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Abstract: Recently, many deep neural networks (DNN) have been proposed to solve the spectral
reconstruction (SR) problem: recovering spectra from RGB measurements. Most DNNs seek to learn
the relationship between an RGB viewed in a given spatial context and its corresponding spectra.
Significantly, it is argued that the same RGB can map to different spectra depending on the context
with respect to which it is seen and, more generally, that accounting for spatial context leads to
improved SR. However, as it stands, DNN performance is only slightly better than the much simpler
pixel-based methods where spatial context is not used. In this paper, we present a new pixel-based
algorithm called A++ (an extension of the A+ sparse coding algorithm). In A+, RGBs are clustered,
and within each cluster, a designated linear SR map is trained to recover spectra. In A++, we cluster
the spectra instead in an attempt to ensure neighboring spectra (i.e., spectra in the same cluster)
are recovered by the same SR map. A polynomial regression framework is developed to estimate
the spectral neighborhoods given only the RGB values in testing, which in turn determines which
mapping should be used to map each testing RGB to its reconstructed spectrum. Compared to the
leading DNNs, not only does A++ deliver the best results, it is parameterized by orders of magnitude
fewer parameters and has a significantly faster implementation. Moreover, in contradistinction to
some DNN methods, A++ uses pixel-based processing, which is robust to image manipulations that
alter the spatial context (e.g., blurring and rotations). Our demonstration on the scene relighting
application also shows that, while SR methods, in general, provide more accurate relighting results
compared to the traditional diagonal matrix correction, A++ provides superior color accuracy and
robustness compared to the top DNN methods.

Keywords: spectral reconstruction; hyperspectral imaging; multispectral imaging; inverse problem

1. Introduction

Almost all consumer RGB cameras record 3 intensity values per pixel. These cam-
eras use three types of color sensors with different weighting functions (called spectral
sensitivity functions or camera response functions) that weighted-sum the incoming spec-
tral signals over roughly the red, green and blue spectral regions (Figure 1 upper arrow).
However, compared with RGBs, the spectrum (from which the RGB is formed [1]) conveys
significantly more information about an object’s material properties. Consequently, in many
computer vision tasks, it is useful to deploy hyperspectral cameras where finely-sampled
light spectrum is captured at every pixel of the scene, including remote sensing [2–5],
anomaly detection [6–9], medical imaging [10,11], food processing [12–14] and artwork
preservation [15,16].

Despite the wide usage, traditional hyperspectral techniques [17,18] (where spectra
are physically and accurately measured) are often expensive, not mobile (difficult to deploy
outside the lab), and subject to low light sensitivity, low spatial resolution and/or long
integration time. Many recent hyperspectral camera models resort to compressive imaging
solutions [19–25], where the spectral information is encoded spatially as part of the captured
2D image, and some “decompressing” algorithms are used to restore the hyperspectral
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information. These designs realize lower-cost, higher-speed and more compact hyperspec-
tral imaging, but nevertheless, they still require specialized physical optics, which limits
their usefulness on the already widespread devices, for example, mobile phones and digital
cameras. Instead of creating a new device, in spectral reconstruction (SR), we recover
hyperspectral signals directly from the RGB camera responses (Figure 1 lower arrow).

Figure 1. The RGB sensing coarsely sums the spectral intensities into 3 values per pixel. Conversely,
spectral reconstruction recovers the lost spectral information from the RGB image.

Historically, SR was limited to training a “pixel-based” mapping where the RGB at
each pixel is mapped to its spectral estimate independent of other pixels [26–28], whereas
recently deep neural networks (DNN) adopt “patch-based” mappings, where image content
information is (expected to be) extracted from large image patches and utilized as a part of
the SR process [29,30].

On the surface, it seems the DNNs have rather a strong advantage over the legacy pixel-
based methods since DNNs are built with much more powerful processing and mapping
architectures, and their input information increases from pixel-RGB to an extended patch
region of an RGB image. Moreover, it is sometimes argued that somewhere deep in the
DNN mapping, the network can recognize materials and objects, and it is this recognition
process that helps recover spectra. Tantalizingly, because of the link to the spatial context,
it is sometimes claimed that DNNs can map the same RGB viewed in a different context to
different spectra, solving the metamerism problem [31].

Yet, research shows that a simple pixel-based “polynomial regression” provides an
SR accuracy that is only roughly 10% worse than a top DNN method [32]. This being said,
it seems the idea that large image patches really bring in much useful information to SR
should be challenged. Indeed, if incorporating local context into SR was found not to be
helpful, then it should suffice if we revert to using the much simpler pixel-based methods
(which have fewer model parameters, can be trained on the smaller data set, and run in
less time compared with the current best DNN approaches). This is especially true if this
10% gap can be further lessened or indeed if the pixel-based approach can be shown to
deliver better performance than DNNs.

Another way to challenge existing DNNs is to look at their robustness. As most DNNs
learn from image patches, it is easier for them to overfit to well-captured image contents
(compared to the pixel-based SRs where image contents are not involved). For example,
the contemporary DNN-based SRs do not work as well when the exposure of the image
changes [33,34]. See column (A) of Figure 2, where in this paper we tested the best DNN [35]
(i.e., the winner of NTIRE 2020 Spectral Reconstruction Challenge [30]) with rotated or blurred
input images, and discovered that its performance considerably degraded.
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Figure 2. The SR mean-relative-absolute error (MRAE) maps of (A) the leading deep neural network
(DNN) “AWAN” [35], (B) our data-augmented AWAN and (C) our pixel-based “A++”, under the
original, rotation and blur conditions. The error maps of the “rotation” experiments are rotated back
to upright orientation to ease comparison.

