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Abstract: This paper demonstrates the capabilities of three-dimensional (3D) LiDAR scanners in
supporting a safe distance maintenance functionality in human–robot collaborative applications.
The use of such sensors is severely under-utilised in collaborative work with heavy-duty robots.
However, even with a relatively modest proprietary 3D sensor prototype, a respectable level of safety
has been achieved, which should encourage the development of such applications in the future. Its
associated intelligent control system (ICS) is presented, as well as the sensor’s technical characteristics.
It acquires the positions of the robot and the human periodically, predicts their positions in the near
future optionally, and adjusts the robot’s speed to keep its distance from the human above the
protective separation distance. The main novelty is the possibility to load an instance of the robot
programme into the ICS, which then precomputes the future position and pose of the robot. Higher
accuracy and safety are provided, in comparison to traditional predictions from known real-time and
near-past positions and poses. The use of a 3D LiDAR scanner in a speed and separation monitoring
application and, particularly, its specific placing, are also innovative and advantageous. The system
was validated by analysing videos taken by the reference validation camera visually, which confirmed
its safe operation in reasonably limited ranges of robot and human speeds.

Keywords: LiDAR; robot; human–robot collaboration; speed and separation monitoring; intelligent
control system; geometric data registration; motion prediction

1. Introduction

Human–robot collaboration (HRC) has become important in industry in recent years,
due to the demand for increased flexibility in production environments. In small, and
medium-sized, enterprises, particularly, the use of robotic arms has often proved to be
uneconomical due to the typically small batch sizes.

The technical specification ISO/TS 15066:2016 [1] provides principles and requirements
for the design of HRC applications. One of the four HRC scenarios described therein is
called speed and separation monitoring (SSM). The short definition of SSM from this
technical specification is also used in this paper: “The robot arm maintains a minimum
distance towards the human during the execution of its task to avoid physical contact with
the human”. This minimum distance is called the protective separation distance (PSD). It is,
by definition, the minimum distance which assures that the robot system has the necessary
deceleration capability to stop before colliding with a human in the HRC workspace [2].
The PSD is updated in real time after each robot or human movement. It is important
to ensure the PSD is as short as possible to avoid unnecessary deceleration and increase
HRC efficiency. The introduction of Industry 4.0 concepts brings newer regulatory safety
challenges within industrial intelligent human–robot collaboration, as proposed in [3]. Our
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paper demonstrates the SSM functionality in an HRC application, realised by augmenting
a standard industrial robot arm’s controller with a prototype intelligent LiDAR sensor
system.

The PSD calculation and SSM itself can be controlled by the sensory data, mathematical
models or, as is most frequently the case, both [4–6].

A wide variety of sensors can be encountered in the HRC-related literature, which
can be positioned on a robot, on locations with a good view near the HRC workspace,
sometimes even on a human. Commonly used sensors include the following: a single
camera [7] or several cameras [8], stereo cameras [9], RGB-D visual sensors [10], ultrasonic
sensors [11], infrared thermal sensors [12], laser-based technologies, including time-of-flight
(TOF) sensor arrays, 3D TOF cameras and 2D/3D light detection and ranging (LiDAR)
scanners [13–16], or different combinations, such as 2D laser scanners and a Kinect RGB-D
visual sensor [17], or RGB cameras, a depth camera and a thermal imager [18].

Another possibility, often employed, is to represent a robot arm by a mathematical
model. When a kinematic model is used, the geometry of the robot arm is established from
its state, provided by its controller [19–22]. On the other hand, more complex dynamic
models represent the motion of the robot arm, as well as the forces acting on it and on the
human during the collision [23,24]. Humans can also be modelled if they are static, or if
their movements can be learned from a huge number of recorded trajectories by employing
Artificial Intelligence and Machine Learning techniques [25,26].

Hybrid approaches combine elements of model-based and sensor-based methods, to
provide a balance of accuracy, response time and computational efficiency [27,28]. The
method proposed in this paper represents the robot arm with its kinematic model, while
humans and other dynamic obstacles are extracted from 3D LiDAR data.

Many SSM methods use motion prediction to improve safety and efficiency further.
The positions and postures of a human and a robot in the near future are computed from the
known real-time and near-past positions and poses, either represented by a mathematical
model [29], or acquired from sensory data [30]. PSD is then computed from the predicted
positions and postures, and used to control the robot’s speed in the same manner as the real-
time PSD. We use the described traditional approach for human motion prediction, while
the prediction of the robot model’s state represents the main novelty of our approach. The
idea is to load an instance of the robot programme into the ICS, which then precomputes
the future position and pose of the robot arm. The robot’s near-future motion is, thus, not
predicted, but computed by its original programme, which assures higher accuracy and
improved safety in comparison to the traditional approaches.

To our knowledge, utilisation of a 3D LiDAR scanner in an SSM application and,
particularly, its placing in an elevated position at the side of the HRC workspace, are also
innovative and advantageous, particularly in addressing the so-called grey zones and, at the
least, in offering limited possibility in detecting multiple humans. The existing laser-based
SSM solutions use mostly 2D scanning in selected horizontal and vertical planes [13,16], or
on-robot sensors [15]. Our sensor, in contrast, is located out of the robot’s reach, captures a
3D point cloud, is stationary, and does not include an inertial measurement unit (IMU), a
compass, GPS or any other positioning system.

The heterogeneity of the robot kinematic model (either from the robot controller or
from the trajectory precomputed by the ICS) and sensor data to be aligned, prevented us
from using generic open-source solutions for geometric data registration, such as [31], so
we developed our own data registration method. It is still based on well-known rigid
transformations, but the choice of the sensor and testbed required some small, partly
innovative, adjustments.

The paper consists of four Sections. The testbed, hardware, validation software and
equipment and, particularly, the developed intelligent control system are presented in
Section 2. The testing scenarios and validation results are provided in Section 3. The
work and results are discussed, disadvantages and limitations stressed, and possible
improvements listed in the concluding Section 4.
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2. Materials and Methods

The presented research aimed at evaluating the performance of a proprietary 3D
LiDAR scanner prototype and the associated ICS. The testbed, shown in Figure 1, was
set up at the premises of FANUC ADRIA [32]. It includes a FANUC industrial robot arm,
the operation of which is controlled in real time by a FANUC robot controller. A human
(either an operator or an intruder), an animal, another dynamic obstacle (hereafter, we
use the term intruder for all these categories), or a group of them, is also present in the
HRC workspace, where he/she/it moves according to pre-prepared relevant scenarios.
The workspace is monitored by a 3D LiDAR scanner. The acquired point clouds and the
positions of the robot system (the robot arm with a tool and a workpiece), obtained from the
robot controller, are processed in real time by the ICS on its associated computer. Although
it would be best to place the sensor above the workspace, this is often not possible indoors
due to limited height. We placed it out of the robot’s reach, on the side where collision
between the robot arm and a human was most likely to occur. We defined the distance
so that the sensor could still detect all the reference objects defined in Standard EN IEC
61496-3:2019 [33].

