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Abstract: The activity of muscles during motion in one direction should be symmetrical when
compared to the activity of the contralateral muscles during motion in the opposite direction, while
symmetrical movements should result in symmetrical muscle activation. The literature lacks data on
the symmetry of neck muscle activation. Therefore, this study aimed to analyse the activity of the
upper trapezius (UT) and sternocleidomastoid (SCM) muscles at rest and during basic motions of the
neck and to determine the symmetry of the muscle activation. Surface electromyography (sEMG)
was collected from UT and SCM bilaterally during rest, maximum voluntary contraction (MVC)
and six functional movements from 18 participants. The muscle activity was related to the MVC,
and the Symmetry Index was calculated. The muscle activity at rest was 23.74% and 27.88% higher
on the left side than on the right side for the UT and SCM, respectively. The highest asymmetries
during motion were for the SCM for the right arc movement (116%) and for the UT in the lower arc
movement (55%). The lowest asymmetry was recorded for extension–flexion movement for both
muscles. It was concluded that this movement can be useful for assessing the symmetry of neck
muscles’ activation. Further studies are required to verify the above-presented results, determine
muscle activation patterns and compare healthy people to patients with neck pain.
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1. Introduction

The common and most widely acknowledged method of accessing muscle activation
and therefore analysing its function is surface electromyography (sEMG). It evaluates nerve–
muscle activity during static conditions and active movements [1]. There are no reference
data of valid resting muscle tone. It strongly depends on the cross-section of the examined
muscle, the thickness of the subcutaneous tissue and skin resistance, which varies between
individuals [2]. The signal collected during motion can be compared either to the maximum
signal level collected during maximum voluntary contraction (MVC) [3] or to the maximum
value from the same recording as analysed [4,5]. This gives the opportunity to compare
muscles and persons with each other. One of the advantages of surface electromyography
is its non-invasive character, which allows physiotherapists to use it without additional
qualifications, which are needed for needle EMG. However, the usage of sEMG is limited to
the superficial muscles [6]. In the neck region, sEMG can be used to assess trapezius [6] and
sternocleidomastoid muscles [2], although some researchers also measured the anterior
scalene and neck extensors [7,8].

The sternocleidomastoid muscle (SCM) is one of the largest and most superficial
cervical muscles. The primary actions of the muscle are rotation of the head to the opposite
side, lateral flexion to the same side and flexion of the neck. The descending part of the
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trapezius muscle—the upper trapezius muscle (UT)—is responsible for the extension of
the neck and bending of the head and neck to the side [9,10]. Proper coordination and
cooperation between those two muscles are necessary for correct head and neck movements.
As superficial muscles, they are both located at a greater distance from the joint centre and
therefore work on a larger moment arm than deep muscles. Therefore, they are both able
to control the cervical spine “en bloc” to counteract external forces, as well as to control
head load during movements [11,12]. These muscles were selected for this study as they
are very important for controlling the movements of the cervical spine during functional
activities [13]. Additionally, the upper trapezius and sternocleidomastoid muscles are often
involved in work-related musculoskeletal disorders of the upper arms [14].

The analysis of multiple cases shows the increase in bioelectrical signals in both rest
and movement in patients with back or neck pain [1]. In patients with cervical pain,
UT shows higher activity during a functional task of the upper extremity and a lower
ability to relax after finishing the task. The higher activity also applies to SCM and scalene
muscles [13]. Due to the fact that the muscles of the cervical area provide nearly 80% of the
mechanical stability of this region and, on the other hand, are responsible for high mobility
in three planes of motion, even the smallest imbalance in muscle activity can have a great
impact on the head and neck movements. Such a disorder may, in turn, affect the onset of
complaints about the neck region [15]. In cervical pain patients, postural asymmetry can
be observed [16]. Such asymmetry affects motor strategies and muscle activation patterns
and increases the risk of injury [17]. Additionally, patients with neck pain demonstrate
disturbed motor control during the performance of a functional activity [13,16]. Nowadays,
one of the most common deviations of correct posture is forward head posture (FHP), which
is characterized by hyperextension of the upper cervical spine and flection of the lower
cervical spine. Changes occur in the sagittal plane and can be observed from a side view as
a head protraction, which shifts the centre of gravity forward [18]. Hyperextension of the
upper cervical spine is a typical compensatory mechanism to maintain the horizontality of
the sight [19]. FHP results in the shortening of cervical extensors, including UT, which leads
to an increased moment arm to counteract the weight of the head [20]. Sternocleidomastoid
muscles are also affected [21]. Both UT and SCM, as well as other neck muscles, show
decreased activity during neck motions [22]. The muscle imbalance induced by FHP
can result in disturbed activation of the additional muscles needed to maintain neck and
head posture and decreased muscular efficiency [23]. Although forward head posture is a
rather symmetrical disorder, it strongly affects muscles’ function, both at rest and during
movements.