Although generally, a DNN’s lack of robustness can be mitigated via data augmenta-
tion, the increase in data complexity might negatively affect the DNN’s overall performance
(e.g., this is true for maintaining the exposure invariance of the DNNs [36]). Given that it is
already such a close race between pixel-based and DNN-based SRs, we must re-compare
both approaches—after data-augmenting the best DNN, and under the desired realistic
imaging conditions.

In this paper, we challenge ourselves to achieve state-of-the-art SR performance with-
out the help of DNN and patch-based mapping. We extend from a sparse coding method,
A+ [37], where localized SR mappings are applied in different RGB neighborhoods. Our
method, called A++, uses a polynomial regression SR [32] to map all RGBs to the spectral
space in which we define spectral neighborhoods and localize the SR mappings. In a
second contribution, on discovering the best DNN degrades when images are rotated or
blurred, we introduce those image manipulations in its training stage as part of a data
augmentation process, which stabilizes its SR performance across those conditions (col-
umn (B) of Figure 2). Combined, we present experimental results which indicate (i) the
pixel-based A++ generally outperforms the leading DNN across the concerned testing
conditions (column (C) of Figure 2), (ii) A++ takes 1/20 the time to train, and (iii) A++
recovers spectra in 1/4 the time as the best DNN.

The rest of the paper is organized as follows. Section 2 reviews related works in SR.
Section 3 presents our proposed new method. The experiment and results of the SR testing
are reported in Section 4. In addition, in Section 5, we present a demonstration of using the
concerned SR models for the scene relighting application. Section 6 concludes this paper.

2. Related Works

The earliest SR approaches seek 3-dimensional linear models of spectra. It is then
shown that, if such a “3-D” linear model holds, the spectra can be exactly recovered
from RGBs using a linear transform [28,38]. While a 3-D model can only cover limited
variance of real-world spectra [39–41], simple statistical models such as regression [27,34,42]
and Bayesian inference [26,43] are proposed, which supports higher- or full-dimensional
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spectral recovery. As the amount of available data has increased, recent methods are based
on richer inference algorithms, including sparse coding [29,44], shallow networks [45–47]
and deep neural networks (DNN) [29,30,35,48–51]. However, not all recent and early
methods have been benchmarked on the same database so a fair overall comparison of the
methods is not fully available. Yet, it would be fair to say that DNNs are accepted as the
leading SR method.

Among the early methods, regression [27] is a popular approach due to its simple, fast,
accurate and closed-form solution. The simplest “linear regression” [27] relates RGBs and
their spectral estimates by a single linear transformation matrix. To introduce non-linearity,
polynomial and root-polynomial regression [34,42] expand the RGBs into polynomial/root-
polynomial terms, which are then mapped to spectra via a linear transform. Generally,
“least-squares” regressions are considered, where the mean squared error (MSE) in the
training set is minimized. However, because SRs are—at least latterly—more commonly
evaluated using relative (percentage) errors [29,30,37,44], Lin and Finlayson [32] devel-
oped a “relative-error-least-squares” minimization approach for regressions, which further
improves the performance of regression-based SR.

Unlike regression, where one single SR mapping is applied to all the input RGBs,
sparse coding approaches [37,44,52] seek to determine multiple SR mappings that are used
in different RGB neighborhoods. Recently Lin and Finalyson [53] proposed that instead
of assigning local mappings in the RGB space, doing so in the spectral space can greatly
improve the upper-bound performance of sparse coding—to the extent that it even far
surpasses a top DNN [53]. Though, their argument employed the concept of an “oracle”
that could always correctly locate the (practically unknown) ground-truth spectra among
the spectral neighborhoods. In this paper, we seek to propose an approximated model that
can probably help us approach the performance of this oracle solution.

Most of the recently proposed approaches to SR are based on DNN architectures—either
convolutional neural networks (CNN) or generative adversarial networks (GAN)—where
large image patches are standard inputs to the networks. In the recent NTIRE 2018 and 2020
Spectral Reconstruction Challenges [29,30], all top finalists are based on DNNs. In this paper,
we consider two DNN models for comparison to our proposed method. First, “HSCNN-
D” [50] is the 1st-place winner of the NTIRE 2018 challenge [29], which adopts a densely-
connected structure. In addition, “AWAN” [35] is the winner of NTIRE 2020 challenge [30],
which is based on the attention network structure. Despite those advances, most DNN
benchmarks are carried out on ideally captured images (e.g., still images with well-adjusted
exposures). The main ranking protocols of NTIRE competitions also do not account for
performance under more difficult imaging conditions (that are still often encountered in
the real world). Indeed, more comprehensive benchmarks show that DNNs are generally
vulnerable to exposure change [33,34], out-of-scope scenes [30] and scenes without particular
image contents [30,54]. In this paper, we will also show that the leading DNN is negatively
and significantly affected by image rotation and blur.

3. A++ Pixel-Based Spectral Reconstruction
3.1. Preliminaries

Nowadays, most SR algorithms are trained on hyperspectral image datasets [44,45,55].
Here, and in most works, the RGB counterparts of spectra are formed by [1]:

xc =
∫

Ω
sc(λ)r(λ)dλ , (1)

where r(λ) represents the physical radiance spectrum, sc(λ) is the c-th channel spectral
sensitivities of the RGB sensors (c = R, G, B), and xc is the derived c-th channel RGB
response. For RGB imaging, the effective range of wavelengths, Ω, is the visible range
(roughly runs from 400 to 700 nanometers).

