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Abstract: Variations of seawater salinity often cause ocean internal waves, water masses and stratifi-
cation, which affect the stability of the ocean environment. Therefore, the study of seawater salinity
is significant for the prediction of changes in the ocean environment. However, existing methods for
measuring seawater salinity generally have the disadvantages of low sensitivity and low accuracy.
In this work, we proposed a seawater salinity sensor based on long period fiber grating (LPFG) in
the dispersion turning point (DTP), which has demonstrated the possibility to fabricate LPFG with a
shorter grating period by CO2 laser in a thin single mode fiber (SMF) of 80 µm cladding diameter
without etching. For obtaining higher sensitivity that could meet the measurement requirement
in practice, the proposed sensor was optimized by combining etching cladding and DTP. After the
LPFG working near DTP was fabricated by a CO2 laser, the cladding diameter was reduced to
57.14 µm for making cladding mode LP1,7 work near DTP by hydrofluoric acid (HF) solutions. The
experimental results have demonstrated that a sensitivity of 0.571 nm/‰ can be achieved when the
salinity increases from 5.001‰ to 39.996‰, and the sensor shows good repeatability and stability.
Based on its excellent performance, the optimized LPFG is a prospective sensor to monitor seawater
salinity in real time. Meanwhile, a low-cost way was provided to make LPFG work near DTP instead
of ultraviolet exposure and femtosecond laser writing.

Keywords: fiber grating; salinity measurement; high sensitivity; etching cladding

1. Introduction

The ocean is rich in water, mineral and biological resources, which is greatly important
to the survival and development of mankind. In particular, salinity is a key parameter to
monitor the ocean environment and climate [1]. The variations of seawater salinity can
cause some phenomena, such as ocean internal waves, water masses and stratification,
which have an important impact on the ocean environment and can even threaten the
safe operation of underwater military equipment, such as submarines [2–4]. Therefore, it
is essential to explore an accurate, real-time and highly sensitive method for measuring
seawater salinity to ensure the stability of the ocean environment. In recent years, the
methods to measure seawater salinity have been developed rapidly [5–7].

Universally, the seawater salinity is measured according to electrical conductivity,
which is based on the relationship between the ion content and conductivity [8]. The
electrical conductivity of seawater is related to temperature, pressure and salinity. Therefore,
the electrical conductivity is only determined by salinity under the same temperature and
pressure. However, the accuracy of the electrical conductivity method is susceptible to
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electric interference. Moreover, the seawater salinity can be measured on a large scale by
microwave remote sensing [9,10]. The brightness temperature data of the sea surface are
measured by the microwave radiometer on a remote sensing satellite to further obtain the
sea surface salinity. However, the microwave remote sensing method can only measure the
salinity of the sea surface with low accuracy, which makes it unsuitable for high-precision
salinity measurement. At present, the research on optical fiber sensors measuring seawater
salinity has attracted widespread attention from domestic and international scholars due to
the advantages of fast response, anti-electromagnetic interference, small size and corrosion
resistance [11].

The optical fiber sensors mainly depend on the relationship between the refractive
index (RI) and salinity to measure the salinity of seawater [12]. The salinity of seawater
generally has the range of 5–40‰ (with the RI range of 1.333–1.339). Based on different
principles, optical fiber salinity sensors mainly include fiber interferometer [13–15], fiber
surface plasmon resonance (SPR) [16–18], fiber Bragg grating (FBG) [19,20] and long-
period fiber grating (LPFG) [21–23]. The fiber interference is generally made by splicing
procedures, which makes the sensor lossy and the structure fragile. Although the fiber
SPR has higher salinity sensitivity, the wide bandwidth makes its demodulation accuracy
low. The FBG has high demodulation accuracy, but the bare FBG is insensitive to RI.
Compared with other fiber-sensing structures, LPFG is more suitable for seawater salinity
measurement due to the advantages of RI sensitivity and easy integration. However, the
sensitivity of conventional LPFG still cannot meet the requirements of salinity measurement.
Presently, the RI sensitivity of LPFG can be improved by three approaches, such as etching
cladding, making LPFG work within the mode transition (MT) or dispersion turning point
(DTP) region [24]. However, the method of coating high RI nanofilms is more complicated,
and high precision is demanded for the thickness and evenness of nanofilm, so reducing
appropriate cladding combined with making LPFG work near DTP is a more effective way
to improve sensitivity.

