navigation problem for a robot operating within a static, compact,
planar workspace of arbitrary connectedness and shape by designing a control law that
safely drives the robot to a given goal position from almost any initial feasible configu-
ration. The goal of this work is twofold. (A) To cope with the topological complexity of
the workspace, we employed numerical techniques in order to build a transformation that
maps the workspace onto a punctured disk and delved into the respective construction
in detail. We remark that, although the transformation constructed using this method is
an approximation of a harmonic map ideal for navigation, our solution benefits from the
fact that it only needs a sufficiently fine polygonal workspace description that can be easily
acquired in practice (e.g., through SLAM), contrary to [15,34,36] that require an explicit
representation of the workspace boundaries (i.e., as the level sets of sufficiently smooth
functions). Moreover, unlike the solutions proposed in [15,36], our approach does not
require the decomposition of the workspace obstacles into sequences of simpler overlap-
ping shapes and computes the desired transformation in one step. (B) To steer the robot
to its desired configuration, we employed a control law based on closed-form AHPFs
coupled with adaptive laws for their parameters to eliminate the necessity of explicitly
defined local activation neighborhoods around the workspace boundaries for ensuring
collision avoidance. Our approach is reactive (closed loop) since it selects the velocity of
the robot based on the positions of the robot, the desired goal and the workspace bound-
ary. As such, it is more robust against position measurement errors than other open loop
approaches such as configuration space decomposition approaches [2] or probabilistic
sampling methods such as rapidly exploring random trees [4], probabilistic roadmaps [6]
and manifold samples [8], where an open loop path is initially extracted and executed
by a trajectory tracking controller. In this way, even small position errors risk the safe
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execution of the calculated plan. We remark that our overall control scheme only requires
solving a computationally expensive problem once for a given static workspace, indepen-
dent of the robot’s initial and goal configurations, in contrast to the solutions presented
in [21,22]. Finally, we adapt our methodology to the class of differential drive robots,
which are commonly encountered in real-world applications and propose an algorithm that
decomposes the overall workspace into small neighbouring subsets to render the problem
of addressing large workspaces tractable. An overview of the proposed methodology’s
pros and cons compared to alternative transformations and potential fields can be seen in
Tables 1 and 2, respectively.

Preliminary results were included in our conference paper [37]. We have to stress
though that the algorithmic calculation of the harmonic map is given in the present work,
along with a rigorous formulation of the panel method. A modification of the adaptive laws
for the parameters of the underlying potential field is also introduced to simplify the tuning
process by eliminating the necessity of heuristically defined local activation neighborhoods
around the workspace boundaries for ensuring collision avoidance. Moreover, an extension
for tackling the navigation problem under unicycle kinematics is also provided. Finally,
new comparative simulation results are provided to highlight the strong points of the
proposed method with respect to other related works, accompanied by an experiment
employing an actual robot navigating within a complex office workspace.

Table 1. Comparison between the Harmonic Transformation (HM) proposed in this work and the
(i) Star-to-Sphere Transformation (SST) [15], (ii) Multi-Agent Navigation Transformation (MANT) [36]
and (iii) the Navigation Transformation (NT) [34]. Although HMs require global knowledge of the
workspace’s geometry to be constructed, HMs are infinitely differentiable and require the domain to
be represented by closed polygonal curves (which can be easily obtained using SLAM methodologies),
unlike the alternatives that require the domain boundaries to be represented as sets of sufficiently
differentiable implicit equations.

Geometry Representation Global Analytic

HM Points on the boundary Yes Yes
SST Trees of Stars Yes Yes
NT C2-manifolds No No
MANT Trees of C2-manifolds No No

Table 2. Comparison of Adaptive Harmonic Potential Fields (proposed herein) with common
alternatives, specifically Rimon–Koditchek Navigation Functions (RKNF) [15], Harmonic Navigation
Functions [33] and approximate Harmonic Potential Fields obtained using numerical techniques [21].
Unlike RKNFs that require tuning for ensuring convergence to the goal from almost all initial
configurations and HNFs that require tuning for guaranteeing collision avoidance with the workspace
boundaries, the proposed control law enjoys both properties by design.

Convergence Collision Avoidance Computational Cost

AHPF By design By design Cheap
HPF By design By design Expensive
RKNF Requires tuning By design Cheap
HNF By design Requires tuning Cheap

1.2. Preliminaries

We useDr(x) to denote an open disk with radius r > 0 centered at x ∈ R2. Additionally,
D and ∂D denote the closed disk and circle with unit radii centered at the origin of R2,
respectively. Furthermore, let IN , {1, 2, . . . , N} and I?N , {0}⋃ IN . Given sets A, B ⊆ Rn,
we use cl(A), ∂A, int(A) and A to denote the closure, boundary, interior and complement of
A with respect to Rn, respectively, and A \ B to denote the complement of B with respect to
A. Furthermore, we use 0N and 1N to denote the all-zeros and all-ones column vectors of
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length N, respectively, and 0N×M to denote the N ×M zero matrix. We also define 1k
N×M,

k ∈ IM as the N ×M matrix whose k-th column is equal to 1N and every other column
is equal to 0N . Given a vector function f (x), we use ∇x f to denote its Jacobian matrix.
Furthermore, given an arc C, we use |C| to denote its length. We will also say that a set A is
attractive (repulsive) under a potential function ψ when there exists a point p0 /∈ cl(A) such
that if we initialize at p0 and move along the negated gradient of ψ, we will converge (not
converge) to ∂A. Finally, a potential function ψ is called harmonic if it satisfies the Laplace
equation, i.e., ∇2ψ = 0, where ∇2 denotes the Laplacian operator. An important property
of harmonic functions is the principle of superposition, which follows from the linearity of
the Laplace equation. Moreover, the extrema of a non-constant harmonic function occur
on the boundary of the domain of definition, thus excluding any local minima/maxima
within it (a desirable property for motion planning).

2. Problem Formulation

We consider a robot operating within a compact workspace W ⊂ R2 bounded by
a single outer and a finite set of inner disjoint Jordan curves (a Jordan curve is a non-self-
intersecting continuous planar closed curve), which correspond to the boundaries of static
obstacles. It is assumed thatW can be written as:

W =W0 \
⋃

i∈IN

Wi

where Wi, i ∈ I?N denote regions of R2 that the robot cannot occupy (see left subplot
in Figure 1). Particularly, the complement ofW0 is considered to be a bounded, simply
connected region that may also include a strict subset of its own boundary (this corresponds
to cases when we wish to place the robot’s goal configuration on some part of the workspace
outer boundary which is not physically occupied by an actual obstacle, e.g., the door of
a compartment (refer to Section 5.2 for more details)) andW1,W2, . . . ,WN are assumed to
be closed, simply connected compact sets that are contained inW0 and are pairwise disjoint.
Let p = [x, y]T ∈ R2 denote the robot’s position and assume that the robot’s motion is
described by the single integrator model:

ṗ = u (1)

where u ∈ R2 is the corresponding control input vector.

Problem 1. Our goal is to design a control law to successfully drive a robot with kinematics (1)
towards a given goal configuration pd ∈ W from almost any feasible initial configuration pinit ∈ W ,
while ensuring collision avoidance, i.e., p(t) ∈ W for all t ≥ 0.

Remark 1. The results presented in this work can be readily employed for the navigation of
disk robots with radius R > 0 by appropriately augmenting the workspace boundaries with the
robot’s size.

3. Harmonic Maps for Planar Navigation

In this section, we present a methodology that maps the robot’s workspace onto
a punctured unit disk, over which the robot’s control law is designed. Particularly, our
goal is to construct a transformation, T : cl(W) 7→ D, from the closure of the robot’s
configuration space cl(W) onto the unit disk D with the following properties:

1. T(·) maps the outer boundary ∂W0 to the unit circle ∂D;
2. T(·) maps the boundary ∂Wi, i ∈ IN of each obstacle to a distinct point qi = [ui, vi]

T ∈
int(D);

3. T(·) is a diffeomorphism for all p ∈ int(W).
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To that end, we compute a transformation T̃(p) = [ũ(p), ṽ(p)]T , with ũ(p) and ṽ(p)
being harmonic functions with respect to p, by approximating an ideal harmonic map
T that meets the aforementioned properties and the existence of which was proven in
Theorem 2 of [38], accompanied by sufficient conditions that render it a diffeomorphism as
outlined in the corresponding proof.

Figure 1. Transformation of a workspace onto a punctured disk.

Particularly, this theorem implies that given an orientation-preserving, weak home-
omorphism T∂ : ∂W0 → ∂D (such a transformation can be easily obtained for any given
planar Jordan curve C by (1) arbitrarily selecting a point po on C, (2) defining `(p), ∀p ∈ C
as the length of the arc p̃o p, assuming one travels from po to p on C while having the curve’s
interior to its left and (3) choosing T∂(p) = [cos(2π`(p)/L), sin(2π`(p)/L)]T , where L = |C|)
from the workspace outer boundary ∂W0 to the boundary of the unit disk, the harmonic
map T that satisfies the conditions:

T(p) = T∂(p) , [ū(p), v̄(p)]T , ∀p ∈ ∂W0, (2)

∫
∂Wi

∂T
∂np

ds = 0, ∀i ∈ IN (3)

with np denoting the unit vector that is normal to the boundary at the point p ∈ ∂Wi, i ∈ IN ,
is a diffeomorphism that maps cl(W) to the target set and collapses each inner obstacleWi
onto a distinct point qi within its interior (see Figure 1). Note that the coordinates of qi, i.e.,
the images of the internal obstacles, are not explicitly specified but are computed as part of
the solution, such that the aforementioned constraints are satisfied.