In practice, hyperspectral measurements are “discrete” at some sampled wavelengths.
In this paper we consider Ω = {400, 410, . . . , 700}meaning that the spectral samplings are



Sensors 2023, 1, 4155 5 of 20

every 10 nanometers from 400 to 700 nanometers, and so the hyperspectral images have
31 spectral channels. Hence, we write Equation (1) in a vectorized form:

x = [sR, sG, sB]
Tr , (2)

where x = [xR, xG, xB]
T, and sR, sG, sB and r are the 31-dimensional vectors of discretized

sR(λ), sG(λ), sB(λ) and r(λ), respectively.
This RGB simulation methodology is important because it means that we have perfect

ground truth (we know exactly the radiance spectrum associated with each RGB). All DNNs
(the “leading” SR algorithms) estimate the spectra using an RGB and its surrounding pixels
in an image patch. In contrast, pixel-based methods map RGBs to spectra without any
knowledge of the image context.

3.2. Overview of A+ and A++

In sparse-coding-based SR, clustering techniques are used to help define neighbor-
hoods in the RGB space [37,44,52]. In A+ [37], K-SVD clustering [56] is used to cluster the
spectral data, and via the color formation formula (Equation (2)) we get K RGB clusters.
Around the center of each cluster, a fixed number of N RGB neighbors are found in the
training-set data, and together with their associated ground-truth spectra, we train a linear
least-squares SR map that is associated with this cluster. In testing, we then find one out
of the K clusters whose center is the closest to a given testing RGB, where the SR map
associated with this cluster will be applied to the RGB to reconstruct spectrum.

As an extension of A+, in A++, we wish to cluster and localize mappings in the output
space (spectral space). That is, we want to ensure that similar (neighboring) ground-truth
spectra are recovered by the same mapping. Lin and Finlayson [53] directly manipulated
the ground-truth spectra in the testing phase and force this to be true, as such to derive the
upper-bound performance of this setup. While the result is appealing (the upper bound is
far beyond the top DNNs’ performance), it is impossible to manipulate ground truths in
the actual testing where they are unknown.

Our idea is to apply a “primary” SR algorithm to the training/testing RGBs, where
these primary spectral estimates will be used to help us determine the spectral neighbor-
hoods (instead of using the ground-truths). In essence, since the primary SR algorithm al-
ready estimates spectra, our sparse coding architecture can be viewed as a “post-refinement”
process for the primary SR.

We summarize the training and testing (reconstruction) steps of our method in Table 1.
We will dedicate the rest of Section 3 to providing details of these steps.

Table 1. A summary of the training and testing (reconstruction) process of A++.

Training Steps Testing (Reconstruction) Steps

1. Obtain primary SR estimates of all training RGBs 1. Obtain the primary SR estimate of each testing RGB
2. Run K-SVD clustering on the primary estimates 2. Find the closest cluster center of this primary estimate

3. For each cluster, find N RGBs in the training set whose
primary estimates are closest to the cluster center 3. Get the trained local linear SR map associated with

this cluster

4. Train a linear SR map associated with this cluster using the
found N RGBs and their ground-truth spectra 4. Apply this map to the testing RGB to reconstruct

its spectrum

3.3. Primary SR Algorithm

The choice for our primary SR algorithm is not a priori fixed. For example, we may
simply use the state-of-the-art DNN as the primary SR. Nevertheless, considering the
balance between model complexity and performance (and also to ensure that our proposed
method is a pixel-based mapping as per our research goal), we select the “6th-order
polynomial regression with relative-error-least-squares minimization” (PR-RELS) [32] as
our primary SR map. The PR-RELS was shown to perform less than 10% worse than a
top-performing DNN [32].
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In PR-RELS, we find a global linear transformation matrix, denoted as M, that maps
the polynomial-expanded RGBs to spectra:

Mϕ(x) = r̂ ≈ r , (3)

where ϕ(x) is a vector of polynomials of xR, xG and xB (including the cross-terms) up to a
given order [42], and r̂ denotes the primary spectral estimate. Assuming ϕ(x) expands the
RGB x into a p-term vector, M will then be a 31× p matrix (recall that 31 is the dimension
of spectra r).

The RELS minimization [32] solves M by minimizing:

M = arg min
M

(
∑

i

∣∣∣∣∣∣∣∣Mϕ(xi)− ri
ri

∣∣∣∣∣∣∣∣2
2

)
, (4)

where xi and ri are the i-th training ground-truth RGB and spectrum, and the division is
component-wise to the vectors.

For the closed-form solution of Equation (4) and its regularization setting, readers are
referred to [32]. In this paper, we assume PR-RELS has been pre-trained (with the same set
of training data) prior to our sparse coding process.

3.4. Clustering Step

Using the PR-RELS map, we transform all training RGBs x to the primary estimates r̂.
Then, we cluster those spectral estimates using the K-SVD clustering algorithm [56].
The cluster centers are selected into a dictionary:

D =
{

r̂1, r̂2, . . . , r̂j, . . . , r̂K} , (5)

where the superscript j indexes the clusters, and a total of K clusters are determined.
Around each cluster center (i.e., member of D), we redefine its belonged cluster by

finding the N closest primary estimates in the training set. These fixed-sized clusters may
or may not overlap with other clusters (i.e., each training-set primary estimate can appear
in one or more clusters). Taking the j-th cluster as an example, we write:

R̂j = [r̂j
1, r̂j

2, . . . , r̂j
`, . . . , r̂j

N ] , (6)

where the columns of R̂j are the N primary-estimate neighbors of r̂j, and the subscript `

indexes the neighbors.
Notice that here, and throughout the paper, the closeness is evaluated by the Euclidean

distance between “normalized” vectors (i.e., all primary estimates are normalized into unit
vectors upon calculating their distance with the cluster centers). This is because r̂j and all
other members in D are normalized vectors as per the default setting of K-SVD.

There are two factors introduced in this clustering step that can greatly influence the
performance of our method, which are K, the number of clusters, and N, the size of each
cluster. The former decides how far the clusters are apart, while the latter adjusts how
“overlapping” the adjacent clusters are. We will present the empirical search for both factors
later in the experimental section (Section 4.4).