There are many methods to fabricate LPFG, such as femtosecond lasers writing [25,26],
arc inducing [27,28], ultraviolet (UV) exposure [29–31] and CO2 laser writing [32,33], in
which UV exposure with an amplitude mask is the most widely used and effective method
to fabricate LPFG working near DTP. In 2017, Janczuk-Richter et al. proposed a LPFG virus
sensor based on hydrogen-loaded SMF-28 fiber by KrF excimer laser [29]. Afterwards,
Šmietana et al. proposed a RI sensor based on LPFG working near DTP with Al2O3-
nanocoated, which was fabricated by UV exposure [30]. In 2018, Del Villar et al. proposed
an optimized LPFG strain sensor working near DTP, which was fabricated by the point-
by-point inscription technique by KrF excimer laser [31]. However, the UV laser is too
expensive to make it possible for most people to fabricate LPFG working near DTP. In
addition, amplitude mask writing has higher requirements for the photosensitivity of fiber,
and the LPFG is easily erased. Compared to a UV laser, a CO2 laser has the advantages of
low cost, high reliability and applicable for any fiber types. The LPFG based on CO2 laser
technology has attracted more and more attention, but few people make LPFG work near
DTP by CO2 laser.

In order to explore a low-cost, easily fabricated and highly sensitive salinity sensor, we
proposed a CO2-laser-fabricated LPFG working near DTP with a period of 115 µm, which
was induced in thin SMF. The LPFG has good sensing characteristics and greater attenuation
loss peaks. Furthermore, the RI sensitivity of LPFG was further improved by making it
work near DTP and etching cladding. On the basis of this, an LPFG whose resonance
wavelengths were operated near DTP was designed by adjusting the grating period to
110 µm. Then, the cladding of LPFG was etched to 57.14 µm by HF solution, and the coupled
cladding mode worked near DTP. The salinity sensitivity can reach 0.571 nm/‰ when the
salinity increases from 5.001‰ to 39.996‰. The combination of the above two methods
not only significantly improves its sensitivity, but also ensures the mechanical strength
of LPFG.
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The contents of this work are as follows: In Section 2, the related work of seawater
salinity measurements is outlined. In Section 3, the coupled mode theory and RI sensing
performance of LPFG are introduced, which provide the theoretical basis for the exper-
iments in this work. Furthermore, the fabrication method of LPFG and materials are
introduced. In Section 4, the simulation model of LPFG is built, and the experimental
results are discussed based on theoretical results. Finally, the repeatability and stability of
LPFG seawater salinity sensors are investigated. In Section 5, a comprehensive conclusion
is given.

2. Related Work

In this section, different measurement methods for seawater salinity are shown, in-
cluding electrical conductivity measurement, microwave remote sensing and optical fiber
sensors, in which an optical fiber sensors’ section is divided into four parts, such as fiber
interferometer, SPR, FBG and LPFG.

2.1. Electrical Conductivity Measurement

In 2015, Pawlowicz et al. reviewed the history of seawater salinity measurement using
electrical conductivity and analyzed the problems with current measurement methods [34].
Furthermore, future methods for measuring seawater salinity were discussed in the back-
ground of recent seawater standard TEOS-10. In 2018, Schmidt et al. proposed a new
relationship between density and salinity by correcting for the density of uniform isotopes
and chemical composition [5]. The proposed new relationship of density–salinity can be
used to verify the constant composition of standard seawater by measuring conventional
density. In 2022, Parra et al. proposed a low-cost multi-parameter detector [35]. The sensors
integrated in the wireless network are deployed in coastal areas, and the salinity data can
be monitored in real time. The measurement results show the coefficient of the salinity
correction model is 0.9, and the mean absolute error is 0.74 g/L.