Given that closed-form solutions to the aforementioned problem are generally not
available for non-trivial domains, in this work, we employed numerical techniques and
particularly the Panel Method [24,39,40] (similar formulations can be obtained by employ-
ing other numerical techniques such as the Boundary Element Method (BEM), the Finite
Element Method (FEM) or the Finite Differences Method (FDM)) in order to construct
a harmonic map T̃ that sufficiently approximates T. As such, by subdividing separately
the workspace’s outer and inner boundaries into M̃0, M̃1, . . . , M̃N number of elements (see
Figure 2), we define the components of T̃(p) = [ũ(p), ṽ(p)]T as follows:

ũ(p) =
N

∑
i=0

M̃i

∑
j=1

M̃C

∑
l=1

C̃x
ijl H̃ijl(p)

ṽ(p) =
N

∑
i=0

M̃i

∑
j=1

M̃C

∑
l=1

C̃y
ijl H̃ijl(p)



Sensors 2023, 23, 4464 6 of 31

H̃ijl(p) =
∫

Ẽij

G̃ijl(s) ln(‖p− p̃i,j(s)‖)ds (4)

where M̃C is the number of control parameters per element, Ẽij denotes the j-th element of
the i-th boundary’s approximation, p̃i,j(s) : [0, |Ẽij|] 7→ Ẽij is a bijective parameterization of
Ẽij, G̃ijl : [0, |Ẽij|] 7→ R is the shape function corresponding to the l-th control parameter
of Ẽij and C̃x

ijl , C̃y
ijl ∈ R are control parameters that need to be appropriately selected so

that T̃ satisfies properties 1–3 for all l ∈ IM̃C
, j ∈ IM̃i

and i ∈ I?N . It is worth noting that
for common choices of G̃ijl (e.g., constant or linear shape functions) and simple types of
Ẽij (e.g., line segments), the integral in (4) can be easily evaluated to obtain a closed-form
expression for H̃ijl . As an illustration, for a line segment element Ẽij with two control
parameters (i.e., M̃C = 2), a typical choice for linear shape functions (see Figure 2) is
G̃ij1(s) = s/|Ẽij|, G̃ij2(s) =

Ä
1− s/|Ẽij|

ä
and p̃i,j(s) = p̃i,j,A +

Ä
p̃i,j,B − p̃i,j,A

ä
s/|Ẽij| for the

corresponding parameterization, where p̃i,j,A, p̃i,j,B are the element’s end-points. To obtain
the unknown control parameters as well as the images of the workspace’s inner obstacles,
one needs to solve two independent linear systems of equations:

ÃX̃ = B̃x, ÃỸ = B̃y (5)

for the unknown vectors:

X̃ =
î
C̃x

0,1,1, · · · , C̃x
1,1,1, · · · , C̃x

N,M̃N ,M̃C
, u1, · · · , uN

óT
Ỹ =

î
C̃y

0,1,1, · · · , C̃y
1,1,1, · · · , C̃y

N,M̃N ,M̃C
, v1, · · · , vN

óT
.

The matrix Ã and the right hand side vectors B̃x and B̃y are constructed by selecting
a set of ∑i∈I?

N
m̃i arbitrary points p̃?i,j (a typical strategy is to select the points p̃?i,j uniformly

on the outer and inner boundaries of the given domain) such that a) p̃?i,j ∈ ∂Wi for all
j ∈ Im̃i and i ∈ I?N and b) ∑i∈I?

N
m̃i = M̃C ∑i∈I?

N
M̃i, and evaluating (2) and (3) at those

points as follows:

Ã =


Ã0, 0m̃0×N
Ã1, −11

m̃1×N
...

...
ÃN , −1N

m̃N×N
Ã†, 0N×N

, B̃x =


B̃x,0
0m̃1

...
0m̃N

0N

, B̃y =


B̃y,0
0m̃1

...
0m̃N

0N



Ãk =


H̃0,1,1(p̃?k,1) · · · H̃N,M̃N ,M̃C

(p̃?k,1)
H̃0,1,1(p̃?k,2) · · · H̃N,M̃N ,M̃C

(p̃?k,2)
...

...
...

H̃0,1,1(p̃?k,m̃k
) · · · H̃N,M̃N ,M̃C

(p̃?k,m̃k
)

, ∀k ∈ I?N

Ã† =



∑m̃1
k=1

∂H̃0,1,1
∂n0,1

(p̃?1,k) . . . ∑m̃1
k=1

∂H̃N,M̃N ,M̃C
∂nN,M̃N

(p̃?1,k)

∑m̃2
k=1

∂H̃0,1,1
∂n0,1

(p̃?2,k) . . . ∑m̃2
k=1

∂H̃N,M̃N ,M̃C
∂nN,M̃N

(p̃?2,k)

...
...

...

∑m̃N
k=1

∂H̃0,1,1
∂n0,1

(p̃?N,k) . . . ∑m̃N
k=1

∂H̃N,M̃N ,M̃C
∂nN,M̃N

(p̃?N,k)


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B̃x,0 =


ū(p̃?0,1)
ū(p̃?0,2)

...
ū(p̃?0,m̃0

)

 B̃y,0 =


v̄(p̃?0,1)
v̄(p̃?0,2)

...
v̄(p̃?0,m̃0

)

.

Notice that by discretizing the workspace boundaries into a large number of suf-
ficiently small elements, the overall approximation error between the solution T̃ of the
aforementioned linear problem and the exact transformation T can be rendered arbitrarily
small (see [39,40]). However, the complexity of constructing the mapping is of order O(M̄3),
where M̄ denotes the number of total elements of the mapping (i.e., the complexity of the
solution of the dense system of linear Equation (5)). Nevertheless, the construction of the
transformation, which is the main computational bottleneck, is performed only once at the
beginning. Additionally, apart from the straightforward user-defined homeomorphism T∂

on the workspace boundary, no tedious trial and error tuning is needed to extract the dif-
feomorphic transformation T̃, in contrast to other related works such as the Star-to-Sphere
Transformation (SST) [15], the Multi-Agent Navigation Transformation (MANT) [36] and
the Navigation Transformation (NT) [34].

Figure 2. Discretization of a given domain’s boundary using line segment elements. By convention,
the outer boundary is considered to be clockwise oriented, whereas inner boundaries are counter-
clockwise oriented. The normal direction of each element is depicted using green colored vectors.
Furthermore, the values of the two linear shape functions G̃0,3,1 and G̃0,3,2 are plotted along the
associated element Ẽ0,3.

4. Control Design

To address Problem 1, we equip the robot with the aforementioned transformation
q = T(p) from the closure of its configuration spaceW onto the unit disk D and an artificial
potential ψ(q, k) augmented with an adaptive control law k̇ = fk(q, k) for its parameters
k = [kd, k1, k2, . . . , kN]T . The robot velocity control law is calculated as follows:

u = −Kus(q, k)J−1(p)∇qψ(q, k) (6)

where J(p) denotes the Jacobian matrix of T(p), s(q, k) ≥ 0 is a continuously differentiable
gain function given by:

s(q, k) = γσp

Ç
1− ‖q‖

εp

å
+ (1− γ)σv

( (
∇qψ

)Tq
εv + ‖∇qψ‖‖q‖

)
(7)
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with

σp(x) =

{
x2(3− 2x), if x ≤ 1
1, if x > 1

,

σv(x) =

{
x2, if x ≥ 0
0, if x < 0

(8)

and Ku, γ, εp and εv are scalar constants such that Ku, εv > 0 and γ, εp ∈ (0, 1). More
specifically, s(q, k) consists of two individual terms, with the first vanishing as the robot
approaches the workspace’s outer boundary (and its distance from the unit circle is less
than εp) and the second vanishing when the robot’s velocity points away from the disk’s
center. The scalar parameter γ can be used for adjusting the contribution of each respective
term of s(q, k). Finally, ψ is a harmonic artificial potential field defined on the image T(W)
of the workspaceW and whose negated gradient −∇qψ(q, k) defines the direction of the
robot’s motion in the real workspaceW via the inverse Jacobian J−1(p). By design, the
resultant vector field precludes collisions between the robot and the workspace’s inner
obstacles and renders the goal configuration almost globally attractive except for a set
of measure zero initial configurations. However, since W0 may not be repulsive under
ψ for an arbitrary, fixed selection of k, we also introduce the adaptive law fk(q, k) which,
along with s(q, k), guarantees forward invariance of the workspace without compromising
the convergence and stability properties of the overall system. The following subsections
elaborate on each component of the proposed control law individually.

4.1. Artificial Harmonic Potential Fields

We construct an artificial harmonic potential field on the disk space D employing
point sources placed at the desired configuration qd = T(pd) as well as at the points
qi = T(∂Wi), ∀i ∈ IN that correspond to the inner obstacles, as follows:

φ(q, k) = kd ln
Å‖q− qd‖

2

ã
−

N

∑
i=1

ki ln
Å‖q− qi‖

2

ã
(9)

where kd > 0 and ki ≥ 0 denote harmonic source strengths which vary according to
adaptive laws that are presented later. An interesting property of the above potential field,
which stems from the maximum principle for harmonic functions, is that, for fixed k, the
only minima of φ are located at qd and, possibly, at infinity. As a direct consequence of this
property, the Hessian∇2

qφ computed at a non-degenerate critical point of φ in our domain’s
interior has one positive and one negative eigenvalue with the same magnitude, e.g., λ and
−λ with λ > 0.