Figure 1. Laboratory setup of a robot application safeguarded with the proposed 3D sensor system.

2.1. Devices, Materials and Validation Software

A new 3D sensor system represents the core of the proposed SSM application. It
consists of a proprietary 3D LiDAR scanner prototype (Figure 2a) developed by FOKUS
TECH [34], and the ICS, implemented mostly at the Faculty of Electrical Engineering and
Computer Science at the University of Maribor. The employed LiDAR scanner was actually
developed for safety and inspection applications on railways [35], and, here, we wanted
to validate its usability in some different fields as well. It has an operating range of 10 m,
detection (horizontal × vertical) angle 40◦ × 40◦, horizontal resolution of 0.1◦ or 0.3◦, a
vertical resolution of 0.1◦ to 0.9◦, and an operating temperature range from 5 ◦C to 40 ◦C.
It operates at 230 V AC with power consumption of 150 W. Table 1 lists the choices of
resolutions (transformed into scan lines and samples per line) and scanning speeds in
frames per second (fps) available.

Table 1. Resolutions and frame rates of the prototype LiDAR scanner.

Samples per Line Scan Lines MinX MaxX MinY MaxY Frame Rate

293 292 −146 146 −146 145 0.4
142 141 −71 70 −70 70 1.6
142 70 −71 70 −35 34 3.3
142 47 −71 70 −23 23 4.8
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(a) (b)
Figure 2. Testbed in the FANUC ADRIA premises, consisting of 1—LiDAR scanner prototype,
2—FANUC M-20iD/25 robot arm, 3—FANUC R-30/B Plus robot controller, 4—metal gripper, carry-
ing a wooden cube, 5—reference validation camera, and 6—polyester canvas with printed grid of
dots: (a) Test setup (with the permission of FOKUS TECH d.o.o.); (b) Validation setup.

The ICS was programmed in C++ and installed on a NanoPi M4V2 single-board
computer with a Linux operating system in the presented testbed. The hardware connection
between the LiDAR scanner and the ICS computer was by means of an Ethernet cable.
The LiDAR scanner pushes the point cloud data in real time as broadcast UDP packets.
Every packet contains data for 150 points, along with the timestamp. An EtherNet/IP CIP
protocol [36] was utilised for communication with the robot controller. The latter sends the
robot joint coordinates and grip status every 8 ms. Commands for robot speed changes are
sent in the opposite direction, computed by the SSM or motion prediction ICS modules.

A robot arm, FANUC M-20iD/25 (Figure 2), was used in the described experiments. It
was provided by FANUC ADRIA, together with the robot controller, R30iB Plus (Figure 2).
It is a 6-joint articulated arm with a slim design (curved J2 arm) to enable greater access,
with a 57 mm diameter large hollow wrist, internal cable routing, a reach of 1831 mm,
and a load capacity of 25 kg. The FANUC ROBOGUIDE software [37], which was used
for verification of the developed kinematic model of the robot arm, was also provided
by FANUC ADRIA. The robot arm is equipped with a gripper with metal fingers, which
carried a wooden cube with sides of 20 cm and weight 0.5 kg (Figure 2b).

An optical camera and a polyester canvas (3 m × 3 m) with printed dots were also
used in the system validation setup (Figure 2b). Due to the relatively low scanning speed
of the LiDAR scanner, an ordinary camera was sufficient (we recorded videos with 24 fps
and image resolution of 1280 × 720 pixels). In the first experiment, a test dummy was used,
while our early experiments with a human intruder included a table as an additional safety
barrier between the human and the robot.

2.2. Intelligent Control System

Figure 3 shows the ICS block diagram. The LiDAR scanner acquires a point cloud
within a pyramid of vision with viewing angles 40◦ horizontally and 40◦ vertically. The
azimuth and the polar angle of each acquired point are expressed with values in the integer
range [0, 4095]. The third point’s coordinate is its distance from the sensor. The optimal
location of the sensor is determined according to the size of the HRC workspace and the
geometry of the viewing pyramid. It is in the range 3 to 8 m from the workspace. The
coordinates of all the acquired points are then converted into the right-handed Cartesian
coordinate system of the sensor, such that x ∈ [MinX, MaxX], y ∈ [MinY, MaxY] (see
Table 1), the Z-axis coincides with the central laser beam (x = 0, y = 0), the horizontal
X-axis points to the left, and the Y-axis is defined by Z× X. The distances are measured
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in metres. In the initialisation phase, the sensor’s coordinate system and the robot base
coordinate system are registered as described in Section 2.2.1. This is followed by uniform
spatial subdivision that arranges the LiDAR points into a regular voxel grid [38]. Structured
geometric data with simple topology can be processed in a much easier and quicker way
than an unstructured point cloud, and, thus, importantly, the subsequent modules are
facilitated. Before the registration, the user enters the ICS settings, which include the LiDAR
scanning speed, voxel size, the decision as to whether to use a semi-automatic or direct
registration method, measurements for the direct registration (if chosen), and the decision
as to whether to use predictions (plus the prediction time delay if predictions are used).

Figure 3. The ICS architecture.

The three initialisation blocks are coloured yellow in Figure 3. The other modules
(coloured green), which are performed in a loop for each acquired LiDAR frame (the SSM
loop in the continuation), are described in separate subsections, except for the conversion
to the Cartesian coordinate system, which has already been considered above. The forward
kinematics (FK) is described in Section 2.2.2, geometric data segmentation in Section 2.2.3,
and motion prediction in Section 2.2.4, while the protective separation distance (PSD)
calculation, and speed and separation monitoring are considered in Section 2.2.5.