2.2. Microwave Remote Sensing

In 2019, Dinnat et al. proposed a comparison of long-term global spatial distributions,
a set of regions of interest and the temporal variability of statistical distributions [9]. They
found that the discrepancies of salinity measurements in the sea surface were mainly
caused by dielectric constant models, atmospheric corrections and sea surface temperature
auxiliary products. In 2022, Demir et al. carried out an inversion study of sea ice and
salinity by using a 0.5–2 Ghz radiometer [7]. They found that the higher sensitivity of
first-year sea ice thicknesses can be achieved in the 0.5–1.5 m range, and the thickness and
salinity can be retrieved simultaneously compared to a 1.4 Ghz microwave radiometer.
Afterwards, Le Vine et al. studied the effects of temperature and wind speed on the accuracy
for salinity remote sensing in the frequency range of 0.3–3.0 GHz [36]. They found that
lower frequencies and temperatures were more beneficial for salinity measurements, but
had the potential to increase errors.

2.3. Optical Fiber Sensors
2.3.1. Fiber Interferometer

In 2017, Wang et al. proposed and demonstrated an ultrasensitive, multimode interfer-
ometer salinity sensor based on Panda-microfiber [13]. A section of multimode fiber was
inserted into a conventional SMF to achieve higher-order modes, and a high sensitivity
of 2938.16 pm/‰ was achieved. In 2021, Lin et al. proposed a high-sensitivity seawater
salinity sensor based on the Mach–Zehnder structure [14]. The fiber with double-side holes
was etched into an open-cavity structure, and a salinity sensitivity of 2 nm/‰ could be
achieved when the cavity length was about 100 µm. In 2022, Zhao et al. proposed a hybrid
fiber optic sensor for simultaneous measurement of seawater temperature and salinity [37].
In particular, a section of hollow-core fiber with a U-shaped groove was connected be-
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tween 2 SMFs to measure seawater salinity, and a salinity sensitivity of 0.244 nm/‰ could
be achieved.

2.3.2. SPR

In 2017, Zhao et al. proposed a seawater salinity sensor based on a C-shaped optical
fiber structure [38]. Based on the SPR principle, a gold film was coated on the fiber surface
to improve its sensitivity, and a salinity sensitivity of 1.402 nm/‰ could be achieved. In
2020, Siyu et al. proposed a SPR sensor for measuring seawater salinity [17]. A gold film
was coated on the surface of hollow-core fiber to excite the SPR effect for improving the
sensitivity. The experimental results showed that the sensor had a salinity sensitivity of
0.3769 nm/‰. In 2021, Yang et al. proposed an SPR salinity sensor based on an exposed
fiber core structure [39]. Indium tin oxide and gold films were sequentially coated on the
exposed area of fiber core to improve the sensitivity. The sensor’s RI sensitivity was up to
3000 nm/RIU.

2.3.3. FBG

In 2019, Sun et al. proposed a FBG salinity sensor coated with lamellar polyimide
to measure the salinity in a gravel aquifer [19]. The results showed that the sensitivity of
0.0358 nm/% could be reached, and the proposed sensor had good consistency and repeata-
bility. Afterwards, Kumari et al. proposed a highly accurate and fast responsive Nuttall
apodized FBG sensor coated with hygroscopic polymer to measure seawater salinity [20].
The sensitivity was improved to 0.0026 nm/PSU by coating Polyimide on the FBG surface.
Moreover, the measurement accuracy was improved by using the Nuttall apodization
function, and the average error was reduced to 0.2015 PSU. In 2021, Raghuwanshi et al.
proposed an etched FBG RI sensor based on an α-power RI profile fiber [40]. The cladding
diameter of FBG was etched to different thicknesses to improve its sensitivity, and the
maximum sensitivity of 35 nm/RIU could be achieved.

2.3.4. LPFG

In 2015, Del Villar proposed an optimized LPFG by combining the reducing cladding
diameter, DTP and MT, which theoretically achieved a sensitivity of 1.43 × 105 nm/RIU [24].
In 2017, Yang et al. proposed a conventional LPFG salinity sensor, and its sensitivity could
reach 36 nm/M (0.615 nm/‰) by coating with polyelectrolyte multilayers [21]. Afterwards,
Yang et al. once again proposed a salinity sensor based on LPFG coated with hydrogel,
and its salinity sensitivity was 0.1255 nm/‰ [22]. In 2021, Dey et al. designed a LPFG RI
sensor whose low order cladding modes had DTP at longer wavelengths by reducing the
cladding diameter [41]. Although a sensitivity of 8751 nm/RIU for cladding mode LP0,2
was realized, the etched cladding diameter of 21.87 µm was so thin that it was easy to be
broken during the measurement process in practice. In 2021, Viveiros et al. proposed a
LPFG working in DTP, and the RI sensitivity could attain 3151.7 nm/RIU by coating with
TiO2 when the surrounding refractive index (SRI) increased from 1.33 to 1.37 [42].