Next, we define a reference potential ψ based on φ, which is given by:

ψ(q, k) =
1 + tanh(φ(q, k)/wφ)

2
(10)

where wφ is a positive scaling constant. Note that ψ maps the extended real line to the
closed interval [0, 1]. As tanh

(
φ/wφ

)
is a strictly increasing function, the only critical points

of ψ are the ones inherited from φ with their indices preserved. Furthermore, the gradient
of ψ with respect to q, given by

∇qψ =
1−

(
tanh

(
φ/wφ

))2

2wφ
∇qφ, (11)

is well defined and bounded for all q ∈ D.
If the workspace was radially unbounded, selecting k fixed with kd > ∑N

i=1 ki would
render the potential field (10) sufficient for navigation. The author of [33] addresses
bounded workspaces that are diffeomorphic to sphere worlds by simply mapping the
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outer bounding circle to infinity. In this work, we would like to be able to place qd on
regions of ∂D that are not physically occupied by obstacles (such as passages to other
compartments, see, for example, Section 5.2); thus, we cannot follow the same procedure
since that would render the effect of the sole attractor on the robot null. Instead, we design
appropriate adaptive laws for the parameters k of φ to render the outer boundary repulsive
and establish the forward completeness of the proposed scheme at all times.

Before proceeding with the definition of the adaptive law, we first state two proposi-
tions that will be used in the subsequent analysis, the proofs of which can be found in the
Appendix A.

Proposition 1. Let kd > 0 and q′ ∈ ∂D \ {qd}. There exists k′ > 0 such that if ki < k′, ∀i ∈ IN ,
then q′ is repulsive under ψ.

Proposition 2. If ki are non-negative and bounded, there exists k′d > 0 such that ψ is Morse for
all kd ≥ k′d.

4.2. Adaptive Laws

We now present the adaptive law k̇ = fk(q, k) that updates the parameters of the
potential field ψ. Its primary goal is to render (a) the workspace outer boundary repulsive
and (b) any critical point of φ in the vicinity of the robot non-degenerate, a property that
will be used later in the analysis. In particular, we consider fk of the form:

k̇d = ξ1(λ + ‖∇qφ‖; ε1)

k̇i =
Ä

ki − ki
ä

wi`igi −Kkkihiw0
(
g0 + ξ1(s; ε2)

)
, ∀i ∈ IN

(12)

where wi and gi, i ∈ I?N , as well as hi, i ∈ IN , are functions to be defined later, ki, i ∈ IN are
desired upper bounds for ki, λ denotes the non-negative eigenvalue of∇2

qφ, Kk is a positive
control gain and ε1 and ε2 are small positive constants. The continuously differentiable
switch ξ1(x; ε) and functions `i(q) are, respectively, given by:

ξ1(x; ε) = 1− σp
(
x/ε
)

`i(q) = − Kus(q, k)

ln
(
‖q−qi‖

2

) . (13)

According to Proposition 1, our first requirement can be accomplished by designing
fk to reduce ki as the robot approaches ∂D. To do so without compromising the inherent
inner obstacle collision avoidance properties of φ, we need to also ensure that each ki does
not vanish within some neighborhood of qi for all i ∈ IN . To that end, firstly we define gi,
employing the smoothly vanishing function defined in (8) to serve as pseudo-metrics of
the alignment between the robot’s velocity and the directions towards the goal and inner
obstacles, respectively, given by:

gi = σv
(
gi
)
, ∀i ∈ I?N (14)

with
g0 =

1
4

Å
α‖∇qψ‖‖q− qd‖ −

(
∇qψ

)T(q− qd)
ã

gi =
1
2
(
∇qψ

)T(q− qi), ∀i ∈ IN

where α ∈ (0, 1] is a fixed constant that is used for selecting the desired alignment between
the robot’s motion and the direction to the goal. We also define the accompanying weights
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wi as follows to ensure that only one term of (12) dominates as the robot approaches
a particular boundary ofW :

w0 =
ξ2(w0; ε3)

w0 + ∑N
j=1 (kjwj)

wi =
wi

w0 + ∑N
j=1 (kjwj)

, ∀i ∈ IN

(15)

with
wi = ri/(ri + ri), ∀i ∈ I?N ,

r0 =
(
1− ‖q‖

)2, ri = ‖q− qi‖2, ∀i ∈ IN

ri = m

 
∑
j 6=i

(rj)m, ∀i ∈ IN (16)

ξ2(x; ε) =


0, if x < εÄ

x−ε
1−ε

ä2Ä
3− 2 x−ε

1−ε

ä
, if ε ≤ x ≤ 1

1, otherwise

for a scalar constant ε3 ∈ (0, 1) in (15) and some integer m < −1 in (16) that serves as
a smooth under-approximation of minj 6=i (rj), i ∈ IN . Finally, the weights hi, i ∈ IN are
defined as follows:

hi = 1 +
σv
Ä

hi
ä

1 + ∑j∈IN
σv
Ä

hj
ä

with

hi = ki
Ä

1−
(
tanh

(
φ/wφ

))2ä2
Ç

qd − q

‖qd − q‖2

åT
qi − q

‖qi − q‖2

whose purpose is to accelerate the decay of those ki that contribute the most to the compo-
nent of ∇qψ that pushes the robot toward the workspace’s outer boundary.

Regarding the second requirement, as shown in Proposition 1, selecting a kd above
a certain threshold is sufficient to render φ free of degenerate equilibria. On the other
hand, for a given ki, increasing kd steers the robot closer to the workspace’s inner obsta-
cles. Nevertheless, since the robot may never actually enter the vicinity of a degenerate
equilibrium, instead of setting kd sufficiently large a priori, the adaptive law for the pa-
rameter kd is introduced to increase kd only when it is actually needed, thus alleviating the
aforementioned shortcoming.

4.3. Stability Analysis

Let us consider the overall system:

ż = fz(z) (17)

where z = (q, k) and fz(z) = ( fq, fk) with fq = Ju. Furthermore, let Ω denote the image of
W under T, i.e., Ω = T(W). Note that Ω consists of int(D), possibly with a subset of ∂D,
with the points qi removed. In this section, we elaborate on the stability properties of (17)
under the proposed control scheme (6) and (12). First, we formalize the safety properties
of the closed-loop system dynamics, which guarantee that our robot does not collide with
any obstacle.

Proposition 3. The workspace W is invariant under the dynamics (17) with control laws (6)
and (12), i.e., p(t) ∈ W for all t ≥ 0.
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Proof. For the proof, refer to the Appendix A.

Having eliminated the possibility of the robot colliding with the workspace’s boundaries,
we proceed by showing that all critical points of ψ, where (17) may converge to, are either
non-degenerate saddles or qd. Additionally, we show that the latter is a stable equilibrium.

Proposition 4. The artificial potential ψ decreases along the trajectories of the closed-loop system
and its time derivative vanishes only at its critical points. Additionally, the preimage of qd is a set of
stable equilibria of (1).

Proof. For the proof, refer to the Appendix A.

Proposition 5. Let z? = (q?, k?) be a critical point of the closed-loop system dynamics with
q? ∈ Ω \ {qd}. Then, q? is a non-degenerate saddle point of ψ.

Proof. For the proof, refer to the Appendix A.

Finally, we conclude this section with the main theoretical findings.

Theorem 1. System (1) under the control law (6) and (12) converges safely to pd, for almost all
initial configurations, thus addressing successfully Problem 1.

Proof. For the proof, refer to the Appendix A.

Remark 2. Owing to the adaptive laws (12) that modify the harmonic source strengths online to
secure the safety and convergence properties at all times, the selection of the fixed control parameters
in the proposed scheme, i.e., Ku, γ, εp, εv, wφ, Kk, ε1, ε2, α and ε3, is straightforward as it affects
only the trajectory evolution within the workspace and not the aforementioned critical properties.
Consequently, their values should be set freely as opposed to NFs, where the selection of the main
parameters severely affects the convergence properties of the adopted scheme and cannot be conducted
constructively for generic workspaces of arbitrary topology.

5. Extensions

In this section, we present certain extensions of the proposed approach to (a) address
the safe navigation problem for unicycle robots which are frequently encountered in
many application domains and (b) tackle computational complexity issues that affect the
numerical computation of the harmonic map presented in Section 3 as the size of the
workspace increases.

5.1. Unicycle Robot Kinematics

In this subsection, we consider robots whose motion is subjected to Pfaffian constraints
of the form:

ṗ = nθv

θ̇ = ω
(18)

where θ ∈ [0, 2π) denotes the robot’s orientation, nθ = [cos(θ), sin(θ)]T , and v, ω ∈ R are
control inputs corresponding to the robot’s linear and angular velocities, respectively. First,
let us define the robot’s kinematics in the image of the configuration space via the proposed
transformation as follows:

q̇ = nθ̂ v̂
˙̂θ = ω̂

. (19)

Note that the orientations θ and θ̂ are related by:

nθ̂ =
Jpnθ

‖Jpnθ‖
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where Jp = J(p). To safely drive the robot to its goal configuration, we consider the
following control laws:

v̂ = −Kvsv(q, θ̂, k)
(
nθ̂

)T∇qψ(q, k)

ω̂ = −Kω

Ä
n⊥

θ̂

äT
∇qψ(q, k)

(20)

with Kv,Kω ∈ R positive constant gains, n⊥θ = [− sin(θ), cos(θ)]T and

sv(q, θ̂, k) = γσp

Ç
1− ‖q‖

εp

å
+ (1− γ)σv

Ç (
nθ̂

T∇qψ
)
nθ̂

Tq
εv +

∣∣nθ̂
T∇qψ

∣∣‖q‖
å

.