There are only a few reports analysing the work of paraspinal muscles during motion,
most of them concerning the lumbar spine [1]. Simultaneously, the literature lacks data on
the symmetry of neck muscle activation [24]. Under physiological conditions, the activity
of the muscles during symmetrical movements such as flexion or extension should be
symmetrical. Additionally, during rotation movements, symmetrical work is dominant,
while during lateral movements, the muscles work asymmetrically [25]. Nevertheless,
muscle activation during motion in one direction should be symmetrical when compared
to the activity of the contralateral muscles during motion in the opposite direction [1].

Due to the issues described above, it is important to define what is the proper activation
of the neck muscles, both at rest and during movements. This will allow us to define
the reference values to be used in the clinical assessment of patients with neck pain.
Additionally, muscles’ activation symmetry should be defined to set its reference values.

Therefore, this study aimed to analyse the activity of the upper trapezius and stern-
ocleidomastoid muscles at rest and during basic motions of the neck, as well as to determine
the symmetry of the muscle activation. Three hypotheses were stated before the study:
(1) the rest activity of the neck muscles should be lower than 10% of the maximum volun-
tary contraction (MVC) value and it should be symmetrical, (2) symmetrical movements
should produce symmetrical activation of the measured muscles and (3) asymmetrical
movements should affect asymmetrical activation of the muscles.
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2. Materials and Methods
2.1. Participants

The study group included 18 right-handed participants (9 men and 9 women) aged
from 24 to 68 years old without significant neck disability (Table 1). Sample size calculation
was performed based on EMG data collected previously by one of the authors (A.H.) and
partly published by Wiaderna et al. [26]. The required sample size was 14 for ANOVA test
power > 0.8. The inclusion criteria comprised age between 18 and 70 years old, and a Neck
Disability Index result lower than 15 points. The exclusion criteria included hypermobility
syndrome (assessed in the physical examination and with the Beighton Score); any history
of major rheumatic, orthopaedic (including spinal scoliosis), or neurological disease, as well
as any other known condition that could adversely affect cervical neuromuscular function;
and any current complaints in the neck or other spine levels. All the participants agreed
and signed the written consent to take part in this study.

Table 1. Characteristics of the participants.

Group Age (Years)
(Mean ± SD)

Body Mass (kg)
(Mean ± SD)

Body Height (cm)
(Mean ± SD)

Body Mass
Index (kg/m2)
(mean ± SD)

Neck Disability Index (Points)
(Median, Quartiles Q1 and Q3)

N = 18
(9 males, 9 females) 42.5 ± 13.3 76.9 ± 15.9 173.5 ± 10.5 25.4 ± 3.8 2.0

Q1 = 1, Q3 = 4

The project was approved by the Bioethics Committee of the Medical University of
Lodz (RNN/115/21/KE, approved 11 May 2021) and conducted in accordance with the
Declaration of Helsinki for research involving human subjects.

2.2. Protocol and EMG Data Acquisition

This study is part of a bigger project called VRneck SOLUTION, carried out from
December 2020 to November 2023. The results presented below are planned to be used
as reference values for evaluating the VR training system in patients with neck disorders.
Therefore, a cross-sectional design was applied.

All the measurements were performed between 9 AM and 5 PM. Participants were
advised to avoid caffeine, physical exercises and heavy load lifting for 24 h before the
measurements. All the participants were qualified according to the inclusion and exclusion
criteria by a medical doctor with a specialization in rehabilitation. EMG measurements
were performed by a qualified physiotherapist.

Two muscles were measured bilaterally using surface electromyography: the stern-
ocleidomastoid muscle and the descending part of the trapezius muscle. The EMG signal
was acquired at a sampling frequency of 1000 Hz with the 4-channel eMotion EMG system
(Bittum Biosignals Oy, Kuopio, Finland). Ag/AgCl ECG electrodes (Covidien Kendall
H92SG, KD Medical GmbH, Berlin, Germany) were cut and placed on the skin according
to SENIAM standards [6] at a 20 mm distance. Reference electrodes were placed on the
spinal process of C7 and Th1 for the left and right trapezius, respectively, and in the middle
of the clavicle for the sternocleidomastoid muscle.