2.2.1. Geometric Data Registration

The geometric data registration (termed, in short, the registration) is a procedure
that determines the transformation that optimally maps two point sets [39]. They are
supposed to represent the same scene and must overlap at least partially. In the presented
ICS, the registration aims to align the previously time-synchronised LiDAR point cloud
and the robot triangulated irregular network (TIN) model [40]. The latter was constructed
from the robot arm specifications and put into the appropriate pose by using the robot
controller data and the robot’s forward kinematic model (Section 2.2.2). The registration is
performed in the application initialisation phase. The results remain valid until the location
or orientation of the sensor or robot base changes. The possible slowness of the method
is, consequently, not problematic. However, the results are crucial for all further steps of
the ICS, and, therefore, a high level of accuracy is required. The registration, thus, uses the
highest possible LiDAR resolutions (the first line in Table 1). On the other hand, higher
frame rates, and, consequently, lower resolutions are, typically, used in the SSM loop.
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The registration task is to find the transformation matrix M, which registers points
given in the source coordinate system within the target coordinate system. In our case,
the former corresponds to the sensor’s local coordinate system CSS, while the latter is
the robot base coordinate system CSR (referred to as K0 in Section 2.2.2). As both CSS
and CSR address the same physical space, a reasonable requirement is that they share the
same measurement units and the same orientations. Thus, M may be considered a rigid
transformation, and its content is determined by three translations and three rotations
along/around the coordinate axes. The role of registration is to determine the parameters
of these six transformations with the best possible accuracy. Several radically different
approaches were adapted and tested in the research presented.

Comprehensive reviews of general automatic registration methods can be found, as,
for example, in [39,41,42]. Such methods find the transformation by aligning two (or
more) geometric data sets, where one is chosen as the target. Two well-rated open-source
solutions, PCL [43,44] and TEASER++ [31,45] were tried, but they require strong similarities
between the source and target data sets (e.g., a similar number of points, spatial resolution,
and points distribution), which our robot TIN model and LiDAR data point cloud could
not meet. This task can be facilitated by using some a priori knowledge of the scene, e.g.,
by first aligning the floor planes (large flat surfaces at the edge of the scene) and then one
or more cross-sections parallel to the floor. While this concept is correct, it depends on the
input data too much, and is also time inefficient, so we opted for a semi-automatic method
rather than automatic ground detection [46,47].

The semi-automatic method requires the user to select three non-collinear points,
A, B and C, interactively in both CSS and CSR. The assumption was made here that
these two triplets, clicked in two views of a computer-rendered scene, represented the
same triplets in the physical world. Furthermore, we assumed that the triplet from the
point cloud was also present in the TIN model, but the opposite was not guaranteed.
It therefore made sense to select the points in CSS first. This triplet was then used in
Equation (1) to establish an intermediate coordinate system CSI with the origin O and
orthogonal unit coordinate vectors U, V and W, as shown in Figure 4. Then, M was
computed as a composition of two transformations—MS2I from CSS to CSI , and MI2R
from the latter to CSR. Note that the system of Formula (1), and the interpretation from
Figure 4, must be employed separately for {AS, BS, CS, OS, US, VS, WS} expressed in CSS,
and {AR, BR, CR, OR, UR, VR, WR} expressed in CSR.

O = A,

U =
B−O
|B−O| ,

W =
U × (C−O)

|U × (C−O)| ,

V = W ×U.

(1)

Figure 4. Construction of the intermediate coordinate system from non-collinear points A, B and C.
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The transformation MI2R from CSI to CSR is given in homogeneous coordinates as the
composition of a 3D rotation RotR and translation TranR(OR), as shown in Equation (2):

MI2R = TranR(OR) · RotR =


UR.x VR.x WR.x OR.x

UR.y VR.y WR.y OR.y

UR.z VR.z WR.z OR.z

0 0 0 1

. (2)

The matrix MI2S from CSI to CSS can be generated in the same manner, but the inverse
MS2I , as shown in Equation (3), is actually needed:

MS2I = M−1
I2S = Rot−1

S · Tran−1
S (OS) = RotT

S · TranS(−OS)

=


US.x US.y US.z 0

VS.x VS.y VS.z 0

WS.x WS.y WS.z 0

0 0 0 1

 ·


1 0 0 −OS.x

0 1 0 −OS.y

0 0 1 −OS.z

0 0 0 1

.
(3)

M is then obtained by Equation (4) as the composition of MS2I and MI2R:

M =


UR.x VR.x WR.x OR.x

UR.y VR.y WR.y OR.y

UR.z VR.z WR.z OR.z

0 0 0 1

 ·


US.x US.y US.z 0

VS.x VS.y VS.z 0

WS.x WS.y WS.z 0

0 0 0 1

 ·


1 0 0 −OS.x

0 1 0 −OS.y

0 0 1 −OS.z

0 0 0 1

. (4)

In practice, the user is not able to click two triplets of points in a manner that would
ensure they coincided perfectly in the physical world. Consequently, there are two interme-
diate coordinate systems: CSS2I obtained from CSS through the transformation MS2I from
Equation (3), and CSR2I computed from CSR by the inverse of MI2R from Equation (2). The
complete transformation is shown in Equation (5):

M = MI2R ·MIS2IR ·MS2I . (5)

MIS2IR is generally unknown rigid transformation from CSS2I to CSR2I . In Equation (4),
the identity matrix is used instead, introducing an error which depends strongly on the
user’s skill and precision. A slight improvement can be achieved by assuring congruency
of the two triangles formed by the triplets. The MIS2IR remains unknown, but the error is
usually reduced in this way.

Alternatively, the direct registration method can be employed, which determines M
by measuring the transformation parameters in the physical world. It usually achieves
more accurate results than the semi-automatic method, but it requires more operator time
and effort. In the considered setup, the x-axes of CSS and CSR were both horizontal, which
meant that only two rotations were needed. Thus, M was determined with 5 parameters: α
is the difference between the sensor’s and the robot’s azimuth, ϕ is the sensor’s inclination,
and OS2R is the origin of CSS, expressed in CSR. However, the sensor is out of reach of
the robot arm, and the origin of CSR is hidden inside the robot, disabling direct physical
measuring of the coordinate differences between both origins. The problem was solved
by using an auxiliary point P, which can be determined as PS in CSS, and as PR in CSR. In
the experiment, the sensor’s mirrors were blocked and PS = (0, 0, rS) was, thus, acquired
with the central laser beam. A green visible laser was used to enable the robot arm to touch
precisely the same point, this time acquired as PR = (PR.x, PR.y, PR.z). The same central
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beam could be utilised to determine α, while ϕ must be measured manually. The entire
setup is shown in Figure 5. The transformation matrix M is given by Equation (6):

M =


sin α − cos α sin ϕ − cos α cos ϕ OS2R.x

− cos α − sin α sin ϕ − sin α cos ϕ OS2R.y

0 cos ϕ − sin ϕ OS2R.z

0 0 0 1

. (6)

(a) (b)
Figure 5. Parameters of the transformation matrix M in the direct registration method: (a) Top view
of the test setup; (b) Side view.