Additionally, we need to employ a modified version of the adaptive law for the
potential field parameters, which is obtained by substituting s with sv in (12) and (13) and
gi, i ∈ I?N , with

gv,0 =
1
4

Å
α
∣∣∣nθ̂

T∇qψ
∣∣∣‖q− qd‖ −

Ä
nθ̂

T∇qψ
ä

nθ̂
T(q− qd)

ã
gv,i =

1
2

Ä
nθ̂

T∇qψ
ä

nθ̂
T(q− qi), ∀i ∈ IN

respectively, in (14). Finally, by expressing the aforementioned control laws to the robot’s
actual configuration space, we obtain:

v = νv̂

ω = ωdq + ωdθ̂

(21)

where ωdq and ωdθ̂ are terms corresponding to angular velocities induced by translational
and rotational motion of the robot in the workspace’s image, respectively, given by:

ωdq = −v̂ν2
Å(

Jp
[
nθ νn⊥θ

])−1 ∂

∂nθ
Jpnθ

ãTï0
1

ò
ωdθ̂ = ω̂

((
Jp
[
nθ νn⊥θ

])−1n⊥
θ̂

)T
ï
0
1

ò
with ν = ‖J−1

p nθ̂‖ and ∂
∂nθ

Jp denoting the directional derivative of Jp along nθ .
The stability properties of the aforementioned closed-loop system dynamics are for-

malized below.

Theorem 2. The workspaceW is invariant under the dynamics of (18) equipped with the proposed
control law. Additionally, the robot will asymptotically converge either to an interior critical point
of φ or to the pre-image of qd, which is stable.

Proof. For the proof, refer to the Appendix A.

Remark 3. The result of Theorem 2 is weaker compared to that of Theorem 1, since there is no
guarantee that the set of configurations which converge to a critical point of φ (other than the
pre-image of qd) has Lebesgue measure zero.

5.2. Atlas of Harmonic Maps

As the size of the workspace increases, the problem of computing the transformation
T grows in complexity as well, because the resources required by commonly employed
numerical techniques that can solve the problem presented in Section 3 are polynomial
in the number of elements used for representing W . Alternatively, to cope with large
workspaces efficiently, we propose instead the construction of an atlas A , {(Pi, Ti) | i ∈
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INA} obtained by separating the workspaceW into NA overlapping subsets Pi ⊂ W , such
that

⋃
i∈INA

Pi =W and constructing a separate harmonic map Ti for each Pi (see Figure 3).

Figure 3. The partition of a complex workspace into overlapping subsets along with the correspond-
ing graph and the tranformation T2 of the second partition P2.

This essentially allows us to solve many small (and computationally less intensive)
problems instead of a large one, thus reducing the overall resources required for addressing
a given workspace. Therefore, given such a partitioning of W , we define the graph
G = (V , E ), where V = {Pi | i ∈ INA} denotes the set of corresponding nodes (workspace
partitions) and E denotes the set of edges between the elements of V , with each edge
indicating a feasible transition from one partition to another, i.e., (i, j) ∈ E if and only ifÄ

cl(Pi)∩ cl
Ä
Pj
ää
6= ∅. Note that G is undirected by definition, i.e., (i, j) ∈ E only if (j, i) ∈ E .

Additionally, since the workspace is connected, G should also be connected. Thus, for
a given atlas A, an initial configuration pinit and a final configuration pd, we can employ
standard graph search algorithms to obtain a sequence of indices S = {s1, s2, . . . sn}
corresponding to partitions that the robot can tranverse to reach its goal. (In general,
more than one such sequence of partitions may exist connecting the initial and the final
configurations. However, the selection of one that corresponds to some sort of “optimal”
path is beyond the scope of this work.) Additionally, note that since the partitioning ofW
does not need to be fine, the size of G will generally be small, rendering the cost of finding
S negligible.

We now concentrate on how the transition between two consecutive elements of S
is implemented. Let Ci,j , cl(Pi)∩ cl

Ä
Pj
ä

denote the common region of cl(Pi) and cl
Ä
Pj
ä

and let Bi,j , ∂Pi ∩ Pj denote the set of points on the boundary of Pi that also belong to
Pj and are not occupied by obstacles for all i ∈ INA and all j such that (i, j) ∈ E . Without
loss of generality, we assume that A is constructed such that the sets B`,i ∩ B`,j are either
empty or consist of isolated points. We note that in order to successfully complete the
transition between two consecutive nodes Pi and Pj of S , it suffices for the robot to reach
any single point of Bi,j from Pi. We also observe that each Bi,j may consist of one or more
disjoint components B`i,j, ` ∈ L(i, j), with L(i, j) being some valid indexing of those. By
exploiting the fact that Theorem 2 [38] imposes a weak homeomorphism requirement on
Ti, we can construct each Ti such that each disjoint subset of ∂Pi collapses into a separate
point, i.e., Ti(B`i,j) = q`i,j ∈ ∂D (see Figure 3), which, in turn, implies that selecting q`i,j as

an intermediate goal configuration suffices to render the entire B`i,j attractive. Building

upon this fact, for each consecutive pair of Pi and Pj in S , we (arbitrarily) select a B`i,j
and we construct a transformation Ti : Pi 7→ D, with q[i] = Ti(p), and artificial potential
field φi(q[i], k[i]) with goal configuration q[i]

d = q`i,j. Additionally, to smooth the transition
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between consecutive partitions, when they overlap, we propose the following modified
control law for the robot:

u = u[i] + ηc,i,j · ηt,i,j · u[j], ∀p ∈ Ci,j (22)

where u[i] and u[j] denote the control inputs as defined in (6) and evaluated using ψi, Ti and
ψj, Tj, respectively; the function ηt,i,j : Ci,j 7→ [0, 1] is any smooth bump function such that

ηt,i,j(p) =

{
0, if p ∈ Bj,i

1, if p ∈ Bi,j

and

ηc,i,j(p, k[i], k[j]) =


(ζi,j)2

ε4+(ζi,j)2 , if ζi,j ≥ 0

0, if ζi,j < 0

with ζi,j =
(
∇pψi

)T ·
Ä
∇pψj

ä
; and ε4 > 0 is a fixed parameter. What this modification

essentially does is incrementally add an extra component, with the direction of ∇pψj, to
the robot’s velocity when that component is cosine similar (two vectors u and v are cosine
similar if their inner product is positive) with∇pψi. We note that ηc,i,j → 1 and ηt,i,j → 1 as
the robot approaches the boundary of the corresponding partition. We also remark that
once the robot has completed its transition to Pj, we do not concern ourselves with u[i]

anymore, i.e., u = u[j] even if p returns to Ci,j. The overall scheme employed for navigating
a holonomic robot to its goal configuration using an altas constructed as described above
can be found in Algorithm 1.

Regarding the stability analysis of the modified system, by following the same proce-
dure as in Section 4.3 and by virtue of ηc,i,j, it is trivial to verify the following statement.

Theorem 3. System (1) equipped with Algorithm 1 converges safely to a given goal configuration
pd ∈ W from almost all initial configurations pinit ∈ W .

Proof. For the proof, refer to the Appendix A.

Algorithm 1 Altas-based motion planning scheme for a holonomic robot

Require: A, pinit, pd
S ←FINDPATHTOGOAL(G, pinit, pd)
Initialize k[s] for all s ∈ S .
for all i in In−1 do

s, s′ ← si, si+1
Select (arbitrary) ` such that ` ∈ L(s, s′).
Place goal configuration of ψs at q`s,s′ .

end for
Place goal configuration of ψsn at Tsn (pd).
`← 1
loop

if ` = n or p ∈ Ps` \ Ps`+1 then
Update p using (6) and k[s`] using (12).

else if p ∈ Cs`,s`+1 then
Update p using (22) with i = s` and j = s`+1.
Update k[s`] and k[s`] using (12).

else
`← `+ 1

end if
end loop
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6. Simulations and Experimental Results

In order to demonstrate the efficacy of the proposed control scheme, we have con-
ducted various simulation and experimental studies, the results of which are presented in
this section. The algorithm that computes the harmonic transformation and its Jacobian
was implemented in C++, while the proposed control protocols were implemented in
Python. Code implementations can be accessed at https://github.com/maxchaos/hntf2d
(accessed on 16 April 2023). All simulations were carried out on a PC with an Intel i5
processor operating at 2.2 Ghz, with 4 GB RAM and running a GNU/Linux operating
system. For more details regarding both simulations and experiments, the reader may
refer to the accompanying video material at https://youtu.be/I6WUS81iDh4 (accessed on
16 April 2023).

6.1. Simulations—Full Workspace Transformation

In the first case study, a single transformation of the entire 8 m × 5 m workspace
(see Figure 3) was constructed and the robot was instructed to navigate to various goal
configurations starting from the same initial position. The initial configuration and the
parameters of our controller were selected such as to better demonstrate the guaranteed
collision avoidance properties of our scheme. Particularly, the initial values for the pa-
rameters of the adaptive law were selected as kd = 20, ki = 1 and ki = 20 for all i ∈ I10.
The values of the remaining parameters were Ku = 100, wφ = 20, Kk = 100, α = 1,
εp = 0.025, εv = 0.1, γ = 0.7, ε1 = 0.01, ε2 = 0.1 and ε3 = 0.1. The goal configurations
and the trajectories executed by the robot, both in the real and transformed workspace, are
illustrated in Figure 4.