Although significant progress has been made in seawater salinity measurement tech-
nology, there are still various problems that prevent accurate, real-time and highly sensitive
measurement of seawater salinity. For example, electric interference has a large impact on
the electrical conductivity measurement. In addition, microwave remote sensing is limited
by the measurement resolution to achieve high accuracy measurement. For optical fiber
sensors, the demodulation accuracy of the fiber interferometer and SPR is low, and the
sensitivity of FBG is low. Compared with other measurement methods of seawater salinity,
LPFG has the advantage of sensitivity to SRI, but the conventional LPFG also cannot meet
the measurement requirement. As is well known, reducing the cladding diameter and
making the LPFG work near DTP are effective methods to improve the sensitivity of LPFG.
Therefore, the optimized LPFG at DTP was proposed to obtain a seawater salinity sensor
with higher sensitivity.
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3. Materials and Methods

The basic principle of LPFG is coupled mode theory, in which the cladding mode will
be coupled with the core mode when they meet the phase match condition [43,44]. The
phase match condition of LPFG is

λ =
(

nco
e f f − ncl

e f f ,m

)
Λ (1)

in which λ is the resonance wavelength; Λ is the grating period; ncl
e f f ,m and nco

e f f are effective
RIs of the mth cladding and core mode, respectively. When the grating parameters are
determined, the relationship between the LPFG resonance wavelength shift and SRI is
approximately expressed as [45].

dλ

dn3
= λ · γ · Γ (2)

in which n3 is the SRI. γ is the waveguide dispersion and is expressed as

γ =
dλ
dΛ

nco
e f f − ncl

e f f ,m
(3)

Γ describes the SRI dependences of the waveguide dispersion and is defined by

Γ = − U2
mλ3n3

8πa3
2n2(nco

e f f − ncl
e f f ,m)(n

2
2 − n2

3)
3/2 (4)

in which n2 and a2 are the RI and radius of cladding, and U2
m is the mth root of the

zeroth-order Bessel function of the first kind. It can be found that the effective solution for
increasing sensitivity is the etching cladding. With the decrease of the cladding diameter,
the order of the cladding mode gradually approaches that of the next lower-order cladding
mode, and the interaction between the cladding mode and the surrounding medium is
enhanced, which leads LPFG to sense SRI more sensitively. Furthermore, the RI sensitivity
is relevant to the order of the cladding mode, and it will increase with the higher order of
the cladding mode. In particular, there is a DTP on the phase match curve (PMC) between
the core mode and the higher-order cladding mode in the near-infrared wavelength region,
and the sensitivity of LPFG will reach a maximum at DTP [45,46].

The formation mechanism of LPFG fabricated by a CO2 laser is relatively complex. It is
generally believed that there are mainly stress release, density variation, melt deformation
and local etching, which not only change the RI of fiber, but also have a large influence
on the structure of fiber. Therefore, the coupled local-mode theory is more suitable for
the LPFG fabricated by a CO2 laser, whose resonance wavelength can be approximately
expressed as [47].

Nλ =
(

nco
e f f − ncl

e f f

)
Λ (5)