The unknown coordinates of OS2R in the last column can be determined from the data
acquired by the described measurements using Equation (7):

OS2R =


OS2R.x

OS2R.y

OS2R.z

1

 =


PR.x + rS cos ϕ sin α

PR.y + rS cos ϕ cos α

PR.z + rS sin ϕ

1

. (7)

2.2.2. Robot Arm Forward Kinematics

The forward kinematics (FK) of the robot arm determine the positions of the robot
tip or robot tool centre point (TCP) in the robot base or world coordinate system for given
values of the robot arm joint parameters. The forward kinematic (FK) model serves as a
basis to determine the motion and locations of all the links of the robot system. These results
are crucial for alignment of the time-synchronised robot TIN model with the LiDAR data in
the geometric data registration (Section 2.2.1) and point cloud segmentation (Section 2.2.3)
steps, and for subsequent tasks of prediction of the robot’s location (Section 2.2.4) and
controlling the robot’s speed with respect to PSD (Section 2.2.5).

The FK model for the articulated FANUC M-20iD/25 robot arm was developed using
the traditional Denavit–Hartenberg approach [48]. It determines the coordinate systems
in a systematic way through a sequence of transformations between them, described by
homogeneous 4× 4 transformation matrices. The first coordinate system K0 is at the robot
base and the last one is K6 at the robot tip, or KT at the robot TCP. K0 to K6 are shown in
Figure 6a. The intermediate coordinate systems, K1 to K5, correspond to individual robot
joints. The procedure determines K0 and the positive directions of the robot joints’ motion,
as well as the robot pose and K6 (or KT) when all robot joints are in a zero position. The
transformation matrices T1

0 , T2
1 , T3

2 , T4
3 , T5

4 , and T6
5 were determined by Equation (8):
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T1
0 = Rot(z, q1) · Tran(z, 0) · Tran(x, a1) · Rot(x,−90◦),

T2
1 = Rot(z, q2 − 90◦) · Tran(z, 0) · Tran(x, a2) · Rot(x, 180◦),

T3
2 = Rot(z, q3) · Tran(z, 0) · Tran(x, a3) · Rot(x,−90◦),

T4
3 = Rot(z, q4) · Tran(z,−d4) · Tran(x, 0) · Rot(x,−90◦),

T5
4 = Rot(z, q5) · Tran(z, 0) · Tran(x, 0) · Rot(x,−90◦),

T6
5 = Rot(z, q6) · Tran(z,−d6) · Tran(x, 0) · Rot(x,−90◦),

(8)

where the following values of the Denavit–Hartenberg parameters were used: a1 = 75 mm,
a2 = 840 mm, a3 = 215 mm, d4 = 890 mm, and d6 = 90 mm (see Figure 6a).

(a)

(b)

Figure 6. Forward kinematic model of the FANUC M-20iD/25 robot arm: (a) Coordinate systems K0,
K1, K2, K3, K4, K5, and K6 of individual joints (with the permission of FANUC ADRIA d.o.o.); (b) The
parameters of the transformation TT

6 between the coordinate systems of the robot tip (K6) and the
gripper attached to the robot arm.

Equation (9) gives the FK model of the robot arm without a tool:

T6
0 = T1

0 · T2
1 · T3

2 · T4
3 · T5

4 · T6
5 . (9)

This model must be equivalent to the FK model implemented within the FANUC robot
controller. This was verified by the FANUC robot simulation software ROBOGUIDE [37].
Numerous repertoires of joint position values q1 to q6 from Equation (8) were used. A
perfect match was confirmed between K6, determined by ROBOGUIDE, and K6, calculated
with our FK model.

In our test setup, the robot arm manipulated a load with the shape of a cube, so it was
equipped with an appropriate gripper. Therefore, the robot tool coordinate system KT was
added to the FK model, as shown in Equation (10):

TT
0 = T6

0 · TT
6 ,

TT
6 = Tran(x, xt) · Tran(y, yt) · Tran(z, zt) · Rot(z, Rt) · Rot(y, Pt) · Rot(z, Wt).

(10)

Here, xt = −92.998 mm, yt = 0 mm, zt = 165.123 mm, Rt = 0◦, Pt = −45.0◦, and
Wt = 0◦ are coordinates and the Roll, Pitch, Yaw angles of the robot tool with respect to
the coordinate system K6. Their meaning is explained in Figure 6b.
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2.2.3. Geometric Data Segmentation

Before the ICS calculates distances between the robot and any intruders, these latter
must be found in the LiDAR point cloud. This is the role of geometric data segmentation,
which is performed after the LiDAR coordinate system CSS has been aligned with the
robot’s K0 and the controlled HRC workspace voxelised. The segmentation operates in two
phases.

The robot is first extracted from the initial scene, which is expected to be free of
intruders. The voxels within the bounding boxes of the robot’s parts represent the robot,
while the remaining material voxels represent either static obstacles or noise. Here, a voxel
is considered to be a material voxel if it contains at least one LiDAR point, otherwise it
is an empty (air) voxel. This initial segmentation, free of intruders, may also be repeated
for different FK-controlled robot poses, to detect eventual material voxels obscured by the
robot in previous positions. The static obstacles do not change till the end of the robot
programme. Figure 7a shows the material voxels classified as the robot (yellow), static
obstacles (green), and noise (red). The latter includes connected areas consisting of non-
robot material voxels, the number of which is below a selected threshold (e.g., 5). Note that
green voxels, and, thus, static obstacles near the robot tip belong to the gripper and load,
which were not included in the kinematic model when these images were captured.

(a) (b)
Figure 7. Data segmentation with classification of material voxels representing the robot (yellow),
static obstacles (green), intruders (magenta), and noise (red): (a) Initial scene without intruders;
(b) An intruder enters the initial scene.

In subsequent frames, the robot is identified in the same way, although its pose might
be changed in accordance with FK. Furthermore, the static obstacles remain the same as
in the initial frame and can simply be neglected, as the detection of distances between the
robot and the static environment has to be provided by the robot’s software and not by the
ICS. What is left is noise and eventual intruders. The smaller connected segments (below
the threshold) correspond to the former, and the bigger ones represent the intruders. The
latter are coloured magenta in Figure 7b.

2.2.4. Motion Prediction

In the presented research motion prediction aimed to assess locations of observed
objects in the near future (after tsensor, which is the time interval between two consecutive
sensor frames) by using the real-time and near-past locations of the observed objects, and
to utilise the obtained results to improve the PSD computation (Section 2.2.5). Furthermore,
the times of predictions were synchronised with the times of completing the acquisitions of
individual sensor frames, which meant that the next frame was actually predicted exactly
at the moment when the acquisition of the current one was completed. The use of the
motion prediction is optional, as seen from the ICS concept in Figure 3. We further required
that the motion prediction method was fast enough (and, consequently, relatively simple,
as it was executed periodically at the sensor frame rate) to keep the whole ICS running in
real time. There were two types of moving objects that needed to be considered in our ICS:
robot links and intruders. A single intruder was predicted in the current solution.