The simulations were conducted using the Euler method with 10 ms steps. Regarding
the computational complexity of the control scheme, the construction of the harmonic
transformation for this large workspace that was carried out offline once required 5.4 s to
complete for a sufficient approximation of the workspace boundary with 3680 segments.
Finally, the online computation of the transformation T(p) and its Jacobian J(p) required
an average of 6.0 ms per step.

6.2. Simulations—Atlas of Harmonic Maps

In this case study, we decomposed the aforementioned workspace into separate
partitions (see Figure 3) and constructed a harmonic transformation Ti for each one (we
adopted the door of each room as the common boundary between neighboring partitions).
The robot was initialized at the same position as the previous study and it was instructed
to navigate towards the same set of individual goal configurations. The initial values

selected for the parameters of the adaptive law were k[i] = N[i] + 3, k[i]
j = 1 and k

[i]
j = k[i]

for all j ∈ IN[i] and i ∈ INA , where N[i] denotes the amount of obstacles inside the
corresponding partition. All remaining control parameters were selected as in Section 6.1.
The trajectories of the robot are depicted in Figure 5. The time spent to construct the
corresponding harmonic transformations varied from 0.019s to 0.211s (depending on the
amount of elements required for sufficiently approximating each room, ranging between
320 and 1000 segments) and was significantly much less than the full map construction of
the previous case (5.4 s). Additionally, the online computation of Ti(p) and Ji(p) in each of
these rooms required an average time between 1.0 ms and 2.2 ms per step, respectively.
Finally, it should be noted that in this case, the workspace inner obstacles were mapped to
points further away from the boundaries of the partitions, which is an interesting result as it
alleviates possible numerical issues that may arise in the computation of the transformation
near the obstacles (the condition number of the Jacobian of the transformation is improved).
It should be stressed that the length of the paths in the second case was less (improvement
of 0.5 m on average), owing to the fact that the robot gets closer to the workspace boundary
since the individual transformations in each room obtain a better conditioned Jacobian
(condition number 0.212 against 0.093) and thus are more fine than the first approach,
where a transformation is built for the whole workspace.

https://github.com/maxchaos/hntf2d
https://youtu.be/I6WUS81iDh4
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Figure 4. Robot trajectories illustrated with various colors in both the actual workspace (upper
plot) and their image (bottom plot) using a full workspace transformation. The robot starts from
an arbitrary location at the bottom left part of the workspace (black circle) and navigates to different
goal configurations (colored crosses). Note that the ten black dots in the lower plot correspond to the
points where the internal obstacles of the actual workspace have been transformed.
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Figure 5. The resulting robot trajectories for various goal configurations depicted with colored crosses,
using an atlas of the workspace.

6.3. Comparative Study—Workspace Transformation

In this subsection, we provide a comparative study of the harmonic map presented in
this work against readily available workspace transformation methods employed in the
motion planning literature. Particularly, we consider four 4 m × 4 m compact workspaces,
each associated with a pair of initial and goal positions, and construct appropriate trans-
formations for each one by employing the methodology presented in this work (HM), as
well as (i) the Star-to-Sphere Transformation (SST) [15], (ii) the Multi-Agent Navigation
Transformation (MANT) [36] and (iii) the Navigation Transformation (NT) [34] (with the
aforementioned Star-to-Sphere transformation serving as the underlying map). The trajec-
tories of the robot executed while tracing the line segment connecting the initial and goal
configurations in the images of each domain can be seen in Figure 6. We note that manual
tuning of the compared transformations was necessary in order to render each a diffeomor-
phism but without making them too steep around the obstacles. Furthermore, the domain
boundaries considered here had to be sufficiently smooth in order for methodologies such
as MANT to be applicable. Finally, we remark that the trajectories corresponding to the
proposed transformation are, in general, less abrupt compared to the rest, a property at-
tributed to the fact that our approach is global as opposed to the other transformations, i.e.,
the distortion caused by each obstacle is not limited to some narrow neighborhood around
it. The total length, maximum curvature and distance from the obstacles of each executed
trajectory can be seen in Tables 3–5, respectively. We can see from these values that the
actual trajectories yielded using harmonic maps are among the shorter and smoother ones,
although they tend to approach the obstacles more than the rest.

6.4. Comparative Study—Control Law

In this subsection, we provide a comparative study of our control scheme against other
motion planning methodologies.

6.4.1. APF-Based Schemes

To demonstrate the efficacy of the proposed control scheme compared to other APF-
based schemes, we considered the 12 m × 16 m workspace depicted in Figure 7, for
which we constructed a harmonic map as described in Section 3. Next, we equipped
a holonomic robot with three alternative control laws and instructed it to visit four distinct
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goal positions using these controllers, starting each time from a fixed initial configuration.
Particularly, we considered a conventional navigation function-based controller (NF) [15]
augmented by [17], for the selection of its notorious parameter, and a harmonic navigation
function-based controller (HNF) [33], in addition to our adaptive control scheme (AHNF)
described in Section 4. We note that all three control laws considered here make use of the
same underlying harmonic map T constructed as described above in order to drive the
robot to its instructed goal positions. The trajectories executed by the robot can be seen
in Figure 7. We remark that, in general, our approach steers the robot away from inner
obstacles that lie between its initial and goal configurations, unlike “greedy” schemes such
as the conventional NF-based controller, while keeping the traced paths shorter compared
to HNFs with fixed source weights, a property attributed to the proposed adaptive laws (12)
which penalize misalignment between the robot’s velocity and the direction towards the
goal configuration.

(a) (b)

(c) (d)

SST
MANT
NT
HM

Figure 6. Robot trajectories from initial configuration (black circle) straight to the desired configuration
(black cross) by employing various domain transformation methods in each workspace (a–d).
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Table 3. Trajectory lengths (m) executed by employing the four alternative transformations in each
workspace displayed in Figure 6.

a b c d

SST 3.63 4.18 2.12 4.09
MANT 4.26 4.69 2.34 4.45
NT 3.35 4.30 2.18 4.22
HM 3.19 4.21 2.05 4.32

Table 4. Maximum value of curvature (m−1) associated with each trajectory displayed in Figure 6.

a b c d

SST 4.22 5.43 86.93 2.16
MANT 1.23 1.47 13.56 2.06
NT 66.97 25.23 14.89 6.92
HM 2.47 2.49 14.76 2.77

Table 5. Minimum distance (m) between each robot trajectory and the corresponding workspace
boundaries displayed on Figure 6.

a b c d

SST 0.0303 0.0283 0.0159 0.0063
MANT 0.0644 0.1253 0.1870 0.0648
NT 0.1386 0.0506 0.0915 0.0058
HM 0.0335 0.0377 0.0103 0.0181

The total length and distance from the obstacles of each executed trajectory can be seen
in Tables 6 and 7, respectively. First, we have to stress that the length trajectory corresponds
to the travelled path towards the goal configuration and thus needs to be small, whereas the
minimum distance to the workspace boundary refers to the closest point of the trajectory to
the workspace boundary and thus needs to be large to have a safe trajectory. Consequently,
note from Table 6 that the NF scheme yielded shorter path lengths than the proposed
method in two cases (blue and yellow); nevertheless, such paths approach closer to the
workspace boundary as indicated in Table 7, thus resulting in more risky paths. On the
other hand, the Adaptive Harmonic Potential Field yields a good trade-off between path
length and minimum distance to the boundary, since it achieves the shortest paths for
two cases without compromising them, as is the case with the NF. On the other hand, the
HPF tend to travel around the obstacle closer to the outer workspace boundary and hence
exhibit more safe trajectories but they are significantly longer than the other two schemes.

6.4.2. Sampling-Based Scheme

To compare the control scheme proposed in this work against sampling-based meth-
ods, we considered a holonomic point-sized robot positioned inside a 6 m × 8 m compact
workspace and a desired goal configuration. To complete this task, we employed two dif-
ferent controllers, namely the one proposed in this work and an admissible planner based
on an improved probabilistic roadmap method (PRM) [6]. The trajectories executed by the
robot using our control law as well as two of the trajectories generated by the PRM-based
planner can be seen in Figure 8. The construction of the associated transformation took
31 s to complete for a given boundary approximation made of 7842 elements, whereas the
PRM-based planner required approximately 24 s on average over 10 successful runs to
yield a solution (we have to stress that we ran 14 trials to get 10 solutions, since four runs
did not complete as they exceeded the 500 s calculation time), using the same boundary
approximation for collision checking. The robot trajectories exhibited similar lengths in
both algorithms (22.5 m for our method against 21.8 m on average), although no path
optimization was employed in our case. Additionally, the proposed scheme resulted in
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a smoother robot trajectory (based on the resulting sequence of points in both cases, we
calculated the minimum curvature radius as 0.23 m for our method against 0.12 m on
average for the PRM method). On the other hand, note that our approach solves the motion
planning problem for any pair of initial and final configurations within the workspace,
whereas the sampling-based scheme considers only one go-to problem. Thus, a different
initial or final configuration would require a new solution with the PRM method. On the
contrary, the proposed transformation needs to be calculated only once to solve the motion
planning problem for any pair of initial and final configurations. Finally, it should be noted
that for a narrower corridor in Figure 8, the sampling-based approach failed to derive
a solution with a reasonable execution time (no solution was calculated within 500 s), since
the probability of sampling connected points within this snaky passage reduces drastically.
On the contrary, the proposed transformation took 38 s to complete for the same number of
elements (i.e., 7842 elements).

NF

HNF

AHNF

Figure 7. Trajectories of the robot navigating to four distinct goal configurations (black crosses) with
red, green, yellow and blue color starting from the same initial position (black circle) while using
various alternative APF-based controllers.