in which N is the harmonic component. The process of fabricating LPFG with a CO2 laser is
shown in Figure 1. The CO2 laser with a power of 10 W (CO2-H10C, Han’s laser) is located
directly above the fiber to ensure that the spot of the laser can be focused on the fiber. In
particular, the grating period, depth and width are the most important parameters for the
grating formation, which are related to the fabrication parameters. In order to simplify
the fabrication process, the period and laser power are generally changed to fabricate the
desired LPFG, and other fabrication parameters are kept unchanged, which is shown in
Table 1. Moreover, the super continuous light source (SC-5, YSL photonics) with the output
power of about 500 mW is connected with an optical spectrum analyzer (OSA: AQ6370D,
Yokogawa) by optical fiber and monitoring the transmission spectra in real time to ensure
the quality of LPFG.
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As shown in Figure 2, the China series standard seawater solutions (GBW(E)130011,
National Center of Ocean Standards and Metrology) composed by treated natural seawater
were measured by an Abel refractometer (WAY-3S, INESA), and the RI range is 1.33301 to
1.33889 when the seawater salinity increases from 5.001‰ to 39.996‰. Therefore, the RI
sensitivities of LPFG are approximated by wavelength variations when SRI increases from
1.33 to 1.34 during simulation. In addition, the variation of seawater salinity was replaced
by RI to compare the theoretical and experimental results more clearly. Finally, the data
was analyzed by OriginPro 2018C from OriginLab corporation.

4. Results and Discussion

The designed seawater salinity sensor relies on LPFG sensing characteristics, so the SRI
sensitivity is the crucial performance indicator. The model of LPFG for simulation is built on
the basis of thin SMF (SMF13-2(21111)-3B, the 46th Institute of China Electronics Technology
Group Corporation), whose core diameter and RI are 5.2 µm and 1.471, respectively, and
the cladding diameter and RI are 80 µm and 1.46, respectively (with an incident wavelength
of 1550 nm). The core RI is periodically modulated by CO2 laser, so its coupling mode
of LPFG is asymmetric [48]. As is well known, the dispersion characteristics of SMF are
related to the material RI and structure parameters of the core and cladding, respectively.
In order to optimize the fabrication parameters to ensure the cladding mode works in DTP
at a specific wavelength range, the PMCs based on thin SMF are plotted in Figure 3, in
which the SRI is 1. It can be found that the DTP of LPFG coupled by the cladding mode
LP1,9 appears when the grating period is less than 107.17 µm, and there are 2 resonance
wavelengths for the same grating period near DTP.
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4.1. Conventional LPFG

As shown in Figure 3, the order of the cladding mode is higher in thin SMF when the
designed LPFG works near DTP when the wavelength range is from 1100 nm to 1800 nm.
Therefore, the cladding mode of LP1,7 was firstly chosen to improve the RI sensitivity by
etching cladding to make LPFG work in DTP. The PMCs of LPFG with the cladding mode
LP1,7 and an 80 µm cladding diameter are shown in Figure 4a, and there are no DTPs when
the wavelength range is from 1100 nm to 1800 nm. It can be found that the wavelength
decreases by 2.287 nm when SRI increases from 1.33 to 1.34. The LPFG with a grating period
of 162 µm was fabricated by a CO2 laser with the laser power of 20% total power, and the
experimental result is shown in Figure 4b, and the RI sensitivity is −199.54 nm/RIU, which
is in agreement with the theoretical result.
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As shown in Figure 5a, the lower-order cladding mode could work near DTP by
etching cladding. It can be found that the DTP appears when the grating period and
cladding diameter are less than 132.81 µm and 71.58 µm, respectively. In fact, the LPFG
with the period of 145 µm was fabricated by a CO2 laser with the laser power of 20% total
power. Then, the cladding of LPFG was etched to 70.18 µm by 40% and 10% hydrofluoric
acid (HF) solutions, respectively. As shown in Figure 5b, the shifts of the transmission
spectra were monitored in real time by OSA. The resonance wavelength moves towards a
longer wavelength, and the DTP appears when the wavelength range is from 1100 nm to
1700 nm as the cladding diameter decreases.

As is well known, the resonance wavelength will move away from the DTP as SRI
increases. The PMCs of LPFG with a 71.58 µm cladding diameter are shown in Figure 6a,
and there is only a shorter resonance wavelength when the wavelength range is from
1100 nm to 1700 nm. In addition, the shorter wavelength decreases by 5.325 nm when SRI
increases from 1.33 to 1.34. The spectral responses of LPFG are shown in Figure 6b, and the
longer resonance wavelength is beyond the monitoring range of OSA. It can be found that
the RI sensitivity of the LPFG shorter resonance wavelength is −598.14 nm/RIU, which was
enhanced twice after reducing the cladding diameters. Compared with unetched LPFG, the
RI sensitivity was improved, but it still could not meet the highly sensitive measurement
requirements of the salinity.
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Figure 6. (a) PMCs of LPFG with 71.58 µm cladding diameter when the SRI changes from 1.33 to 1.34;
(b) Transmission spectra of LPFG with 70.18 µm cladding diameter and LP1,7 cladding mode, and
the relationships between resonance wavelength and RI variations when SRI increases from 1.33301
to 1.33889.