In the beginning, the rest activity was tested during sitting in a comfortable position
(measurement 1). Then, the maximum EMG activity of the three repetitions was recorded
during the maximum voluntary contraction (MVC) procedures, sequentially for the left
and right upper trapezius muscles and the left and right sternocleidomastoid muscles
(measurements 2–5). MVC for the upper trapezius was recorded during shoulder elevation
with extension, lateral flexion and contralateral rotation of the head. MVC for sternocleido-
mastoid was recorded during contralateral rotation with slight flexion of the head. All MVC
measurements were collected during isometric contractions against the manual resistance
of the therapist. Afterwards, six functional movements of the neck were tested, from which
two were asymmetrical: right arc (measurement 6) and left arc (measurement 7); two were
symmetrical in shape, but asymmetrical in movement direction: bottom arc (measurement
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8) and upper arc (measurement 9); and two were symmetrical: rotation (measurement
10), and extension–flexion (measurement 11). Each trajectory (Figure 1) started from the
centre (black dot), then the patient moved to the right/upwards, where they reached the
maximum range of motion (green dot), and then to the opposite side as far as possible
(red dot) and returned to the centre (black dot). Motion patterns (measurements 6–11),
including path, range and speed, were controlled using a prototype augmented virtual
reality system for neck diagnostics—the VRneck SOLUTION system (Consortium UMed
and Edventure Research Lab. sp. z o.o., Lodz, Poland) (Figure 2), including VR googles
(HTC VIVE Cosmos Elite, HTC Corporation, New Taipei City, Taiwan). The weight of the
goggles was approx. 760 g. All the data were collected in a comfortable sitting position on
a hooker with proper head posture controlled by a physiotherapist, and the order of the
tested movements was the same for all patients. The rest activity and MVC measurements
were collected without VR goggles. The protocol of data acquisition is presented in Figure 3.
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first movement, red dot—goal of the second movement.
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with VR goggles (HTC VIVE Cosmos Elite, HTC Corporation, New Taipei City, Taiwan) used to
control functional movements.
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Figure 3. Study protocol.

2.3. EMG Data Analysis

The Protocol of EMG data analysis is presented in Figure 4. Firstly, for each trial,
unprocessed signals from SCM and UT muscles were visually inspected in time and
frequency domains and detrended. EMG signals were then band-passed at 25–450 Hz, with
a fourth-order Butterworth filter. Next, EMG signals were full-wave rectified and smoothed
by using the RMS algorithm with a 50 ms window. Subsequently, EMG signals from
all trials were normalized as the percentage of maximal voluntary contraction (% MVC).
MVC was the maximum peak for the signal from measurement 2 (left upper trapezius),
measurement 3 (right upper trapezius), measurement 4 (left SCM) and measurement 5
(right SCM) processed according to the above-described procedure.
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Next, the movement was defined as a time frame when muscle activity from mea-
surements 6–11 was higher than the average signal from baseline (measurement 1). Mean
baseline signals (from measurement 1) and mean values of muscle activation during move-
ment (data from movement time frame from measurements 6–11) related to MVC (from
measurements 2–5) were taken for analysis. Moreover, for trials 1 and 6–11, for mean
activation of SCM and UT muscles assessed for the right (R) and left (L) sides separately,
symmetry indexes were calculated according to the following formula [27,28]:

SI =
|XL − XR|

0.5·(XL + XR)
·100%.

The SI factor is a method of percentage assessment of the differences between the
parameters for both muscle activations. The SI = 0 indicates symmetry, while SI ≥ 100%
indicates its asymmetry [27]. EMG signal processing was carried out in MATLAB software
v. R2021a (MathWorks, Natick, MA, USA).

2.4. Statistical Analysis

Statistical analysis was performed using the PQStat 2021 software v. 1.8.2.238 (PQStat
Software, Poznan, Poland). The normality of distribution was tested using the Shapiro–Wilk
test and showed distributions different from normal in a few cases.

For the baseline signal, Student’s t-test for dependent samples and the Wilcoxon test in
the absence of normal distributions were used. The level of significance was set at p ≤ 0.05.
The same analysis was applied for mean muscle activation related to MVC within each
motion separately. In this case, the same muscles were compared between the right and
left sides.

Moreover, a non-parametric Friedman ANOVA with a post hoc test of Dunn Bonferroni
and one-way ANOVA with post hoc Tukey HSD were used to find statistically significant
differences between trials for specific muscles.