Table 6. Length of trajectories (m) executed by each controller (Rimon–Koditchek Navigation Func-
tions, Harmonic Navigation Functions and Adaptive Harmonic Potential Fields) in Figure 7.

Red Green Blue Yellow

NF 19.781 20.427 22.090 18.397
HNF 18.224 22.538 26.959 20.062
AHNF 17.874 19.419 23.364 18.595



Sensors 2023, 23, 4464 21 of 31

Table 7. Minimum distance (m) between the corresponding workspace boundaries and each trajectory
displayed in Figure 7.

Red Green Blue Yellow

NF 0.1158 0.0102 0.1210 0.1103
HNF 0.3347 0.2135 0.2591 0.2166
AHPF 0.1310 0.0352 0.2043 0.1854

AHPF

PRM # 1

PRM # 2

Figure 8. Trajectories of the robot navigating to its goal configuration (black cross) generated using
the proposed control law and a PRM-based planner.

6.5. Experiments

In order to verify the results presented in Section 5.1, real experiments were con-
ducted on a non-holonomic robotic platform (Robotnik Summit-XL) operating within the
10 m × 25 m compact workspace that is depicted in Figures 9 and 10. The boundaries of
the workspace were obtained using readily available SLAM algorithms and were later
augmented with the robot’s shape (approximated by a disk). The workspace was parti-
tioned into six overlapping subsets and the robot was instructed to visit three different goal
configurations, each located in a different room. An off-the-shelf localization algorithm was
employed for estimating the robot’s position and orientation using its on-board sensors
(laser scanners and RBG-D cameras), providing feedback at approximately 5 Hz to the
robot’s linear and angular commanded velocities. The construction of the associated trans-
formations over the six subsets of the workspace took from 1.3 s for the simple and smaller
partitions with 800 elements to 3.1 s for the more complex ones employing 1500 elements.
On the other hand, the evaluation of the mapping as well as its Jacobian took less than
6 ms on average, which was satisfactory given the low position update rate. Note that
our algorithm successfully managed to drive the robot safely (the minimum distance to
the workspace boundary was 0.15 m when passing through the doors) to its specified
goal configurations, as one can verify from the trajectories (see Figure 9, Figure 11 and
the accompanying video material). However, an issue that needs to be pointed out is the
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oscillating behavior that the robot exhibited in the configuration space’s image, particularly
in subsets p1 and p2 as depicted in Figure 11. Such behavior is attributed both to (a) the
relative slow update of the robot’s pose estimation and (b) the inversion of the Jacobian
which is ill-conditioned close to extremely narrow passages of the domain. Nevertheless,
such shortcomings can be alleviated by a better choice of partitions, e.g., by partitioning
the domain into more subsets with less complex shapes. As a future research direction,
we shall investigate whether the condition number of the Jacobian of the transformation
is a fine criterion, since the condition number is usually used to measure how sensitive
a function is to changes or errors in the input, and the output error results from an error in
the input via the Jacobian.

p0

p1

p2

p3

p4

p5

Figure 9. Trajectories of the unicycle-like robot in the real workspace, with each color (red, green
and blue) corresponding to a different goal configuration. Dark gray regions indicate areas where
partitions overlap.
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Figure 10. Snapshots of the robot navigating through the workspace. The figures on the right
illustrate the position and orientation of the robot with respect to the workspace map.
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p0 p1 p2

p3 p4 p5

Figure 11. Robot image trajectories within each partition of the workspace for three experiments in
red, green and blue color.

7. Conclusions and Future Work

In this work, we employed harmonic map theory to devise a transformation of complex
workspaces directly to point worlds that are appropriate for robot navigation. Subsequently,
we presented a novel motion planning control scheme based on closed-form harmonic
potential fields equipped with appropriate adaptive laws for their parameters, which can
safely navigate a robot to its goal state from almost all initial configurations. Additionally,
we extended our approach to accommodate the navigation problem of non-holonomic
robots and kept the numeric computations tractable for large workspaces.

Regarding future directions, our aim is first to increase the applicability of the pro-
posed navigation framework by addressing partially known dynamic workspaces, which
is far from being straightforward. To remedy the issue of calculation time in this case, we
shall adopt a sensitivity analysis approach so that we do not solve the whole problem from
scratch, but find how the solution deviates when a small change in the workspace occurs.
In this way, we envision a reasonable calculation time (except from the first calculation)
that would result in an almost real-time calculation of the transformation and thus allow
us to consider even moving obstacles in dynamic environments. However, critical issues
have to be studied concerning cases where the workspace changes topologically (e.g., in
the case of antagonistically moving obstacles) and this results in significant changes in
the transformation. In the same vein, switching in the transformation output might raise
practical issues such as chattering that have to be carefully considered. Note that the
aforementioned research direction could also serve as a first step towards the solution of
the multi-robot motion planning problem, where for each robot all other robots should
be considered as moving obstacles, operating antagonistically to achieve their goal con-
figurations. Finally, another challenging research direction concerns the extension to 3D
workspaces. Unfortunately, the harmonic maps have been studied only for 2D workspaces,
since they rely heavily on complex analyses. Nevertheless, we propose to decompose the
3D motion planning problem into several 2D sub-problems, where the proposed solution
works, and then combine them (e.g., decompose the motion along the z-axis and on the
x-y plane).
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Appendix A

Appendix A.1. Proof of Proposition 1

By construction, it holds that 1 −
(
tanh

(
φ/wφ

))2
> 0 for all q ∈ ∂D \ {qd}. The

gradient of φ with respect to q is given by

∇qφ = kd
q− qd

‖q− qd‖2 −
N

∑
i=1

ki
q− qi

‖q− qi‖2 . (A1)

Computing the inner product of ∇qφ and q yields:

(
∇qφ

)Tq = kd
‖q‖2 − qT

d q

‖q− qd‖2 −
N

∑
i=1

ki
(q− qi)

Tq

‖q− qi‖2

≥ kd
1− qT

d q

‖q− qd‖2 −max
i

(ki)
N

∑
i=1

1
‖q− qi‖

.

(A2)

Given that all qi lie within int(D), the second term on the right-hand side of (A2) is
finite for all q ∈ ∂D. Similarly, the first term on the right-hand side of (A2) is positive for
all q 6= qd. Let q′ ∈ ∂D \ {qd}. Additionally, the continuity of

(
1− qT

d q
)
/‖q− qd‖2 and

(1− tanh
(
φ/wφ

)2)/(2wφ) implies that there exists a closed neighborhood F (q′) of q′, not
containing qd, where both are positive. Hence, selecting

k′ = kd min
q∈F (q′)

Ñ
1− qT

d q

‖q− qd‖2
1

∑N
i=1

1
‖q−qi‖

é
ensures that (∇qφ)Tq > 0 for all q ∈ F (q′). Moreover, computing the derivative of
d = 1− ‖q‖2 with respect to time for all q ∈ F (q′) and assuming ki < k′, ∀i ∈ IN yields
ḋ = 2Kus∇qψTq > 0; thus, the distance from the workspace boundary increases, which
concludes the proof.

Appendix A.2. Proof of Proposition 2

Similarly to the proof of Proposition 3 in [33], we proceed by defining q̃d , q− qd,
q̃i , q− qi for all i ∈ IN . Let also q̂d , q̃d/‖q̃d‖ and q̂i , q̃i/‖q̃i‖. Accordingly, the Hessian
of φ can be computed by:

∇2
qφ =

kd

‖q̃d‖2

Ä
I2 − 2q̂d q̂T

d

ä
− ∑

i∈IN

ki

‖q̃i‖2

Ä
I2 − 2q̂i q̂T

i

ä
. (A3)



Sensors 2023, 23, 4464 26 of 31

Note that at a critical point of φ it holds that:

kd
q̂d
‖q̃d‖

= ∑
i∈IN

ki
q̂i
‖q̃i‖

=⇒

k2
d

‖q̃d‖2 q̂d q̂T
d = ∑

i∈IN

k2
i

‖q̃i‖2 q̂i q̂T
i +

∑
i∈IN

∑
j∈IN\{i}

kik j

‖q̃i‖‖q̃j‖
Ä

q̂i q̂T
j + q̂j q̂T

i

ä
.

(A4)

Substituting (A4) into (A3) and re-arranging the terms yields:

∇2
pφ =

(
kd

‖q̃d‖2 − ∑
i∈IN

ki

‖q̃i‖2

)
I + 2

Ç
∑

i∈IN

ki(kd − ki)
kd

1

‖q̃i‖2 q̂i q̂T
i −

1
kd

∑
i∈IN

∑
j∈IN\{i}

kik j

‖q̃i‖‖q̃j‖
Ä

q̂i q̂T
j + q̂j q̂T

i

äå
.

Next, we argue that for any given set of radii ρi > 0 such that Dρi (qi), i ∈ IN are
disjoint disks that lie entirely within our domain, there exists k′d > 0 such that no critical
point of φ exists within D \ ⋃i∈IN

Dρi (qi) for all kd > k′d. This implies that, by choosing
a sufficiently large kd, each critical point of φ belongs to a single Dρi (qi). Let q? be a critical
point and ` = argmini∈IN

‖q? − qi‖. To show that ∇2
qφ(q?) is not degenerate, it suffices

to show that its eigenvalue λ(q?) is positive. We recall that λ is lower bounded by the
quadratic form x̂T∇2

qφx̂ for all ‖x̂‖ = 1. By considering the direction of q̃` and after some
tedious calculations, we obtain:

q̂T
`∇

2
qφ(q?)q̂` =

kd

‖q̃d‖2 − ∑
i∈IN\{`}

ki

‖q̃i‖2

+
k`
‖q̃`‖2

Ñ
kd − 2k`

kd
− 4
‖q̃`‖

kd
∑

i∈IN\{`}

ki
‖q̃i‖

2(q̂T
` q̂i)

é
+ 2 ∑

i∈IN\{`}

ki(kd − ki)
kd

1

‖q̃i‖2

Ä
q̂T
` q̂i
ä2

− 2
kd

∑
i∈IN\{`}

∑
j∈IN\{i,`}

kik j

‖q̃i‖‖q̃j‖
2(q̂T

` q̂i)(q̂T
` q̂j).