Prediction of the intruder’s location considers the following situations:
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1. The intruder has just been detected, and is thus present in a single frame only. The
prediction is that he or she is moving directly towards the robot with a standard fast
walking speed of 1.6 m/s [49];

2. There are already two consecutive frames containing the intruder. The constant
speed of the intruder between the two frames is computed. The prediction is that the
intruder continues motion with unchanged speed in an unchanged direction;

3. There are already three or more consecutive frames containing the intruder. The
intruder’s locations from the last three slides are used to assess trends in how the
speed and motion direction are changing. These trends are then used in predicting
the future position. The intruder’s trajectory in this case is a quadratic Bézier curve,
i.e., a parabolic arc.

The robot’s positions can be predicted in the same way, but it makes sense to take
advantage of the fact that its motion is programmed. Although the robot controller cannot
provide the ICS with the robot’s future coordinates in real time, the robot’s programme
and, consequently, the trajectories of its links, are, of course, known before the collaborative
work starts, and can be provided to the ICS in advance. For this purpose, we used a
simple programme written in KAREL (Pascal-based programming language for FANUC
robots) [50], which enveloped the actual robot’s programme and recorded all the internal
robot parameters with a chosen time step (8 ms, which corresponded to the frequency of
sending the robot controller’s data to the ICS) in a single file. This recording was, thus,
performed at realistic robot speeds (set in the robot programme) in the initialisation phase,
before the ICS started the SSM operation. This meant that the robot links’ locations were
actually not predicted, but read, from the list of previously computed locations. The ICS,
thus, “predicts” the robot’s joints’ positions in the following manner:

1. The robot controller reports the current robot joint coordinates. ICS uses FK to translate
them into the positions of the corresponding links;

2. The ICS must synchronise the real-time trajectory and the stored one. In the described
setup, we used a very limited repertoire of the robot’s velocities (0%, 50%, 80% or
100% of the original speed from the robot programme), so ICS was able to determine
how many stored positions should be skipped from the current one simply;

3. In the same manner, the recorded positions may be skipped to reach the “predicted”
position at a selected future moment.

Note that, at the scanning speed of 4.8 fps, the time interval tsensor corresponded
to 26 recorded trajectory positions at full robot speed, 13 positions at 50% speed, and
20.8 positions at 80% speed. Consequently, the latter required interpolation between the
20th and 21st positions.

Motion prediction, realised in this way, is particularly useful if the relative speed of the
robot towards the human, or vice versa, is increasing faster than it was before the previous
scan frame was processed. This happens when the amplitude or direction of the velocity
increases, or the robot and the human simply approach each other in an oblique, rather
than a frontal, direction.

2.2.5. Speed and Separation Monitoring

The protective separation distance (PSD) is, by definition, the minimum distance
which assures that the robot system has the necessary deceleration capability to stop before
colliding with an intruder in the HRC workspace [2]. The PSD depends on the robot’s speed
and the intruder’s speed, and their directions at the moment of observation. Consequently,
it changes all the time. Generally, it is computed separately for all pairs of movable parts
(robot link/tool/load, intruder’s part), but we considered the intruder as a single rigid
body. The PSD is computed by Equation (11), described in [1]:

PSD = SH + SR + SS + C + ZR + ZD, (11)
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where SH , SR, and SS represent the intruder’s change in location, the robot system’s reaction
time, and the robot system’s stopping distance, respectively. C is the intrusion distance
safety margin based on the expected human reach. ZR is the robot position uncertainty,
which can be negligible due to its small amount (typically 0.1 mm), and ZD is the intruder
position uncertainty (e.g., due to point cloud registration error, voxelisation, and low
scanner resolution). We used a simplified Equation (12), where SH , SR, and SS are replaced
with the robot and intruder speeds:

PSD = (vr + vh) · (tsensor + tICS) + (
vr

2
+ vh) · tstop + C + ZR + ZD, (12)

where vr is the robot system’s speed towards the intruder, vh is the intruder’s speed towards
the robot system (maximal value 1.6 m/s), tsensor is the time between two sensor scans, tICS
is the delay caused by ICS data processing, and tstop is the robot’s smooth stopping time
after the stop command is received. We used tstop = 0.512 s, which is the smooth stop time
for the FANUC M-20iD/25 robot at the highest robot arm tip speed 2 m/s and the maximal
load 25 kg. However, the actual stopping time in our tests with fifty times lighter load
and lower robot tip speed was significantly shorter (which increased the chance for false
positives, but did not affect the false negatives).

Each robot link is represented by the corresponding object-aligned bounding box
(aligned with the axes of the local coordinate system of the considered robot joint), while
a vertical cylinder, called a safety buffer, is used for the intruder. It has the height of the
intruder, extended at the top by half of a voxel’s side d. Its central axis CA goes through
the centre of gravity computed for the set IV of the intruder’s voxels, and its radius r is the
dynamically-updated distance from CA to the most distinct voxel v from IV, extended by
half of a voxel’s side diagonal, as shown in Equation (13):

r = max
v∈IV

(distance(v, CA)) + d ·
√

2
2

. (13)

The concept of PSD is closely related to the SSM principle. SSM prescribes that the
speed of the robot system must be related to PSD, so that, at any time, the robot has the
necessary deceleration capability to achieve a complete stop before coming into contact
with an intruder, despite the fact that the intruder is moving towards the robot arm [2].
Due to the limited repertoire of robot speeds used, the optimal speed can be selected easily
by checking all the choices and selecting the optimal one. The SSM algorithm is as follows:

1. Determine PSD for the current situation for all four robot speeds.
2. Set D = distance between the robot and the intruder.
3. Choose the maximum PSD below D and set the vr = robot speed related to that PSD.
4. If (Predictions are used) then

. Predict the positions after time ∆t by using the robot speed vr.

. Determine PSDs for the predicted situation for robot speeds not exceeding vr.

. Set D = distance between the predicted positions of the robot and intruder.

. Choose the maximum PSD below D and update vr accordingly.

5. Send vr to the robot controller.

2.3. Validation of the Protective Separation Distance Calculation

We tested the SSM functionality of our ICS in several test scenarios (Section 3.1)
with different parameter values. However, self-validation cannot ultimately confirm the
performance and safety of the system. An additional validation was needed using a
reference measuring device. We decided to carry out tests using the COVR ROB-MSD-
3 safety protocol [51], which we were involved in developing in the past. An optical
camera was mounted at a height of hCamera m above the part of the workspace where the
most intensive HRC activity was expected. It recorded videos with 24 fps and an image
resolution of 1280 × 720 pixels. Canvas with a grid of dots was spread on the floor. The dot
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diameters were 2 cm and the spacing between the centres of the dots was 5 cm. By counting
the dots, we determined the distances xMan and yMan between the robot and the intruder in
two horizontal coordinate directions, from which we then calculated the Euclidean distance
SDMan (Figure 8a). The label Man stands for “measured manually”. However, HRC action
does not usually take place on the ground, where SDMan was measured. The latter was,
therefore, only a projection of the actual distance SDTest at height hTest. This distance was
calculated using Equation (14), and is illustrated in Figure 8b.