3.5. Local Linear SR Maps
3.5.1. Training

Clearly, we can trace back to the training RGB and ground-truth spectrum associated
with each primary estimate in the columns of R̂j. We then arrange those RGBs and spectra
into corresponding columns of Xj and Rj. Then, a local linear map can be formulated as:

MjXj ≈ Rj , (7)
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where Mj is a 31× 3 local linear regression SR associated with the cluster j.
Same as in A+ [37], we solve Mj using the closed-form regularized least-squares

minimization [27,57]:

Mj = arg min
Mj

(∣∣∣∣MjXj − Rj∣∣∣∣2
F + γ

∣∣∣∣Mj∣∣∣∣2
F

)
= Rj[Xj]T(Xj[Xj]T + γI)−1 ,

(8)

where || · ||F denotes the Frobenius norm, I is the 3 × 3 identity matrix, and T denotes
matrix transpose.

Here, the γ parameter (i.e., the regularization parameter) bounds the norm of Mj in
the minimization. Determining the proper γ value is often empirical. In this paper we use
the cross validation approach [58], where a range of different γ values are tried to recover
spectra from the RGBs in a separated “validation dataset” and in the same (here, the j-th)
cluster, and the one that minimizes the mean reconstruction error on this separate dataset
is selected. Our search range for γ is between [10−20, 1020] (although we note that for linear
regressions choosing a fixed small γ almost always delivers close to optimal performance).

3.5.2. Testing

Since there are K clusters (whose centers are recorded in D), we have K linear mappings
in the form of Equation (8) (each for the cluster with the corresponding label). To determine
which mapping to use for each testing RGB, again denoted as x, we first transform it into a
primary estimate, r̂, using PR-RELS (Equation (3)), and then find which cluster center in D
is the closest to r̂. The linear mapping associated with the closest cluster center will then be
applied to x to deliver the final SR output.

We point out that, although in training, the same RGB can be included in multiple
clusters and used to train separate local maps (because clusters are allowed to overlap),
in testing each testing RGB will only associate with one cluster—only the closest cluster
center, or say the best cluster, is selected.

4. Experiments

In this section, we will benchmark our method against two of the top-performing
DNNs: HSCNN-D [29,50] and AWAN [30,35], as well as the pixel-based A+ sparse cod-
ing [37] and PR-RELS regression methods [32]. Our A++ method combines aspects of the
latter two methods.

According to the recommendations in respective citations, we set the depth of
HSCNN-D to 240 (i.e., equivalent to 58 dense blocks) [50], and our AWAN implemen-
tation uses 8 dual residual attention blocks (DRAB) with 200 output channels set for their
patch-level second-order non-local (PSNL) module [35].

All models will be tested on the original, rotated and blurred testing images. We will
also introduce how we tune the hyperparameters of our A++ sparse coding architecture
and our data augmentation attempt for AWAN.

The implementation codes are submitted as the supplementary materials.

4.1. Dataset

We use the ICVL benchmarking hyperspectral dataset [44], which was the basis for
the NTIRE 2018 SR challenge [29]. ICVL comprises 200 scenes captured both indoors and
outdoors. The size of each image is 1300 × 1392, and at each pixel, the spectral signal
is recorded in 31 channels, referring to the discrete spectral measurements from 400 to
700 nanometers (nm) with 10-nm intervals.

The corresponding RGB images are derived from the hyperspectral images using
Equation (2), with CIE 1964 color matching functions [59] as the spectral sensitivities.

This dataset setting aligns with the “clean track” of NTIRE 2018 and 2020 SR
challenges [29,30].
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4.2. Training, Validation and Testing

From the dataset, we randomly separate the hyperspectral/RGB image pairs into
100 pairs for training, 50 pairs for testing, and 50 pairs for model validation (i.e., for deter-
mining regularization parameter γ in Equation (8), or for determining the ending epochs
of DNN trainings).

To speed up the training process of A+ and A++, we train both models with only a
fraction of the training data (this is possible because sparse coding methods, compared
to DNNs, need fewer data to train). We randomly select 3000 pixels per training scene
for the clustering training (Equation (5)), and 30,000 pixels per scene for determining the
fixed-sized clusters (Equation (6)).

As for the DNNs (AWAN and HSCNN-D), we use the complete images in training
and validation. We stop iterating HSCNN-D until the training loss does not decay anymore,
while for AWAN, we set the maximum epoch at 25.

The reference information of the number of model parameters (indicating the model
complexity), consumed training time and testing (reconstruction) time is given in Table 2.
Our equipment includes Intel® CoreTM i7-9700 CPU and NVIDIA® GeForce® RTX 2080
SUPERTM GPU. The GPU is only used to train the DNNs. All testing, as well as the training
of pixel-based methods, only involve the CPU.

Evidently, similar to the pixel-based A+ and PR-RELS, our A++ method uses much
fewer model parameters (about 8% as much as AWAN uses), which leads to much faster
training and reconstruction.

Table 2. The reference number of model parameters, training time and testing (reconstruction) time.

Method Number of Training Testing Time
Parameters Time (per Image)

HSCNN-D 9.3 × 106 2.7 days 13.3 min
AWAN 1.7 × 107 2.8 days 20.1 min

A+ 9.5 × 104 26.9 min 17.8 s
PR-RELS 2.6 × 103 15.1 min 6.5 s
A++ (Ours) 7.6 × 105 3.4 h 5.4 min

4.3. Evaluation Setup

In the robustness testing, we create a rotated test set which consists of the 50 original
testing images rotating by 90 degrees clockwise. As for the blurred test set, we apply 2-D
Gaussian filters to the original testing images, with two different standard deviation (σ)
settings: σ = 10 and σ = 20 (unit: pixels). Moreover, when applying the Gaussian filters
at border pixels, the outer margins of the images are reflected with respect to the edges
(i.e., the “half-sample symmetric” approach [60]).