4.2. LPFG Working near DTP

In order to further improve the sensitivity of LPFG, a high-order cladding mode LP1,9
was chosen to make LPFG work near DTP. The PMCs of LPFG with an 80 µm cladding
diameter are shown in Figure 7a, and there are 2 resonance wavelengths when the grating
period is less than 108 µm. It can be found the shorter wavelength decreases by 2.561 nm
and the longer wavelength increases 6.031 nm when SRI increases from 1.33 to 1.34. In
accordance with the technical manual of the CO2 laser, it is known that the surface of the
fiber is hit by a laser spot with a size of 100 µm, and the precision of the period is about
1 µm. Therefore, the LPFG working near DTP can be theoretically fabricated by a CO2 laser
without etching.
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In fact, the LPFG with cladding mode LP1,9 works near DTP when the period is
115 µm. The spectral responses of LPFG are shown in Figure 7b, in which SRI increases
from 1.33301 to 1.33889. It can be found that the RI sensitivities at shorter and longer
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resonance wavelengths are −228.6 nm/RIU and 407.99 nm/RIU, which is higher than
conventional LPFG. However, the LPFG with improved RI sensitivity still cannot meet the
highly sensitive requirements of salinity measurement. Furthermore, the cladding of LPFG
working near DTP should be etched to improve its sensitivity. The PMCs of LPFG under
different cladding modes and diameters are shown in Figure 8, in which the SRI is 1. The
DTP moves towards a shorter wavelength direction, and the shape of PMCs for cladding
modes LP1,9, LP1,8 and LP1,7 remain basically unchanged when the cladding diameters are
reduced from 80 µm to 76 µm, 67.4 µm and 58.81 µm.
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The theoretical results of RI sensitivity are shown in Figure 9, when the SRI increases
from 1.33 to 1.34. It can be found that the shorter wavelength of LPFG with the cladding
modes LP1,9, LP1,8 and LP1,7 decrease 6.2 nm, 7.235 nm and 7.25 nm, and the longer
wavelength increases 9.881 nm, 11.562 nm and 11.83 nm. As the cladding diameter de-
creases, the obtained average RI sensitivities at a shorter wavelength are −620 nm/RIU,
−723.5 nm/RIU and −725 nm/RIU, and the RI sensitivities at a longer wavelength are
988.1 nm/RIU, 1156.2 nm/RIU and 1183 nm/RIU, respectively. Therefore, reducing the
appropriate cladding diameter of LPFG working near DTP is an effective way to overcome
the contradiction between sensitivity and mechanical strength.