SDTest =
hCamera − hTest

hCamera
· SDMan. (14)

(a)
(b)

Figure 8. Validation camera setup: (a) Top view; (b) Side view.

The idea of the validation test was simple. After the robot arm stopped, the intruder
also immediately stopped to avoid a collision. It was important that the intruder’s speed
remained unchanged till this moment. The recorded video was then processed off-line
(Figure 9a,b). SDTest was determined from the first frame after the robot stopped. It was
then compared with PSD from Equation (12). In fact, we could use a simplified form,
Equation (15), since vr and vh were both 0 after the stop. The test was successfully passed if
SDTest > PSD, which meant that the robot and the intruder stayed far enough apart that
the PSD was not violated.

PSD = C + ZR + ZD. (15)

(a) (b) (c)

Figure 9. Testing and validation: (a) An image acquired from the validation camera video; (b) Counting
dots in the validation procedure; (c) A human intruder approached the robot arm in test scenario 1.

Equation (15) suggests that the validation criterion could be satisfied trivially by
choosing low values for the user parameters C, ZR, and ZD. However, these values were
not only for validation purposes, but primarily to ensure the functionality of the SSM by
the ICS. They could only be changed by the user during the ICS initialisation phase, while
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the ICS had the possibility to affect the PSD calculation during the operation by adjusting
vr in Equation (12) only. The intruder’s speed vh could also change dynamically, but the
ICS had no impact on it.

Note that the ICS could also be validated additionally, or alternatively, by measuring
the time tstop_Man taken by the robot from the start of braking to a complete stop. For this
purpose, the last two video frames should be identified, in which the robot still moves at
nominal speed. The validation test was passed when tstop_Man < tsensor + tICS + tstop.

3. Results
3.1. Test Scenarios

We identified four scenarios which addressed all possible types of collisions between
the robot system and a human intruder in a controlled HRC workspace practically.

• Scenario 1—Slow movement of the intruder towards the robot. The robot arm carried
a cube-shaped load with the tip moving at a speed of 0.2 m/s towards the intruder.
The latter was moving towards the HRC workspace with a speed of approximately
0.4 m/s. When they became close to each other, the speed of the robot first decreased,
and then it stopped completely. The intruder then moved away from the robot, and
the latter started to move again (Figure 9c, Supplementary Video S1).

• Scenario 2—Fast movement of the intruder towards the robot. The scenario was
similar to the previous one. Here, the speed of the intruder approaching the robot arm
was approximately 1.6 m/s (Supplementary Video S2).

• Scenario 3—The intruder was standing in the HRC workspace and the robot arm was
moving towards the intruder. This scenario extended the previous two, with a case
where the speed of the intruder was zero (Supplementary Video S3).

• Scenario 4—The intruder approached the HRC workspace with his hand only. This
scenario demonstrated that the ICS also responded to movements of the intruder’s
body parts, not just to his walk. When the intruder’s arm moved away from the robot
arm, then the robot programme continued (Supplementary Video S4).

In all four scenarios, the robot stopped safely and avoided a collision with the intruder.
However, there were situations where the distance between the stopped robot and the
intruder was very close, certainly below the PSD. An analysis is done in Section 3.2.

3.2. Validation Results of the Protective Separation Distance Calculation

Table 2 shows the measured distances and validation results for 12 examples. They are
documented in the Supplementary Videos S5–S16. In all the examples, the robot’s tip with
the gripper and load was moving towards the intruder with vr = 0.2 m/s. The intruder
was moving towards the robot with vh = 0.4 m/s in examples 1–5 (Scenario 1), standing in
front of the moving robot (examples 6–8, following Scenario 3), or approaching the robot
with his hands only (examples 9–12, Scenario 4). In case 12, exceptionally, the intruder
was holding a cushion. The directions of movement varied from case to case, which is
reflected in the rather heterogeneous xMan and yMan values. The test parameters were:
hTest = 1.15 m, hCamera = 2.70 m, C = 0.1 m, ZR = 0.0001 m, ZD = 0.1 m, tstop = 0.512 s,
tsensor = 0.2 s, tICS = 0.2 s, and the length of a voxel’s side was d = 0.1 m.

Note that the load was not included in the FK model. TCP was, thus, considered in
the measurements, as shown in Figure 9b. Furthermore, we ignored the intruder’s feet,
which were not relevant for the experiment. Consequently, one or two lower voxel layers
were not taken into account in Equation (13), when calculating the intruder’s safety buffer.

In all five considered examples of scenario 1, the test was comfortably passed. How-
ever, the results in the column SDTest were scattered between 21.1 and 31.9 cm. This was
due, mostly, to the fact that the ICS computed the safety buffer (Equation (13)) in the
voxel space, while the measurements were performed in the physical space. The distances
between the robot and the intruder at the start of the robot braking could, for example,
differ by d ·

√
2 ≈ 14.1 cm.
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Table 2. Validation test results for 12 examples following different scenarios.

Example Scenario Video Video
Frame

xMan
[dot]

yMan
[dot]

SDMan
[cm]

SDTest
[cm] PSD [cm] Passed/

Failed

1 1 S5 0:00:02.460 8.1 2.9 43.0 24.7 20.0 Passed
2 1 S6 0:00:03.125 10.6 3.0 55.1 31.6 20.0 Passed
3 1 S7 0:00:02.416 11.1 0.6 55.6 31.9 20.0 Passed
4 1 S8 0:00:01.958 7.1 1.9 36.7 21.1 20.0 Passed
5 1 S9 0:00:03.208 9.5 2.0 48.5 27.9 20.0 Passed
6 3 S10 0:00:03.750 8.5 0.0 42.5 24.4 20.0 Passed
7 3 S11 0:00:02.458 6.6 2.2 34.8 19.9 20.0 Failed
8 3 S12 0:00:03.375 7.0 0.5 35.1 20.1 20.0 Passed
9 4 S13 0:00:04.333 7.3 1.7 37.5 21.5 20.0 Passed

10 4 S14 0:00:04.291 5.7 1.8 29.9 17.2 20.0 Failed
11 4 S15 0:00:03.418 6.2 0.1 31.0 17.8 20.0 Failed
12 4 S16 0:00:04.500 6.4 3.7 37.0 21.2 20.0 Passed

The lower deviations of the SDTest from PSD in Scenario 3 were due to the fact that,
here, the intruder was facing the robot with his shoulder, which was indeed his closest
point to the robot. Namely, he usually approached the robot frontally in scenario 1. The
test failed in example 7, which was due to the violation of the safety margin (see Section 4).