The metric used for testing the SR efficacy is the often-used Mean Relative Absolute
Error (MRAE) [29,30]:

MRAE (%) =
1

31

∣∣∣∣∣∣∣∣ r̂− r
r

∣∣∣∣∣∣∣∣
1
× 100 , (9)

where r̂ and r denote the reconstructed and ground-truth spectrum at a pixel, the division
is component-wise to the vectors, and || · ||1 refers to the `1 (Taxicab) norm. The 1

31 factor
signifies that MRAE measures the mean error over the 31 spectral channels. In this paper,
we present MRAE in percentages since in MRAE, the error is calculated with respect to the
ground truth, which is a percentage error by nature.

We use MRAE because it is the standard protocol for evaluating and ranking the
modern DNN-based SR approaches [29,30]. Many top DNNs also directly optimize for
this metric, including the HSCNN-D and AWAN models [35,50]. For a more in-depth
explanation on why MRAE is more suitable than the common Root-Mean-Squared Error
(RMSE) for SR evaluation, we point the readers to [32].
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4.4. Tuning Our A++ Sparse Coding Architecture

As mentioned in Section 3.4, there are 2 hyperparameters in A++ that could potentially
influence the performance: the number of clusters (K in Equation (5)) and the size of each
cluster (N in Equation (6)).

The original A+ model [37] uses (K, N) = (1024, 8192), and yet this might not be the
best setting for our new setup. So, we are to re-determine both factors.

We start with fixing N = 8192 and search for the best K setting. We experiment on
original testing images (no rotation, no blur) and calculate the mean per-image-mean-
MRAE over the test set. The result is shown in the upper Table 3, which suggests that
K = 8192 is the best setting. Then, we, in turn, fix K at this value and search for N. It
is shown in the lower Table 3 that N = 1024 returns the lowest error. Therefore, we use
(K, N) = (8192, 1024) for our A++ implementation.

Table 3. The mean per-image-mean-MRAE performance in relation to the number of clusters (K) and
the size of each cluster (N) used in our A++ method. The best result for each factor (while the other
factor is fixed) is shown in bold font.

K 1024 2048 4096 8192 10,240
N (fixed) ——————8192——————

MRAE (%) 1.88 1.82 1.78 1.76 1.78

K (fixed) ——————8192——————
N 512 1024 2048 4096 8192

MRAE (%) 1.70 1.69 1.70 1.72 1.76

4.5. DNN Data Augmentation

In this paper, we add a data augmentation step to the AWAN DNN model [35], so the
networks can account for rotation and blur. We do not also data-augment HSCNN-D [50]
because, as will be shown later in the result section, HSCNN-D is more stable against
both conditions.

Although we only test the models with one condition at a time (either rotation or blur),
we shall still ensure that the data-augmented AWAN can adapt to more extensive changes.
For each training/validation image inputted to the network, we are to randomly decide
both of the following:

• one out of four image orientations including the original, 90 degrees, 180 degrees and
270 degrees clockwise, and

• a σ factor for the Gaussian filter, drawn from the uniform distribution between [0, 20].

Both conditions are applied consecutively to the input image (the order does not
matter). Then, the processed image will be—in replacement for the original image—used
to train the AWAN network.

Notice that for training the data-augmented model, we increase the polynomial decay
power of their adaptive learning rate from the original 1.5 to 15, which ensures better
training-loss convergence.

As shown in the left-most result in Figure 3, on average, the non data-augmented
AWAN works well on the original image, but has almost twice as much error for rotated
images and performs even worse on blurred images. With data augmentation (the middle
“AWAN-aug” result), we see that the model delivers a more stable performance across
different conditions but at a worse overall performance level.

Considering that perhaps adopting only one random condition per image is not
enough for the network to learn the variation, we try augmenting the network with
3 random conditions per image (the right-most result in Figure 3). Evidently, this “AWAN-
aug3” setting provides even better stability and overall performance across all testing
conditions. In the following section, we will include AWAN-aug3 in the benchmark with
other compared methods.
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Figure 3. The effectiveness of our data augmentation setups for AWAN. The AWAN-aug result
refers to augmenting input images with one random condition (a combined condition of rotation and
blur), while AWAN-aug3 augments 3 random conditions per image. The results are shown in mean
per-image-mean-MRAE.

4.6. Results

We present the mean and 99-percentile (i.e., the “worst-case”) performance of all
considered models and imaging conditions in Table 4. For each image, we first calculate the
mean and 99-percentile MRAE across its pixels, i.e., the “per-image-mean” and “per-image-
99-percentile” MRAE. Next, we calculate the mean of these per-image statistics across the
testing image set, provide the final presented mean and worst-case statistics.

In terms of the models’ mean performance, we see the best-performing model under
the original testing condition (headlined “Orig”) is the DNN-based AWAN. In fact, it
performs considerably better than all the rest of the models. However, it also suffers the
most when the 90◦-rotation (“Rot90”) and blur conditions (“Blur10” and “Blur20”) are
introduced. While the HSCNN-D and AWAN-aug3 provide much more stable performance
across the testing conditions, they do not perform as well as our proposed method.

This result shows a key advantage of pixel-based approaches that, perforce, they are
independent of where the pixel is positioned in an image, and so the image orientation
does not change the SR outcomes. Equally, assuming the pixel-based methods are well
regularized (not overly fit to the training data), small perturbations in the RGB value should
result in small perturbations in the recovered spectrum [32], which suggests that pixel-based
SRs are resilient in the face of image blurring. In contrast, the blurring condition prevents
the patch-based DNNs from inferring using the high-frequency content in the image.