In order to get a higher RI sensitivity, the LPFG with a period of 110 µm was fabricated
by a CO2 laser with the laser power of 20% total power. Furthermore, the number of
scanning cycles is 1 to obtain a high-quality LPFG due to about 1 µm precision of the
grating period. Then, the LPFG claddings were etched by 40% and 10% HF solutions,
and the 10% HF solution was used to achieve a higher-precision etching process when
the two resonance wavelengths were closer. The transmission spectra of LPFG under
different cladding diameters and modes are shown in Figure 10, and the LPFGs have a deep
modulation loss of 25 dB when the SRI increases from 1.33301 to 1.33889., which makes
them more suitable for applications in salinity measurement.
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Figure 10. Transmission spectra of LPFG with the period of 110 µm under different cladding modes
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The relationships between SRI and the wavelength shifts for different cladding modes
and diameters are shown in Figure 11a, in which the SRI increases from 1.33301 to 1.33889. It
can be found that the average RI sensitivities of LPFG whose cladding diameters are 75 µm,
65.71 µm and 57.14 µm at shorter wavelengths are −546.48 nm/RIU, −690.07 nm/RIU
and −2285.99 nm/RIU, respectively. In particular, the sensitivity is more sensitive to varia-
tions of the grating period at DTP, which makes the sensitivity of the shorter wavelength
change a lot when the grating period changes 1 µm. Moreover, the RI sensitivities at
longer wavelengths are 908.95 nm/RIU, 1300.66 nm/RIU and 1197.41 nm/RIU, which are
well agreed with the theoretical results. As shown in Figure 11a, the high sensitivity of
3483.4 nm/RIU could be obtained by calculating the wavelength differences between two
resonance peaks when the cladding diameters were reduced to 57.14 µm. Therefore, the
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LPFG with a cladding diameter of 57.14 µm and a cladding mode LP1,7 can be used to
measure seawater salinity due to its excellent performance.
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Based on the preliminary RI experiment, the LPFG was maintained straight and placed
in standard seawater solutions with a salinity range of 5.001–39.996‰ to investigate the
salinity-sensing performance. The relationships between salinity and wavelength shifts
are shown in Figure 11b, and the high sensitivity of 0.571 nm/‰ could be obtained by
calculating the wavelength differences between 2 resonance peaks, and the LPFG has a
good linearity of 0.994. In addition, 3 cycle experiments were designed to demonstrate the
repeatability, and the average standard deviation of 0.403 nm caused a salinity error of 0.7‰.
In order to certify the stability of the sensor, the sensor was immersed in water with a salinity
of 0‰ for 60 min and the temperature maintained at about 19.8 ◦C. The variations of the
resonance wavelength with time are shown in Figure 12a, and the maximum fluctuation of
the resonance wavelength is 0.352 nm, and the salinity error is 0.62‰, which is acceptable.

To further explore the cause of wavelength fluctuations, the LPFG was immersed in
water solutions with a temperature range of 20–46 ◦C to investigate the temperature sensing
performance. The relationships between wavelength shifts and temperature are shown
in Figure 12b, and there is a significant difference of temperature sensitivity at 38 ◦C. In
particular, it can be found that the temperature sensitivities of longer and shorter resonance
wavelengths are 0.114 nm/◦C and 0.004 nm/◦C in the temperature range of 20–38 ◦C,
which results in little wavelength fluctuations. Therefore, the fluctuations of resonance
wavelength may be caused by noise or unavoidable handling during the experiment. It is
necessary to seek better ways to remove noise or improve the RI sensitivity of LPFG for
reducing the influence of wavelength fluctuations.



Sensors 2023, 23, 4435 13 of 16Sensors 2023, 23, x FOR PEER REVIEW 13 of 16 
 

 

 
Figure 12. (a) Relative wavelength shifts of the optimized LPFG within 60 min in water; (b) Rela-
tionships between wavelength shifts and temperature. 

To further explore the cause of wavelength fluctuations, the LPFG was immersed in 
water solutions with a temperature range of 20–46 °C to investigate the temperature sens-
ing performance. The relationships between wavelength shifts and temperature are 
shown in Figure 12b, and there is a significant difference of temperature sensitivity at 38 
°C. In particular, it can be found that the temperature sensitivities of longer and shorter 
resonance wavelengths are 0.114 nm/°C and 0.004 nm/°C in the temperature range of 20–
38 °C, which results in little wavelength fluctuations. Therefore, the fluctuations of reso-
nance wavelength may be caused by noise or unavoidable handling during the experi-
ment. It is necessary to seek better ways to remove noise or improve the RI sensitivity of 
LPFG for reducing the influence of wavelength fluctuations. 

4.3. Discussion 
Comparisons between other LPFG salinity or RI sensors and this work are shown in 

Table 2; the LPFGs work near DTP, except for the LPFGs in [21] and [22]. In theory, the 
sensitivity of 1.43 × 105 nm/RIU can be achieved by combining a reducing cladding diam-
eter, DTP and MT, but the RI range (1.33–1.331) is beyond the RI range of the seawater 
salinity. In practice, the LPFG fabricated in this work has a higher sensitivity compared to 
the other LPFG fabricated by a CO2 laser in [21]. Furthermore, it can be found that the 
LPFG in this work has a similarly high RI sensitivity compared to the LPFGs fabricated 
by femtosecond and UV laser. In particular, the RI sensitivity of the LPFG in this work is 
higher than the arc-induced LPFG in [27]. Finally, the RI sensitivity of the LPFG fabricated 
in this work is similar to that of the LPFG coating with thin-film, which avoids the complex 
coating deposition. In summary, the LPFG fabricated in this work has significant ad-
vantages in salinity measurement. In addition, the LPFG salinity sensor was fabricated in 
a low-cost way, which also significantly reduced the fabrication cost. 