3. Results
3.1. Baseline Muscle Activity and Its Symmetry

Here, the different from normal distribution was only found for the average activity
of the right sternocleidomastoid muscle. Following the application of Student’s t-test for
dependent samples (UT) and the Wilcoxon test (SCM), no statistically significant differences
were obtained between the mean baseline activities of these muscles normalized on MVC.
However, it was noted that the activity of both muscles located on the left side of the
neck was 23.74% and 27.88% higher for the upper trapezius and sternocleidomastoid,
respectively (Figure 5A,B). A significantly higher (p = 0.0165) asymmetry was noted for
SCM, where the SI index reached 86.14 ± 44.03% as compared to the values recorded for
UT (52.18 ± 36.02%) (Figure 5C).

3.2. Muscle Activity during Motions

The results of the mean muscle activation related to MVC and the results of the t-test
and Wilcoxon test are shown in Table 2.

3.2.1. Right and Left Arc Motions

For motion along the right arc, distributions different from normal were found for
the activity of the right SCM. For motion along the left arc, the different from normal
distribution was only for the left SCM.

Following the Wilcoxon test, it was shown that for the right arc motion, the mean
activity values of the left SCM muscle were significant, 127% higher than the average
activity of the right SCM muscle. Following the t-test, it was shown that for the same
motion, the mean activity values of the left UT muscle were significant, 53% higher than
the average activity of the right UT muscle.
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No statistically significant differences were shown for motion along the left arc. It
is worth noting that the situation in this motion was the opposite of the previous one.
Non-significantly higher values were for the average activity of the right UT and SCM
muscles compared to the left UT and SCM.
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Table 2. Statistically significant differences for t-test (T) and Wilcoxon’s (W) test for dependent groups
in mean muscle activity, p < 0.05.

Motion Left UT
[% MVC]

Right UT
[% MVC]

Left SCM
[% MVC]

Right SCM
[% MVC] p-Value

Right arc 46.30 ± 16.35 30.10 ± 16.26 39.39 ± 24.35 17.35 ± 18.03 Left UT-Right UT, p = 0.0035 T

Left SCM-Right SCM, p = 0.0249 W

Left arc 34.03 ± 13.25 40.99 ± 20.35 19.98 ± 15.14 31.50 ± 17.21 -
Bottom arc 44.07 ± 16.55 33.26 ± 21.03 53.21 ± 25.01 28.43 ± 23.89 Left SCM-Right SCM, p = 0.0295 T

Upper arc 34.06 ± 15.60 39.02 ± 20.64 30.69 ± 18.08 44.10 ± 23.70 -
Rotation 49.08 ± 16.96 42.88 ± 25.88 40.53 ± 23.83 21.91 ± 13.01 Left SCM-Right SCM, p = 0.0311 W

Extension- flexion 51.87 ± 20.12 42.21 ± 18.51 27.43 ± 10.98 29.78 ± 23.34 -

3.2.2. Bottom and Upper Arc Motions

For motions along bottom and upper arcs, the activities of the analysed muscles had
normal distributions.

After applying the t-test for muscle activation along the bottom arc, it was shown
that that the left SCM muscle has significantly (p = 0.0295) higher average activity than the
right. The activity of the left SCM muscle was 87% higher than that noted for the right SCM
muscle. No statistically significant differences were found for the UT muscle. Although, it
is worth noting that it kept the trend of higher left activity by 32.5% with respect to that
recorded for the right one.

For motions along the upper arc, no statistically significant differences were found
between the mean activities of the evaluated muscles. In this case, no significantly higher
activities were recorded for muscles lying on the right side of the neck.

3.2.3. Rotation and Extension–Flexion Motions

For rotation and extension–flexion motions, different from normal distributions were
recorded for the right SCM.

For the rotation motion, significantly higher activity values by 84.98% were recorded
for the left SCM relative to the right one. The same but insignificant trend was maintained
by the UT muscle, where the left side activity exceeded that of the right side by 14.45%.
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For the extension–flexion motions, no statistically significant differences in muscle
activity were noted.

3.3. Symmetry of Muscle Activity during Motions

In each of the motions studied, symmetry indexes for SCM and UT muscle activity
had a distribution that was different from normal. Therefore, in each case, the Wilcoxon
test was used to evaluate the differences between them.