Next, the worst-case results (right-hand-side Table 4). We see that under the original
testing condition, the DNNs generally have better worst-case performance compared to
the pixel-based methods. However, their advantage does not hold when the rotation and
blur conditions are introduced, where the pixel-based PR-RELS takes the lead.

Example hyperspectral image reconstruction results are visualized in Figure 4. Clearly,
A++ significantly improves from the pixel-based baselines i.e., using A+ and PR-RELS
individually, while retaining their robustness against image rotation and blur. On the other
hand, while the effectiveness of our data augmentation setup on AWAN-aug3 is evident,
its overall performance is still inferior to our proposed pixel-based A++ method.

In Figures 5 and 6, we visualize the spectral recovery results of A++, AWAN and
HSCNN-R in comparison to the ground-truth at three selected pixels of an example
scene—the sky, building, and plants. The results under the original, rotation and blur-
ring are also shown separately. It is clear that the rotation and blurring effects cause AWAN
to deteriorate, and in the third example ( 3© on the right of Figure 6), we see the degradation
of AWAN under blurring effect can be very significant. It is also shown that A++ performs
on par with HSCNN-D in example 1© and 2©, and better in example 3©.
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Table 4. The mean and 99-percentile hyperspectral image reconstruction error in MRAE, testing with
the original test-set images (Orig), the 90◦-rotated test-set images (Rot90), and the Gaussian blurred
images with σ = 10 (Blur10) and σ = 20 (Blur20). The best methods in each experiment are in bold
font, and the second bests are underlined.

Approach Method Mean per-Image-Mean MRAE (%) Mean per-Image-99-pt. MRAE (%)
Orig Rot90 Blur10 Blur20 Orig Rot90 Blur10 Blur20

DNN
HSCNN-D 1.71 1.91 1.70 1.70 7.18 7.76 6.97 6.54
AWAN 1.20 2.12 2.72 2.78 6.15 8.08 10.75 10.34
AWAN-aug3 2.11 2.01 1.95 2.01 9.60 9.17 9.51 9.20

Pixel-based
A+ 3.81 3.81 3.70 3.71 15.52 15.52 14.36 13.47
PR-RELS 1.86 1.86 1.70 1.70 7.56 7.56 6.80 6.32
A++ (Ours) 1.69 1.69 1.53 1.54 8.11 8.11 7.30 6.85

Figure 4. An example visualized hyperspectral image reconstruction performance by all compared
methods. One scene from the ICVL database [44] shown in the left-most column is tested under the
original (top row), rotation (middle row), and two Gaussian blur conditions (bottom 2 rows). The er-
ror maps for the rotation condition are rotated back to an upright orientation to ease the comparison.

Figure 5. Visualization of selected ground-truth and recovered spectra (continued in Figure 6).
Left: 3 pixels specified in an example scene. Middle: Legend for the spectral plots—in all plots in
Figures 5 and 6, ground-truth (gt) is shown in black, A++ in red, AWAN in green, and HSCNN-D in
blue. Right: The recovery of spectra in the “sky” region (i.e., region 1© in the example scene) under
the Original, Rot90, Blur10 and Blur20 imaging conditions.
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Figure 6. Visualization of the ground-truth and recovered spectra in region 2© and 3© in the example
scene in Figure 5. The legend for the different colored curves is the same as in Figure 5: ground-truth
(gt) is shown in black, A++ in red, AWAN in green, and HSCNN-D in blue. Respectively, region 2©
refers to the “building” and region 3© the “plants”.

Characteristic Vector Analysis Test

Another way of looking at the feasibility of a reconstructed dataset is by conducting
Characteristic Vector Analysis (CVA) [61] and comparing its outcome with the ground-
truth’s (A well-known variant of CVA is the Principal Component Analysis (PCA). In PCA,
we conduct CVA while the vector of the mean values of all feature dimensions is subtracted
from all data points [61]). In CVA, we find characteristic vectors in the feature space that—
in descending order—maximally explain the variance in data and are orthogonal to all
previous characteristic vectors. Practically, CVA is often used to reduce the dimensionality
of a dataset by selecting only the top few characteristic vectors and representing all data
points as linear combinations of these components. On the other hand, given two spectral
datasets—one ground-truth and one reconstructed—by comparing their top character-
istic vectors and the eigenvalues of these vectors (aka the “explained variance” by each
characteristic vector), we can conclude how alike these two datasets are.

In Figure 7, we compare the top 5 CVA characteristic vectors of the recovered spec-
tra (by HSCNN-D, AWAN and A++) and ground-truth spectra in the testing image set.
Evidently, the first 3 characteristic vectors of all three reconstructed spectral datasets are
very similar to the ground-truth dataset. Clear discrepancies start to appear in the 4th
component, and the 5th component of all algorithms are drastically different from the
ground-truth’s. Nevertheless, the similarity of the 4th and 5th characteristic vectors among
reconstruction algorithms remains high. This means that our proposed pixel-based A++
algorithm can recover a spectral dataset similar to the datasets recovered by the DNN-based
AWAN and HSCNN-D. We can also see that as shown in Table 5, the respectively explained
variances of the top 5 characteristic vectors of all algorithms are broadly in the same order
of magnitude as the ground-truth’s.

Table 5. The variance of the testing spectra recovered by HSCNN-D, AWAN and A++, and ground-
truths explained by their respective top 5 (#1 to #5) CVA characteristic vectors.