(A5)

The first right-hand side term of (A5) is strictly positive. Since all ki are bounded and
non-negative, choosing a sufficiently large kd renders the second and third right-hand side
terms non-negative. Furthermore, note that the fourth and fifth right-hand side terms are
bounded for all q? ∈ Dρ` (q`). Thus, by choosing a sufficiently large kd, the first three terms
of (A5) can be made dominant, thus rendering q̂T

`∇
2
qφq̂` positive at q?, which concludes

the proof.

Appendix A.3. Proof of Proposition 3

Firstly, we will show that the robot cannot escape through the workspace’s outer
boundary. Let us assume that q → q′ ∈ ∂D \ {qd}. Then, q̇ → 0 by virtue of (7), since
s(q, k) = 0 for all ‖q‖ = 1 with

(
∇qφ

)Tq ≤ 0. Additionally, w0 → 1 and wi → 0, for all
i ∈ IN . Thus, k̇i < 0 holds within a neighborhood of ∂D, while ki > 0, which implies that
ki → 0 for all i ∈ IN . Moreover, Proposition 1 dictates that there exists k′ > 0 for which any
point in ∂D \ {qd} is repulsive under ψ. Since (12) dictates that all ki become less than k′ in
finite time, this contradicts our supposition.



Sensors 2023, 23, 4464 27 of 31

Next, we consider collision avoidance between the robot and the inner obstacles. Let
us assume that the robot approaches obstacle i. By construction, wi → 1 while ∇qψ → 0
and wj → 0 for all j ∈ I?N \ {i}. Note that there exists a neighborhood Ni of qi such that
w0 = 0 for all q ∈ Ni due to continuity of w0 and ξ2(w0; ε3). Additionally, since the robot is
assumed to approach qi, q̇T(q− qi) cannot be identically zero inside Ni. As such, as long as
ki < ki, k̇i ≥ 0 inside Ni without k̇i = 0 for all q ∈ Ni. This implies that ki 6→ 0 as q → qi,
thus rendering qi a local maximum of ψ. Thus, there exists a neighborhood of qi inside
which (∇qψ)T(q− qi) > 0, which contradicts our assumption.

Appendix A.4. Proof of Proposition 4

Let V , ψ(q, k), as defined in (10), be a candidate Lyapunov function, which is
non-negative and vanishes only when q = qd. Differentiating V along the system’s trajecto-
ries yields:

V̇ =
1− tanh

(
φ/wφ

)2

2wφ

((
∇qφ

)T q̇ + ln
Å‖q− qd‖

2

ã
k̇d − ∑

i∈IN

ln
Å‖q− qi‖

2

ã
k̇i

)
. (A6)

Given that q̇ = J ṗ, the first term of (A6) can be further expanded as follows:

(
∇qφ

)T q̇ = −Kus
1− tanh

(
φ/wφ

)2

2wφ
‖JT∇qφ‖2

, (A7)

which is non-positive for all q ∈ Ω and becomes zero only at the critical points of ψ. The
second term of (A6) is non-positive since k̇d ≥ 0 by construction and invariance ofW (see

Proposition 3) implies ‖q− qd‖ ≤ 2 which, in turn, implies ln
(
‖q−qd‖

2

)
≤ 0. Similarly,

the sign of each term of the sum is determined solely by the sign of the corresponding k̇i.
Substituting (12) yields:

− ∑
i∈IN

ln
Å‖q− qi‖

2

ã
k̇i ≤ − ∑

i∈IN

ln
Å‖q− qi‖

2

ãÄ
ki − ki

ä
wi`igi. (A8)

Given that gi ≤ ‖∇qψ‖2 and ∑i∈IN
kiwi ≤ 1 by construction, expanding `i into the

right-hand side of (A8) leads to:

− ∑
i∈IN

ln
Å‖q− qi‖

2

ãÄ
ki − ki

ä
wi`igi ≤ Kus‖∇qψ‖2 ∑

i∈IN

Ä
ki − ki

ä
wi

≤ Kus
1− tanh

(
φ/wφ

)2

2wφ
‖∇qφ‖2.

(A9)

Thus, (A6) is non-positive. Therefore, by invoking Lyapunov’s Stability Theorem
(Theorem 3.1 [41]) we may conclude that qd is stable. Finally, LaSalle’s Theorem (Theo-
rem 3.4 [41]) dictates that the system will converge to the largest invariant set, which, in
our case, consists of the critical points of ψ, thus concluding the proof.

Appendix A.5. Proof of Proposition 5

At the critical point z? of system (17), the Hessian ∇2
qφ of φ is non-degenerate, since

otherwise k̇d 6= 0. Additionally, q? ∈ Ω \ {qd} implies that 1 −
(
tanh

(
φ/wφ

))2 6= 0.
These two facts mean that ∇2

qψ has two eigenvalues at z?, namely λ and −λ, with λ > 0.
Computing the Jacobian of fq with respect to q at z? yields:

∇q fq = −Ku
(
∇qψ

)T∇qs−Kus∇2
qψ

= −Kus∇2
qψ
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since ∇qψ(q?) = 0. Furthermore, by construction of the adaptive law (12), the Jacobian of
fk with respect to z at z? is 0(1+N)×(3+N). Thus, linearization of the system fz at z? yields

∇z fz(z?) = −Kus
1− tanh

(
φ/wφ

)2

2wφ

ñ
∇2

qφ
∂φ
∂kd

∂φ
∂k1

. . . ∂φ
∂kN

0(1+N)×(3+N)

ô
.

Since the top-left block∇2
qφ is invertible at z?, using the well-known property of block

matrix determinants, we can see that ∇z? fz has two non-zero eigenvalues, particularly
the eigenvalues of ∇2

qψ and a zero eigenvalue with multiplicity 1 + N. Thus, ∇z fz(z?) has
exactly one positive eigenvalue, rendering z? a saddle point of (17) (Theorem 3.7 [41]).

Appendix A.6. Proof of Theorem 1

In Proposition 4, we have proven that ψ̇ < 0 for all q ∈ Ω \ {qd}, except for the critical
points of φ that lie in it. Lasalle’s Invariance Theorem (Theorem 3.4 [41]) dictates that
system (17) will converge to either (a) the desired configuration qd, (b) the obstacles qi or
(c) a critical point z? = (q?, k?) with q? ∈ Ω \ {qd}. We know from Proposition 3 that the
critical points of case (b) are repulsive; therefore, no trajectory of the system may converge
to them. Regarding the critical point z? corresponding to case (c), Proposition 5 dictates
that it must be a non-isolated, degenerate equilibrium of the whole of system (17), since
∇z fz has one positive, one negative and several zero eigenvalues. Let kd be the upper
bound of kd that the closed-loop system can possibly attain, as indicated by Proposition 2.
In order to prove that the set of initial conditions leading to these points has zero Lebesgue
measure, we will study the properties of the gradient-like system (by definition, a gradient-
like system is a pair of a scalar cost functions and a dynamical system for which each
non-equilibrium initial condition moves the state towards a new one whose cost is less
than that of the initial state) (ψ(z), Fz,τ(z)) in the domain Sz, where the scalar potential ψ(z)
is treated as a function to be minimized, the map Fz,τ(z) : Sz 7→ RN+3 is given by

Fz,τ(z(t)) , z(t + τ) = z(t) +
∫ t+τ

t
fz(z(s))ds

for any τ > 0 and Sz , D × [1, kd]× [0, k1]× . . . [0, kN]. Note that Sz is convex and closed.
Additionally, the map Fz,τ(z) is a locally Lipschitz diffeomorphism in Sz and Sz is forward
invariant under Fz,τ(z) (by virtue of Proposition 3 and design of adaptive law (12)) for all
τ > 0. Furthermore, the unwanted equilibria of Fz,τ are strict saddles. Thus, following
similar arguments as the proof of Theorem 3 in [42], we conclude that the set of all initial
conditions that converge to these saddles has zero Lebesgue measure, which implies that
almost every trajectory of the system converges to qd, i.e., the only stable equilibrium of (17),
thus completing the proof.

Appendix A.7. Proof of Theorem 2

We begin by noting that, by virtue of (21), we only need to study the trajectories of (19)
in the workspace’s image, since that motion is traced exactly by our robot. Considering
the first part of the Theorem 2, we note that by following the same arguments as in
the proof of Proposition 3, we may conclude that the robot cannot escape throught the
workspace’s outer boundary. Likewise, assuming that q → qi for some i ∈ IN implies
that (nθ

T JT∇qψ)Tnθ̂
T(q− qi) cannot be identically zero in a neighborhood of qi. As such,

since k̇i ≥ 0 in the neighborhood of qi, ki cannot vanish as the robot approaches qi, which
contradicts our original supposition.