It is worth noting that in each of the motions studied, the asymmetry value was
significantly higher for the sternocleidomastoid muscle (Table 3). The highest differences
between the symmetry indices were recorded for motion on the right arc, bottom arc,
rotation, extension–flexion and motion on the left arc and the upper arc, sequentially.

Table 3. Mean and standard deviation of symmetry indices calculated for upper trapezius (UT)
and sternocleidomastoid (SCM) muscles, where ↑ denotes the percentage of positive difference in
the symmetry index for SCM compared to that recorded for UT; * denotes statistically significant
differences, p < 0.05.

Motion SI–UT SI–SCM ↑; p-Value

Right arc 50.07 ± 52.20 116.19 ± 55.07 132%; 0.0006 *
Left arc 54.19 ± 40.90 85.46 ± 41.38 57.7%; 0.0480 *

Bottom arc 55.47 ± 50.87 107.37 ± 55.65 93.54%; 0.0152 *
Upper arc 50.53 ± 39.27 62.36 ± 46.92 23.40%; 0.4112
Rotation 51.46 ± 43.05 96.17 ± 50.04 86.88%; 0.0132 *

Extension-flexion 41.75 ± 27.00 72.14 ± 41.18 72.76%; 0.0306 *

3.4. Comparison of the Muscle Activity and SI between Motions
3.4.1. Upper Trapezius Activity

Following a one-way ANOVA for the average activity of the left upper trapezius muscle,
there were statistically significant differences between considered trials: F(10, 202) = 7.0764;
p = 0.0001.

After applying Tukey’s post hoc test, there were statistically significant differences
between average muscle activity during the extension–flexion motion compared to mean
activity during left arc motion (p = 0.0204) and upper arc motion (p = 0.0208) (Figure 4A).
The left UT average activity was 52.44% and 52.31% higher during the extension–flexion
motion, respectively. In addition, there were statistically significant differences between
this muscle average activity during rotation compared to average activity during left arc
motion (p = 0.0043) and upper arc motion (p = 0.0044) (Figure 6A). The left UT activity
was 102% and 32% higher in the rotation motion, respectively. Moreover, significantly
higher activity of this muscle during the right arc was noted compared to the activity
during left arc motion (p = 0.0358). However, its activity during the right arc motion was
significantly lower (p = 0.0365) than that noted during the upper arc motion. The activity of
the left UT was the highest for the extension–flexion (51.87 ± 20.12%) and rotation motions
(49.08 ± 16.96%) and the lowest during the left (34.03 ± 13.25%) and upper arc motions
(34.06 ± 15.60%).

In the case of the right upper trapezius muscle, there were statistically significant
differences between the two trials after performing a one-way ANOVA (F(10, 202) = 3.2017;
p = 0.0107). Its significantly lower activity was recorded during right arc motion versus that
noted during rotation (p = 0.0309) and extension–flexion motion (p = 0.0475) (Figure 6B).
The activity of the right UT was the highest for the rotation motion (42.88 ± 25.88%)
and extension–flexion motion (42.21 ± 18.52%) and the lowest along right arc motion
(30.10 ± 16.26%).
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Figure 6. Average values of muscle activity recorded during six motions (right arc, left arc, bottom
arc, upper arc, rotation and extension–flexion) for (A)—left trapezius muscle (m. UT), (B)—right
trapezius muscle and (C)—symmetry index calculated for trapezius muscle during the analysed
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The smallest asymmetry was observed for the extension–flexion motion and the
highest for the lower arc motion. However, there were no statistically significant differences
between the symmetry indices calculated for the UT for the analysed trials (Figure 6C).

3.4.2. Sternocleidomastoid Muscle

Following the Friedman ANOVA, it was shown that, for the left sternocleidomastoid
activity, there are statistically significant differences between the trials: F(5, 108) = 41.8210;
p = 0.0001. The highest activity of this muscle was recorded for motion along the lower arc.
After applying the Dunn–Bonferroni post hoc test, it was shown that the activity of this
muscle in this motion was significantly higher than during extension–flexion (p = 0.0076),
upper arc motion (p = 0.0038) and along the left arc motion (p = 0.0001). In addition,
the average activity of this muscle along the left arc was the lowest. It was significantly
lower than that recorded along the right arc motion (p = 0.0001) and rotation (p = 0.0009)
(Figure 7A).
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Following the Friedman ANOVA, it was shown that for the right sternocleidomastoid
activity, there are statistically significant differences between the trials: F(5, 108) = 32.7476;
p = 0.0001. The lowest activity of this muscle was recorded for the motion along the right arc.
After applying the Dunn–Bonferroni post hoc test, it was shown that the activity of this mus-
cle in this motion was significantly lower than during extension–flexion (p = 0.0106), and
motion along the upper arc (p = 0.0001), lower arc (p = 0.0146) and the left arc (p = 0.0006).
In addition, it was shown that the average activity of this muscle in motion along the upper
arc was the highest. It was significantly higher than that recorded for rotation (p = 0.0273)
(Figure 7B).