Method Explained Variance (CVA Eigenvalue)
#1 #2 #3 #4 #5

HSCNN-D 2.98× 10−1 1.31× 10−2 1.34× 10−3 2.64× 10−4 1.49× 10−4

AWAN 3.00× 10−1 1.36× 10−2 1.49× 10−3 3.21× 10−4 2.24× 10−4

A++ (Ours) 3.01× 10−1 1.35× 10−2 1.36× 10−3 2.44× 10−4 1.38× 10−4

Ground-Truth 2.99× 10−1 1.36× 10−2 1.73× 10−3 3.78× 10−4 2.86× 10−4
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Figure 7. The top 5 Characteristic Vector Analysis (CVA) characteristic vectors of the ground-truth
(gt; black curve), A++-recovered (red), AWAN-recovered (green) and HSCNN-D-recovered spectra
(blue) in the testing image set. All recovered spectra are from original testing images without rotation
or blurring.

4.7. Discussion and Limitations

While AWAN does not work well under more general realistic conditions, we do
notice that it provides leading performance on the original testing images. In other words,
if for some domain-specific tasks, the image orientation can be fixed and the image blur is
the same as in testing (e.g., viewing fixed objects), then AWAN is a good candidate.

One might also argue that we could calibrate the image orientation and deblur the
images prior to SR, or augment more data with perhaps a more complex or deeper network
structure, and as such, it is still possible for AWAN to surpass A++ for those realistic
conditions. However, all of these additional processes effectively add more computational
complexity to what appears to be already complex (making AWAN even less approachable
in practice). In contrast, A++ is a much simpler and equally effective SR solution that has
lower hardware requirements than the DNNs—which is an import factor to consider if we
would like to implement the algorithm on, for example, drones, embedded systems, etc.

We want also to point out that, although as per our research interest (to see whether
patch information is needed for top-performing SR), we design A++ to be a pixel-based
method, a pixel-based mapping fundamentally cannot distinguish materials of the same
RGB (since the same RGB will always map to the same spectral estimate). This limitation
goes against the premise that hyperspectral imaging can distinguish materials that are not
distinguishable by an RGB camera. Hence, for applications where this ability is crucial,
A++ and all other pixel-based methods may not be competent. However, they still serve as
a baseline to see if the patch-based DNNs indeed perform better in this regard.

Even though we are presenting a pixel-based algorithm, what we want to show here is
that currently, the best DNNs do not perform better than the best pixel-based methods, and this
calls into doubt the extent to which these algorithms can map the same RGB to different
spectra depending on context. This does not mean we do not recognize the DNNs’ premise—
that materials and/or objects are identified deep in the network—is good. Unfortunately,
that premise is not delivered upon in the architectures that are currently used. We believe
our development of A++ will encourage future research on simpler spectral reconstruction
techniques as well as more mindful and efficient designs for DNN-based solutions.
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5. Demonstration: Spectral Reconstruction for Scene Relighting

Scene relighting refers to changing the light source of the scene as a computational
process (instead of physically changing the light source), which predicts how the RGB
colors would appear under the target illumination (Figure 8).

In most color imaging applications where the illumination of the scene is manipulated
(e.g., most significantly the color constancy or white balancing application), an “RGB
diagonal model” is assumed [62], which suggests that the relighted RGBs, x′, are related to
the original RGBs, x, by:

x′ ≈ diag
(

l′c
lc

)
x , (10)

where l′c and lc are, respectively, the RGB colors of the target and original light sources
(a.k.a. their “white points”). Here, the division is component-wise, and the diag() function
turns a vector into a diagonal matrix (the vector makes up the diagonal entries of the matrix
with zeros elsewhere).

In this demonstration, we evaluate how scene relighting via SR (which will be intro-
duced later) works in comparison to the traditional RGB diagonal method (Equation (10)).

Figure 8. The original (left) and relighted scenes (middle and right) shown in sRGB colors.

5.1. “Ground-Truth” Scene Relighting

Theoretically, the RGB diagonal model is only exact when x = lc (in which case x′ = l′c
is the correct answer), and yet for all other RGBs this model is only an assumption-based
approximation (and thus the ≈symbol in Equation (10)).

With the help of hyperspectral imaging, we can derive physically accurate scene
relighting for all RGBs. Returning to Equation (2), where we described that RGB x is
formed by x = [sR, sG, sB]

Tr where r is the measured radiance spectrum and [sR, sG, sB] is
the RGB camera’s spectral sensitivities. In fact, the measured r can be further separated into
two independent components: the illumination spectrum l (intrinsic to the light source)
and the object’s surface reflectance ρ (intrinsic to the object surface). Assuming the world
is strictly composed of flat and matte surfaces, we write [1,63]:

r = diag
(
l
)
ρ . (11)

Given this simple physical model, we can formulate ground-truth scene relighting as:

r′ = diag
(
l′
)
ρ = diag

(
l′

l

)
r

=⇒ x′ = [sR, sG, sB]
Tr′ ,

(12)
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where l′ is the given target illumination spectrum we wish to relight the scene to, r′ is the
relighted radiance spectrum, and x′ is the exact relighted RGB (i.e., the “ground-truth”).

5.2. Experiment: SR Relighting vs. RGB Diagonal Model Relighting

Given the RGB data, instead of adopting the RGB diagonal model assumption in
Equation (10), SR algorithms estimate the radiance spectrum r from the RGBs, which
enables us to use the physical model (Equation (12)) for scene relighting. While the efficacy
of the RGB diagonal model is subject to how well the assumption holds, the SR relighting
approach is influenced by the SR accuracy.

We examine the efficacy of SR relighting delivered by all considered SR algorithms
and under all concerned realistic imaging conditions (rotation and blur). The performance
of the traditional RGB diagonal model is also presented as a baseline. The ground-truth
relighted RGB images are derived from the ground-truth hyperspectral images using the
physical model in Equation (12).

Specifically, we relight all test scenes (defined in Section 4.2) to the standard CIE
Illuminant A and Illuminant E [64], where the former represents a tungsten-filament light
source with a color temperature around 2856 K, and the latter is the quintessential “white
spectrum” (that is, a hypothetical spectrum with a constant intensity across all wavelengths).
We study relighting to a white spectrum because it resembles the white balancing process,
which normally adopts the RGB diagonal model.