  

Figure 12. (a) Relative wavelength shifts of the optimized LPFG within 60 min in water; (b) Relation-
ships between wavelength shifts and temperature.

4.3. Discussion

Comparisons between other LPFG salinity or RI sensors and this work are shown in
Table 2; the LPFGs work near DTP, except for the LPFGs in [21,22]. In theory, the sensitivity
of 1.43 × 105 nm/RIU can be achieved by combining a reducing cladding diameter, DTP
and MT, but the RI range (1.33–1.331) is beyond the RI range of the seawater salinity. In
practice, the LPFG fabricated in this work has a higher sensitivity compared to the other
LPFG fabricated by a CO2 laser in [21]. Furthermore, it can be found that the LPFG in this
work has a similarly high RI sensitivity compared to the LPFGs fabricated by femtosecond
and UV laser. In particular, the RI sensitivity of the LPFG in this work is higher than the
arc-induced LPFG in [27]. Finally, the RI sensitivity of the LPFG fabricated in this work
is similar to that of the LPFG coating with thin-film, which avoids the complex coating
deposition. In summary, the LPFG fabricated in this work has significant advantages in
salinity measurement. In addition, the LPFG salinity sensor was fabricated in a low-cost
way, which also significantly reduced the fabrication cost.

Table 2. Comparisons between other LPFG salinity or RI sensors and this work.

Fabrication Process Cladding
Diameter (µm)

Sensitivity
(nm/‰)

Sensitivity
(nm/RIU) Range Reference

1. CO2 laser writing
2. Coating with polyelectrolyte 125 0.612 ~ 29.25–46.8‰ [21]

1. CO2 laser writing
2. Coating with hydrogel 125 0.1255 ~ 22.8–44.7‰ [22]

1. Femtosecond laser writing
2. Coating with TiO2

125 ~ 3157.7 1.33–1.37 [42]4294.5 1.33–1.34

1. KrF excimer laser with amplitude mask writing
2. HF solutions etching
3. Coating with TiO2

Less than 125 ~
6200 Close to 1.3400

[49]
4300 1.36–1.41

1. Doubled argon laser writing
2. HF solutions etching

71.75 ~ 1343 1.353–1.398 [50]32.5 8734

Theoretical work:
1. HF solutions etching 29.24 ~ 3750 1.33–1.35

[24]1. HF solutions etching
2. Coating with thin-film 34.8 ~ 143,000 1.33–1.331

Arc inducing 125 ~ 720 1.33–1.42 [27]

1. CO2 laser writing
2. HF solutions etching 57.14 0.571 3483.4 5.001–39.996‰

(1.33301–1.33889) This work
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5. Conclusions

A LPFG seawater salinity sensor has been proposed, which has significant advantages
in salinity measurement. The LPFG worked near DTP and was economically fabricated
by a CO2 laser without any special processing, which could replace femtosecond and UV
lasers. Then, the LPFG with a reduced cladding diameter of 57.14 µm has designed to make
the cladding mode LP1,7 work near DTP, and a salinity sensitivity of 0.571 nm/‰ could be
obtained in the salinity range of 5.001–39.996‰. In summary, the LPFG seawater salinity
sensor has the advantages of high sensitivity, low loss, simple fabrication and stability,
which allows it to be more widely used in seawater salinity measurement.

Even so, there is still great potential for improving its performance in future research
work. Firstly, the fabrication method of a CO2 laser will be improved to fabricate a high-
quality dual-peak resonance LPFG. In addition, a comprehensive method will be proposed
to obtain higher-sensitivity LPFGs by combining reducing cladding diameters and making
LPFG work near MT and DTP regions. Finally, the effects of the seawater environment
should be considered in practical seawater salinity measurement. Therefore, the package
structure of the proposed seawater salinity sensor will be designed to allow it to be exposed
to seawater, while reducing the influence of seawater on the sensor probe.
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