Following the Friedman ANOVA, it was shown that for the SI index calculated for
sternocleidomastoid activity, there are statistically significant differences between the trials:
F(5, 108) = 17.2204, p = 0.0041. After applying Dunn–Bonferroni’s post hoc test, statistically
significant differences were shown between SIs calculated for the right and upper arcs
(p = 0.0273) (Figure 7C). In these cases, the SI was 86% higher during right arc motion,
showing the highest asymmetry in this motion. The lowest asymmetry was noted for upper
arc motion (62.36 ± 46.92).

4. Discussion

In this paper, the activity of the upper trapezius and sternocleidomastoid muscles
during six functional neck motions was analysed, as well as the symmetry of muscle
activation. It was shown that the resting activity of both muscles located on the left
side of the neck was 23.74% and 27.88% higher than for the right side for the upper
trapezius and sternocleidomastoid muscles, respectively. Significantly higher asymmetry
was noted for the SCM, where the SI index reached (86.14 ± 44.03)% compared to the
values recorded for UT (52.18 ± 36.02)%. The highest asymmetries during motion were for
the sternocleidomastoid for motion along the right arc (116.19 ± 55.07)% and the lowest for
motion along the upper arc (62.36± 46.92)%. For the upper trapezius, the asymmetries were
smaller. The highest was for motion along the lower arc (55.47 ± 50.87)% and the lowest
was for flexion and extension (41.75 ± 27.00)%. A high degree of asymmetry is evident
when analysing the behaviour of the left and right UT muscles in six functional motions
because all of them were at a similar level. Nevertheless, there are a lot of significant
differences in the activity of the left UT muscle within the functional motions. However, the
UT muscle located on the right side of the neck was activated similarly for all movements. It
is noteworthy that for both sides, the motions of extension–flexion and rotation caused the
highest activity of this muscle in relation to the activity observed in the other movements.
For the SCM muscle, the level of asymmetry between movements was much more marked
than for the UT muscle. The movements causing its significant asymmetry were those
along the right and lower arcs. The lowest asymmetry was recorded for movement along
the upper arc.

It is worthful to notice that the activity of both muscles at rest was relatively high.
Villanueva et al. [29] reported values of 2.2–3.1% of MVC in UT muscle while sitting in
front of a computer screen in healthy participants, which is much less than the results
of our study. Presently (25 years later), significantly more people are sitting in front of
a computer and using other electronic devices such as smartphones and tablets, mostly
from a young age, which causes forward head posture [30]. The anterior position of the
head to the gravity line causes muscular imbalances affecting both deep (e.g., suboccipital,
scalenus anterior and semispinalis) and superficial neck muscles (e.g., upper trapezius,
sternocleidomastoid and levator scapulae) [30]. Increased activity of UT muscles at rest can
compensate for weakened cervical extensor muscles [30], and this was confirmed by other
research [16,31–33], as well as in our study. Conversely, according to Lee, Han, Cheon,
Park and Yong [22] the activity of the neck muscles, including the upper trapezius and the
sternocleidomastoid, is decreased. Such mechanisms, showing disturbed activation of the
neck muscles, are observed even in the “healthy” population, being one of the reasons for
the rapidly growing rate of neck disorders [34]. The presence of increased or decreased



Sensors 2023, 23, 4170 11 of 14

muscle activity, as well as its asymmetry, was confirmed in our study. Additionally, mental
or physical stress can increase muscle activity, which was proven by Luedtke et al. [35]
in the upper trapezius. The rest activity of the measured muscles in the study of Khan,
Khan, Bhati and Hussain [30] was much lower than in our study (1.4–2.6% MVC), while the
activity during motions was over 50% MVC in the group with proper head posture and over
70% in participants with forward head posture and was higher than the values achieved in
our study. These differences could be caused by the different methodologies of the sEMG
measurement, especially different movements performed to assess muscles during motion.
Additionally, lower activation during the MVC procedure, caused by muscle shortness [33],
position [32] or other factors, could result in relatively high values of muscle activation at
rest in our study, as it was given as a percentage. Decreased neuromuscular efficiency in
the superficial muscles of the neck, such as the sternocleidomastoid during isometric neck
flexion, was proved by Falla, Bilenkij and Jull [13]. Another reason for the high rest activity
of measured muscles could be incomplete or incorrect relaxation during this measurement.