To prove the second part of the Theorem 2, first we show that the only equilibria of
the closed-loop system coincide with the critical points of ψ. Assuming that sv 6= 0, it is
readily seen that both inner products in (20) vanish simultaneously only when ∇qψ = 0.
Considering now the case when sv 6= 0, we note that this can only happen when q ∈ ∂D
and nθ̂ is tangent to ∂D. For ω̂ to also vanish when sv 6= 0, the gradient∇qψ should also be
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tangent to ∂D. Recalling that the adaptive laws for k ensure that ∇qψ will eventually point
inwards, we conclude that no equilibria other than the critical points of ψ exist.

Next, we consider ψ as a lyapunov candidate function, whose derivative along the
systems trajectories is given by (A6) (note that ψ does not depend on θ). Substituting (20)
into the first term of (A6) yields:

(
∇qφ

)T q̇ = −Kvsv
1− tanh

(
φ/wφ

)2

2wφ

Ä(
nθ̂

)T∇qφ
ä2

. (A10)

Regarding the remaining terms of (A6), given that gv,i ≤
(
nθ̂

T∇qψ
)2, one can readily

verify that:

− ∑
i∈IN

ln
Å‖q− qi‖

2

ã
k̇i ≤ −Kvsv

1− tanh
(
φ/wφ

)2

2wφ

Ä(
nθ̂

)T∇qφ
ä2

. (A11)

Thus, invoking Lyapunov’s Stability Theorem (Theorem 3.1 [41]) and LaSalle’s Theo-
rem (Theorem 3.4 [41]) concludes the proof similarly to Proposition 4.

Appendix A.8. Proof of Theorem 3

Regarding the robot’s safety under the closed-loop system, we note that when p ∈
Ps` \ Ps`+1 or p ∈ Psn for all ` < n, the individual control laws render every point on the
corresponding partition boundaries repulsive. When p ∈ Cs`,s`+1 , we note that, by construc-
tion, both u[s`] and u[s`+1] vanish when the robot approaches any point of ∂Ps` ∩ ∂Ps`+1 ,
preventing the robot from escaping. Additionally, the adaptive laws of each individual
potential field will eventually render both ∇pψs` and ∇pψs`+1 inward-looking with respect
toW , rendering ∂Ps` ∩ ∂Ps`+1 repulsive.

While p ∈ Ps` , we consider V , ψs` as a Lyapunov function candidate and we
examine its time derivative along the system’s trajectories when p ∈ Cs`,s`+1 :

V̇ =
(
∇pψs`

)T ṗ +
Ä
∇k[s`] ψs`

äT
k̇[s`]

=
(
∇pψs`

)TÄu[s`] + ηc,s`,s`+1 ηt,s`,s`+1 u[s`+1]
ä
+
Ä
∇k̇[s`] ψs`

äT
k[s`]

=
(
∇pψs`

)Tu[s`] +
Ä
∇k̇[s`] ψs`

äT
k[s`] + ηc,s`,s`+1 ηt,s`,s`+1

(
∇pψs`

)Tu[s`+1].

(A12)

We recall that the first two right-hand side terms of (A12) are non-positive, as shown
in Proposition 4. Likewise, the last term is rendered non-positive by virtue of ηc,s`,s`+1 .
Additionally, we note that the equilibrium points of the system in p ∈ Cs`,s`+1 correspond
only to critical points of ψs` . By virtue of ηc,s`,s`+1 , which vanishes at a critical point of ψs` ,
along with its derivative, one can easily verify that the Jacobian of (22) is equal to the one of
u[s`], whose properties were studied in Proposition 2. Finally, following a similar procedure
as in the proof of Theorem 1, we conclude that the system will converge to the specified
goal configuration for almost all initial configurations.
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26. Velagić, J.; Vuković, L.; Ibrahimović, B. Mobile Robot Motion Framework Based on Enhanced Robust Panel Method. Int. J. Control
Autom. Syst. 2020, 18, 1264–1276. [CrossRef]

27. Feder, H.J.S.; Slotine, J.J.E. Real-time path planning using harmonic potentials in dynamic environments. In Proceedings of the
IEEE International Conference on Robotics and Automation, Albuquerque, NM, USA, 20–25 April 1997; pp. 874–881.

28. Marchidan, A.; Bakolas, E. A local reactive steering law for 2D collision avoidance with curvature constraints and constant speed.
Robot. Auton. Syst. 2022, 155, 104156. [CrossRef]

29. e Silva, E.P.; Engel, P.M.; Trevisan, M.; Idiart, M.A. Exploration Method Using Harmonic Functions. Robot. Auton. Syst. 2002,
40, 25–42. [CrossRef]

30. Maffei, R.; Souza, M.P.; Mantelli, M.; Pittol, D.; Kolberg, M.; Jorge, V.A.M. Exploration of 3D terrains using potential fields with
elevation-based local distortions. In Proceedings of the IEEE International Conference on Robotics and Automation, Paris, France,
31 May–31 August 2020; pp. 4239–4244.

31. Voruganti, H.; Dasgupta, B.; Hommel, U. A novel potential field based domain mapping method. In Proceedings of the 10th
WSEAS Conference on Computers (ICCOMPP06), Athens, Greece, 13 July 2006; pp. 655–661.

32. Gautam Pradeepkumar, B.; Gondegaon, S.; Voruganti, H.K. Domain Mapping for Path Planning and Mesh Generation. In
Proceedings of the International Conference on Theoretical, Applied, Computational and Experimental Mechanics, Kharagpur,
India, 29–31 December 2014.

33. Loizou, S.G. Closed form Navigation Functions based on harmonic potentials. In Proceedings of the IEEE Conference on Decision
and Control and European Control Conference, Orlando, FL, USA, 12–15 December 2011; pp. 6361–6366.

34. Loizou, S.G. The Navigation Transformation. IEEE Trans. Robot. 2017, 33, 1516–1523. [CrossRef]

http://dx.doi.org/10.1016/j.rcim.2021.102196
http://dx.doi.org/10.1109/TASE.2014.2331983
http://dx.doi.org/10.1146/annurev-control-060117-105226
http://dx.doi.org/10.1109/TRO.2004.838008
http://dx.doi.org/10.1109/TASE.2021.3128521
http://dx.doi.org/10.1007/s10472-018-9596-8
http://dx.doi.org/10.1109/TASE.2016.2638208
http://dx.doi.org/10.1109/70.163777
http://dx.doi.org/10.1109/TAC.2008.917745
http://dx.doi.org/10.1109/TAC.2017.2775046
http://dx.doi.org/10.1177/0278364918796267
http://dx.doi.org/10.1007/s10846-010-9394-y
http://dx.doi.org/10.1109/LRA.2017.2665682
http://dx.doi.org/10.1109/70.143352
http://dx.doi.org/10.1109/TMECH.2016.2580303
http://dx.doi.org/10.1007/s12555-019-0009-5
http://dx.doi.org/10.1016/j.robot.2022.104156
http://dx.doi.org/10.1016/S0921-8890(02)00209-9
http://dx.doi.org/10.1109/TRO.2017.2725323


Sensors 2023, 23, 4464 31 of 31

35. Loizou, S.G. Navigation functions in topologically complex 3-D workspaces. In Proceedings of the American Control Conference,
Montreal, QC, Canada, 27–29 June 2012; pp. 4861–4866.

36. Loizou, S.G. The Multi-Agent Navigation Transformation: Tuning-Free Multi-Robot Navigation. In Proceedings of the Robotics:
Science and Systems, Berkeley, CA, USA, 14–16 July 2014; pp. 1–9.

37. Vlantis, P.; Vrohidis, C.; Bechlioulis, C.P.; Kyriakopoulos, K.J. Robot Navigation in Complex Workspaces Using Harmonic
Maps. In Proceedings of the IEEE International Conference on Robotics and Automation, Brisbane, Australia, 21–25 May 2018;
pp. 1726–1731.

38. Duren, P.; Hengartner, W. Harmonic mappings of multiply connected domains. Pac. J. Math. 1997, 180, 201–220. [CrossRef]
39. Biringen, S.; Chow, C.Y. An Introduction to Computational Fluid Mechanics by Example; John Wiley & Sons, Inc.: Hoboken, NJ,

USA, 2011.
40. Kuethe, A.M.; Chow, C.Y.; Fung, Y.C. Foundations of Aerodynamics: Bases of Aerodynamics Design, 5th ed.; John Wiley & Sons, Inc.:

Hoboken, NJ, USA, 1997.
41. Khalil, H.K. Nonlinear Systems; Prentice-Hall: Hoboken, NJ, USA, 1996.
42. Panageas, I.; Piliouras, G. Gradient Descent Only Converges to Minimizers: Non-Isolated Critical Points and Invariant Regions.

arXiv 2016, arXiv:1605.00405.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.2140/pjm.1997.180.201

	Introduction
	Contributions
	Preliminaries

	Problem Formulation
	Harmonic Maps for Planar Navigation
	Control Design
	Artificial Harmonic Potential Fields
	Adaptive Laws
	Stability Analysis

	Extensions
	Unicycle Robot Kinematics
	Atlas of Harmonic Maps

	Simulations and Experimental Results
	Simulations—Full Workspace Transformation
	Simulations—Atlas of Harmonic Maps
	Comparative Study—Workspace Transformation
	Comparative Study—Control Law
	APF-Based Schemes
	Sampling-Based Scheme

	Experiments

	Conclusions and Future Work
	Appendix A
	Appendix A.1
	Proof of Proposition 2
	Appendix A.3
	Appendix A.4
	Appendix A.5
	Appendix A.6
	Appendix A.7
	Appendix A.8

	References