As expected, we encountered major problems in the validation of Scenario 4. The test
failed in cases 10 and 11, where the fingers of the intruder’s left hand were approaching
the robot slightly in front of the right hand, making the detection unreliable.

The prediction mode was used in all 12 cases. However, the robot’s speed was actually
reduced by the prediction only in cases 8, 9, 11 and 12, where the human and the robot
were approaching each other obliquely. In case 8, the prediction actually prevented the PSD
violation. In cases 9 and 12, the human had already stopped while the robot was braking,
so the prediction was not decisive. In case 10, the human’s hands were not detected at all,
so there was a violation of the PSD. In case 11, the hands were detected too late, when even
the predictive mode did not help anymore.

Note that the description of the validation protocol [51] also presents a case of Sce-
nario 2 where only 6 of 10 iterations passed the test. Higher speeds would require a higher
sensor frame rate to enable the robot to start braking earlier.

3.3. Protective Separation Distance Calculation

Of course, we were not able to validate the methods and test setups of other authors
with the described protocol. However, we managed to obtain data to compare the PSD,
calculated by our method, with those of two reference methods, on a few selected pairs
(vh, vr). The results are shown in Table 3. Although the two reference methods involved
different robots, safety sensors and test setups, the results were, nevertheless, comparable.
To stop safely, our robot can, in most cases, start braking at a very similar distance from the
human as the robot in the reference method [12] from 2021. In the latter, C, ZR and ZD were
completely ignored, otherwise the results would be even closer together. The calculated
PSD in the slightly older method [13] from 2012 was mostly longer.

Table 3. Comparison of the computed PSD in the proposed sokution and two reference solutions.

vh [m/s] vr [m/s] PSD [m] (Proposed) PSD [m] (2021 [12]) PSD [m] (2012 [13])

0.25 0.0 0.428 0.330 1.256
0.25 0.5 0.756 0.578 1.508
0.25 1.0 1.084 0.827 1.813
0.25 1.5 1.412 1.075 2.168
0.25 2.0 1.740 1.324 2.573
1.60 0.0 1.659 1.680 1.806
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Table 3. Cont.

vh [m/s] vr [m/s] PSD [m] (Proposed) PSD [m] (2021 [12]) PSD [m] (2012 [13])

1.60 0.5 1.987 1.928 2.196
1.60 1.0 2.315 2.177 2.636
1.60 1.5 2.643 2.425 3.126
1.60 2.0 2.971 2.677 3.666
2.50 0.0 2.480 2.580 2.175
2.50 0.5 2.808 2.828 2.655
2.50 1.0 3.136 3.077 3.185
2.50 1.5 3.464 3.325 3.765
2.50 2.0 3.792 3.577 4.395

4. Discussion

A new hybrid method for speed and separation monitoring in human–robot collab-
oration applications was introduced in the paper. It aligns, peridocally, the geometric
data acquired by a LiDAR scanner and an FK-controlled TIN model constructed from the
robot specifications and real-time positions obtained by the robot controller. The aligned
datasets then serve for scene segmentation, PSD computation and SSM. The presented
system passed tests successfully in four realistic scenarios. Furthermore, it was validated
against the COVR ROB-MSD-3 safety protocol [51], demonstrating that the tested LiDAR
scanner has satisfactory performance to provide real-time HRC workspace safeguarding in
reasonably limited ranges of the robot’s and intruder’s speeds. However, the employed
scanner, the ICS, and test setup are still in the prototype phase only. Let us conclude the
paper with some further clarifications on the current results, and possible improvements
and adjustments to the risk assessments of potential applications. When the validation
test reports Failed, the utilised safety protocol [51] prompts the tester to try to identify the
reasons for the test failure. These reasons may be the following:

• Grey zones. A grey zone is an area in the HRC workspace which cannot be safeguarded
all the time due to obstacles between the sensor and this area.

• Inability to detect narrow objects. A human arm is a reference object, requiring that
two scanning rows or columns at the operational distance should not be more than
5–6 cm apart [51].

• Safety margin violation. This critical situation can arise if an intruder suddenly
appears from a grey zone, or is already present close to the robot when the ICS
activates the SSM.

• Low sensor scanning speed. If tsensor is too long, the speed and direction of movement
of the human or robot may change in two consecutive sensor frames in such a way
that it is no longer possible to stop the robot in time.

• “Out-of-range” vr, vh and/or weight of the load. The validation confirmed the safe
operation in reasonably limited ranges of robot and human speeds. The maximum
vr = 2 m/s and load capacity of 25 kg were given in the robot arm FANUC M-20iD/
25 specifications. However, the maximum vh was not defined strictly, and depended
on the physical limitations of the individual. PSD = 2.971 m at the standard fast
walking speed vh = 1.6 m/s, vr = 2 m/s (see Table 3) and load of 25 kg ensured
that the robot arm with a reach of 1.831 m would stop at least 32 cm from a human,
which is outside the required minimum PSD = 20 cm (Table 2). On the other hand,
human speeds above 1.6 m/s do not guarantee safe operation, as the calculated PSD is
often above the dimensions of the workspace, which usually results in safety margin
violation.

In future work, it is also worth addressing the following challenges that were not
detected directly by the validation procedure:

• Advances in models and calculations. The distances from each robot’s voxel to the
closest intruder’s voxel could be found easily, but this calculation would increase tICS
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significantly. Therefore, only the local coordinate systems’ origins of the robot’s joints
are considered in the current version of the ICS. The tests in Section 3 were accelerated,
additionally, by considering only TCP (see Figures 6b and 9b and Equation (10)), which
was indeed the closest to the intruder in most cases. Furthermore, circular moves of
the robot links were interpolated linearly. The error compensation was included in the
parameter C.

• False negatives. Detection of false negatives usually occurs when the calculated PSD
is too high, due to the oversizing of individual parameters. Some of these cannot be
determined accurately. For example, we used tstop = 0.512 s, which corresponds to
the worst-case value (at the highest vr and heaviest load). It is highly important to
estimate such parameters in a manner to increase the PSD and not to decrease it. The
efficiency may be sacrificed for the good of safety, while the opposite is not allowed.
Note that false negatives can also be met during validation, due to the estimation that
the intruder and the robot are operating at approximately the same hTest.