Higher activity of the left upper trapezius and sternocleidomastoid muscles at rest,
as well as in some symmetrical movements such as extension–flexion movement (SCM
and UT) and rotation (UT), can be caused by lateralization of the body. All the participants
included in this study were right-handed. The difference in the UT and SCM muscle activity
was also observed by Wang and Liu [36] during bilateral hanger reflex, as well as without it.
In their study, muscles on the right side of the body were more active, although they did not
provide information about the lateralization of the participants and did not analyse these
differences. In contrast, Khan, Khan, Bhati and Hussain [30] showed similar activity of UT
and SCM muscles on both sides during rest and activity in the population with and without
forward head posture. In their study, participants’ lateralization was also not described.
So far, there have been no studies concerning the influence of body lateralization on neck
muscle activity. Another factor that could influence the higher activity of the left upper
trapezius and left sternocleidomastoid during rotational movements was the direction of
the movement, as it started from the right rotation, and once activated, the muscle remained
active throughout the whole movement. Błaszczyk and Ogurkowska [37] confirmed the
existence of contralateral muscle imbalances in the lumbar spine during transferring of the
load. So far, no other publications concerning the symmetry of neck muscle activation have
been found.

Analysis of the activation of both assessed muscles during movements showed high ac-
tivity during rotation and extension–flexion movements. Both these muscles are primarily
responsible for neck rotation when working unilaterally and for neck flexion (sternocleido-
mastoid) or extension (upper trapezius) when working bilaterally [9,10]. Additionally, as
superficial muscles working on a larger moment arm than deep muscles, they are respon-
sible for starting the movement and its range [12]. These facts could be the reason why
the activity of these muscles is higher in simple movements such as extension–flexion and
rotation. Against, deep neck muscles could be probably more active during arc motions,
which require more precision to follow the pattern. When concerning the activation of the
UT and SCM muscles and their symmetry across different movements, it seems that the
extension–flexion movement was the most symmetrical one for both measured muscles.
Additionally, low SI values were noticed for the upper arc movement for the SCM muscle,
although it does not activate the left and right muscles simultaneously. These results
show that these two movements can be the best to assess the symmetry of neck muscles’
activation. In our opinion, asymmetrical movements such as right/left arcs give results that
are difficult to interpret due to the fact that they can be performed with different speeds,
giving different muscle activity results.

Practical applications of this study include the possibility to use the above-described
results to define reference values for patients with neck pain. These data can be used to
evaluate the effectiveness of the therapy, as is planned in the VRneck SOLUTION project,
as well as to set the goal of neck therapy. Our results may be the cause of discussion
about the physiological asymmetry of spinal muscle activation and the influence of body
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lateralization on the symmetry of muscles’ activation, as well as the physiological effects of
changes in body posture such as forward head posture, which have been observed in the
last 20 years.

Some limitations of this study have to be acknowledged. Firstly, all the participants
performed all movements in the same direction (firstly to the right or upwards, and then
to the left or downwards and back to the starting position), which could have influenced
the muscle activity. Additionally, the fact that all the participants were right-handed could
have influenced the results. Secondly, the BMI values showed that they had normal weight
or were slightly overweight. Bartuzi et al. [38] showed that the sEMG signal is sensitive
to the fat tissue layer. However, subcutaneous tissue in the neck region contains little
fat and therefore should not significantly influence the EMG signal. Thirdly, high rest
activity, shown in this study, needs to be verified in other positions, i.e., in lying. The
habitual postures of the participants were also not assessed, although the measurement
was performed in the proper head posture. Fourthly, the weight of the VR goggles could
influence the results of the activity assessment during motions, especially by increasing
activation of the upper trapezius muscles. Nevertheless, high activity of these muscles was
also confirmed in rest conditions before the application of VR goggles. In future studies, it
should be worthwhile to perform the movements in non-immersive virtual reality to avoid
the usage of additional head-mounted equipment. Lastly, this study comprised analysis of
sEMG signals from only 18 people with a wide age spread (24–68 years of age). Diversity
in muscle activation may be relatively high in a healthy population. In further studies,
more people should be examined to define “normal values” of symmetry in neck muscles’
activity. It would be also worthwhile to compare above-described results to the group with
neck pain to understand the mechanisms of changes in muscle activation during rest and
movement. Further analyses are also necessary to determine muscle activation patterns.

5. Conclusions

This study compared the activation of the upper trapezius and sternocleidomastoid
muscles at rest and during basic motions of the neck to assess the symmetry of muscle
activation. Extension–flexion movement was the most symmetrical one due to the fact that it
involves simultaneous, bilateral activation of measured muscles. Therefore, this movement
can be useful to assess the symmetry of neck muscles’ activation. The results presented in
this manuscript showed that there is higher activity of the muscles on the left side, which
can be connected to the lateralization of the body. Additionally, high activity of the muscles
at rest suggests improper upper body posture and/or incomplete relaxation during the
measurement. Further studies are required to verify the above-presented results, determine
muscle activation patterns and compare healthy people to patients with neck pain.
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of sternocleidomastoid and trapezius muscles during transition from lying to sitting position—A cross-sectional study. Arch.
Gerontol. Geriatr. 2017, 70, 14–18. [CrossRef]

21. Fernández-de-las-Peñas, C.; Alonso-Blanco, C.; Cuadrado, M.L.; Gerwin, R.D.; Pareja, J.A. Trigger Points in the Suboccipital
Muscles and Forward Head Posture in Tension-Type Headache. Headache J. Head Face Pain 2006, 46, 454–460. [CrossRef]

22. Lee, K.-J.; Han, H.-Y.; Cheon, S.-H.; Park, S.-H.; Yong, M.-S. The effect of forward head posture on muscle activity during neck
protraction and retraction. J. Phys. Ther. Sci. 2015, 27, 977–979. [CrossRef]

23. Kim, M.-S. Neck kinematics and sternocleidomastoid muscle activation during neck rotation in subjects with forward head
posture. J. Phys. Ther. Sci. 2015, 27, 3425–3428. [CrossRef] [PubMed]

https://doi.org/10.1097/00004356-200908001-00116
https://www.ncbi.nlm.nih.gov/pubmed/19502673
https://doi.org/10.1016/j.promfg.2015.07.475
https://doi.org/10.3390/s22249762
https://doi.org/10.1016/j.jelekin.2020.102438
https://doi.org/10.1016/j.math.2015.06.003
https://doi.org/10.1016/j.jelekin.2015.12.011
https://doi.org/10.1016/S1050-6411(01)00007-4
https://doi.org/10.5603/FM.a2022.0045
https://doi.org/10.1016/j.jbiomech.2012.09.029
https://doi.org/10.1016/j.humov.2021.102893
https://www.ncbi.nlm.nih.gov/pubmed/34763288
https://doi.org/10.1097/01.BRS.0000128759.02487.BF
https://doi.org/10.1097/MD.0000000000012133
https://www.ncbi.nlm.nih.gov/pubmed/30200103
https://doi.org/10.3390/medicina58060728
https://doi.org/10.5005/jp-journals-10001-1207
https://doi.org/10.1016/j.jbiomech.2021.110732
https://doi.org/10.1016/j.jmpt.2018.02.002
https://www.ncbi.nlm.nih.gov/pubmed/30107937
https://doi.org/10.1007/s00586-013-3030-z
https://doi.org/10.1016/j.archger.2016.12.005
https://doi.org/10.1111/j.1526-4610.2006.00288.x
https://doi.org/10.1589/jpts.27.977
https://doi.org/10.1589/jpts.27.3425
https://www.ncbi.nlm.nih.gov/pubmed/26696712


Sensors 2023, 23, 4170 14 of 14

24. Gooyers, C.E.; Beach, T.A.C.; Frost, D.M.; Howarth, S.J.; Callaghan, J.P. Identifying interactive effects of task demands in lifting on
estimates of in vivo low back joint loads. Appl. Ergon. 2018, 67, 203–210. [CrossRef] [PubMed]

25. Kuriyama, N.; Ito, H. Electromyographic functional analysis of the lumbar spinal muscles with low back pain. J. Nippon. Med Sch.
2005, 72, 165–173. [CrossRef] [PubMed]

26. Wiaderna, K.; Selegrat, M.; Hadamus, A. Effect of a Single Session of Facial Distortion Model Manual Physiotherapy and a
Selected Foam Rolling Technique on Treatment Outcomes in Cervical Spine Overload. Pilot Study. Ortop. Traumatol. Rehabil. 2020,
22, 131–141. [CrossRef] [PubMed]
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