• Multiple intruders. Two intruders forming a connected voxel region are identified as
one. The number of intruders detected may vary through time as they move closer or
further apart. This makes tracking impossible. As a consequence, the prediction mode
is only useful in situations with a single intruder. Particularly dangerous are situations
where an intruder suddenly appears from a grey zone behind another intruder.

• Motion prediction. The predictions improve safety slightly by forcing the robot to
brake earlier and preventing it from accelerating too soon. They can also make the
robot’s operation smoother and more efficient. With the current sensor capabilities, a
single prediction one frame ahead is acceptable. In general, however, intermediate
predictions in the interval between two frames and predictions several frames ahead
could also be useful, depending on tsensor, tICS, vr, and vh.

The following modifications need to be considered to address the above problems and
challenges in the future:

• An overhead LiDAR scanner and/or multiple scanners represent the only reasonable
way to address grey zones. This approach can also significantly improve, or even
enable, the detection of multiple intruders when they are not too close to each other.
The registration of data from multiple sensors is conducted in the initialisation phase.
Therefore, only a slight extension of tICS is expected, due to the merging of segmented
point clouds. Of course, the sensors must be synchronised, as the point clouds to be
merged are assumed to be acquired at the same time. In addition, each sensor must
be able to distinguish its own reflected laser beam from beams from other sensors.
Wearable sensors are a possible alternative, but represent too large a deviation from
the presented concept.

• Higher sensor resolution would improve detection of narrow objects.
• Safety margin violation can be addressed partly, together with grey zones. Besides

this, the detection of potential intruders is required before the robot is started, which
places additional requirements on the synchronisation of the robot and sensors.

• Higher sensor scanning speeds means a simple replacement of the presented prototype
LiDAR scanner with some off-the-shelf product. The increased frame rate would make
changes between two consecutive frames more predictable. Consequenlty, a higher vh
could be allowed, if reasonable in the limited workspace dimensions. Furthermore, a
higher scanning speed is also a prerequisite for advanced intermediate and multiple
predictions. Finally, the commercial LiDAR scanners typically have an integrated
IMU that could, importantly, unprove the accuracy of the proposed direct registration
method (Section 2.2.1).

• Improved specifications of the system parameters could reduce the number of false
negatives detected.

• Most of these modifications would increase tICS and, consequently, require a more power-
ful computer. The latter would also enable the use of advanced models and calculations.
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//www.mdpi.com/article/10.3390/s23094305/s1, Video S1: Test Scenario 1—Slow movement of
the intruder towards the robot, Video S2: Test Scenario 2—Fast movement of the intruder towards
the robot, Video S3: Test Scenario 3—A stationary intruder, Video S4: Test Scenario 4—An intruder
approaching the robot with his arm only, Videos S5–S16: Validation tests from Table 2.
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Abbreviations
The following abbreviations are used in this manuscript:

CIP Common industrial protocol
FK Forward kinematics / Forward kinematic
GPS Global positioning system
HRC Human–robot collaboration
ICS Intelligent control system
IMU Inertial measurement unit
LiDAR Light detection and ranging
PCL Point cloud library
PSD Protective separation distance
RGB Red, Green, Blue
RGB-D Red, Green, Blue – Depth
SSM Speed and separation monitoring
TCP Tool centre point
TIN Triangulated irregular network
TOF Time-of-flight
UDP User datagram protocol
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47. Mongus, D.; Lukač, N.; Žalik, B. Ground and building extraction from LiDAR data based on differential morphological profiles

and locally fitted surfaces. ISPRS J. Photogramm. Remote Sens. 2014, 93, 145–156. [CrossRef]
48. Fu, K.S.; Gonzalez, R.C.; Lee, C.S.G. Robotics: Control, Sensing, Vision, and Intelligence; McGraw-Hill: New York, NY, USA, 1987.
49. ISO 13855:2010; Safety of Machinery—Positioning of Safeguards with Respect to the Approach Speeds of Parts of the Human

Body. International Organization for Standardization: Geneva, Switzerland, 2010.
50. FANUC America Corporation SYSTEM R-30iA and R-30iB Controller KAREL Reference Manual. Available online: https:

//studylib.net/doc/25629757/karel-programming-guide (accessed on 13 March 2023).
51. ROB-MSD-3—Test 3D Safety Sensors in Speed and Separation Monitoring Cobot Applications, COVR Toolkit Protocol. 2021.

Available online: https://covrfilestorage.blob.core.windows.net/documents/protocols/ROB-MSD-3-Test_3D_Safety_Sensors_
in_Speed_and_Separation_Monitoring_Cobot_Applications.pdf (accessed on 14 March 2023).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1561/2300000052
http://dx.doi.org/10.3389/fnbot.2020.576846
http://dx.doi.org/10.1109/LRA.2021.3076968
https://github.com/MIT-SPARK/TEASER-plusplus
https://github.com/MIT-SPARK/TEASER-plusplus
https://www.fanuc.eu/si/en/who-we-are/sl-country-landing-page
https://fokus.si
https://www.odva.org/wp-content/uploads/2020/05/PUB00035R0_Infrastructure_Guide.pdf
https://www.odva.org/wp-content/uploads/2020/05/PUB00035R0_Infrastructure_Guide.pdf
https://www.fanuc.eu/si/en/robots/accessories/roboguide
http://dx.doi.org/10.1109/MC.1993.274942
http://dx.doi.org/10.1016/0166-3615(89)90067-5
http://dx.doi.org/10.1109/MRA.2012.2206675
http://dx.doi.org/10.1109/MRA.2015.2432331
http://dx.doi.org/10.1109/TRO.2020.3033695
http://dx.doi.org/10.1016/j.isprsjprs.2011.10.002
http://dx.doi.org/10.1016/j.isprsjprs.2013.12.002
https://studylib.net/doc/25629757/karel-programming-guide
https://studylib.net/doc/25629757/karel-programming-guide
https://covrfilestorage.blob.core.windows.net/documents/protocols/ROB-MSD-3-Test_3D_Safety_Sensors_in_Speed_and_Separation_Monitoring_Cobot_Applications.pdf
https://covrfilestorage.blob.core.windows.net/documents/protocols/ROB-MSD-3-Test_3D_Safety_Sensors_in_Speed_and_Separation_Monitoring_Cobot_Applications.pdf

	Introduction
	Materials and Methods
	Devices, Materials and Validation Software
	Intelligent Control System
	Geometric Data Registration
	Robot Arm Forward Kinematics
	Geometric Data Segmentation
	Motion Prediction
	Speed and Separation Monitoring

	Validation of the Protective Separation Distance Calculation

	Results
	Test Scenarios
	Validation Results of the Protective Separation Distance Calculation
	Protective Separation Distance Calculation

	Discussion
	References