We also need to know the original illumination spectrum l (or for the RGB diagonal
model, the original illumination color lc) to operate scene relighting. Therefore, we esti-
mate l using the “white patch” approach [65]. In particular, we set l as the hand-crafted
brightest achromatic spectrum in each hyperspectral image, where brightness is defined
as the `2 norm of the spectrum (the illumination color lc can then be derived from the
hand-crafted l using RGB simulation: lc = [sR, sG, sB]

Tl).

5.2.1. Evaluation Metric

We wish to evaluate the scene relighting color error at each pixel using the CIE
2000 color difference (∆E00) [66]. To calculate ∆E00, we are to transform both the ground
truth and the compared estimated relighted RGBs to CIELAB colors [67]. Given that our
RGBs are, in effect, the CIEXYZ tristimulus values (because we use the CIE color matching
functions to simulate the RGBs; see Section 4.1), there is a direct transformation from
CIEXYZ to CIELAB given the target relighting illumination color l′c [68].

We choose ∆E00 as our color error metric because it provides homogeneous measure-
ments of color differences. More specifically, a ∆E00 = 1 indicates the “just noticeable
difference” between two colors (below which a standard human observer cannot tell their
differences). Implementing ∆E00 is rather complicated. Interested readers are pointed
to [66] for more details.

5.2.2. Results

The CIE Illumination A and E relighting results are presented in Tables 6 and 7,
respectively. We present the mean and worst-case (99-percentile) performance of all consid-
ered SR models and imaging conditions. Both statistics are calculated per image and then
averaged over the test set.

First, we observe that all SR methods provide better scene relighting performance
compared to the traditional RGB diagonal model, for both the mean and worst-case results.
Specifically, the mean relighting accuracy via SR is generally very good (∆E00 < 1 which
is less than the human’s perceivable difference). Arguably, here, bounding the worst-
case performance might be more important. Indeed, we see that for all methods the
worst-case ∆E00 > 1, which might inflict perceivable color-shift defects in the resulting
relighted images.
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Table 6. The CIE Illuminant A relighting results. The mean results of per-image mean and 99-
percentile ∆E00 are presented. The best methods in each experiment are marked in bold font, and the
second bests are underlined.

Approach Method
Relighting to CIE Illuminant A

Mean per-Image-Mean ∆E00 Mean per-Image-99-pt. ∆E00
Orig Rot Blur10 Blur20 Orig Rot Blur10 Blur20

Baseline RGB Diagonal 0.83 0.83 0.82 0.81 2.63 2.63 2.30 2.20

DNN-based
SR

HSCNN-D 0.30 0.30 0.24 0.24 2.28 2.36 1.82 1.71
AWAN 0.10 0.20 0.32 0.32 1.39 1.90 1.91 1.81
AWAN-aug3 0.23 0.23 0.15 0.15 2.33 2.35 1.95 1.84

Pixel-based
SR

A+ 0.30 0.30 0.26 0.26 2.41 2.41 2.08 1.93
PR-RELS 0.19 0.19 0.16 0.16 1.97 1.97 1.79 1.66
A++ (Ours) 0.15 0.15 0.13 0.13 1.84 1.84 1.70 1.62

Table 7. The CIE Illuminant E relighting (the “white balancing”) results. The mean results of per-
image mean and 99-percentile ∆E00 are presented. The best methods in each experiment are marked
in bold font, and the second bests are underlined.

Approach Method
Relighting to CIE Illuminant E

Mean per-image-mean ∆E00 Mean per-image-99-pt. ∆E00
Orig Rot Blur10 Blur20 Orig Rot Blur10 Blur20

Baseline RGB diagonal 1.35 1.35 1.35 1.35 3.39 3.39 3.24 3.18

DNN-based
SR

HSCNN-D 0.33 0.34 0.27 0.26 2.58 2.74 2.03 1.92
AWAN 0.12 0.21 0.24 0.24 1.64 2.11 2.21 2.14
AWAN-aug3 0.27 0.27 0.23 0.24 3.00 2.97 2.92 2.85

Pixel-based
SR

A+ 0.40 0.40 0.36 0.35 3.17 3.17 2.74 2.59
PR-RELS 0.17 0.17 0.16 0.15 1.87 1.87 1.78 1.68
A++ (Ours) 0.16 0.16 0.13 0.13 1.99 1.99 1.81 1.73

Next, although in our experiment the most accurate and robust SR methods (A++
and PR-RELS) also suggest the best results in scene relighting, in general, better spectral
accuracy does not always imply better relighting performance. For instance, the DNN-
based HSCNN-D provides much more accurate SR than the pixel-based A+ sparse coding
(Table 4), but does not show many advantages over A+ in CIE Illuminant A relighting
(Table 6). For another example, we see that even though AWAN-aug3 provides better
spectral accuracy than AWAN on rotated and blurred images, its advantage does not reflect
on the scene-relighting application, specifically if we look at its worst-case performance.
However, we note that not performing well on scene relighting also does not necessarily
mean an SR algorithm would fail in other applications (in which case the spectral accuracy
may account for more of the performance).

Finally, we see that under the original testing condition, the DNN-based AWAN
method provides the best relighting results overall, while for the robustness tests concerning
image rotation and blur, the pixel-based PR-RELS and our proposed A++ methods come to
the fore.

Visualized ∆E00 error maps for CIE Illuminant A and E relighting are respectively
presented in Figures 9 and 10. Evidently, relighting via SR algorithms generally provide
much better color accuracy than the traditional RGB diagonal process, and our proposed
SR method A++ provides the best accuracy and robustness in scene relighting overall.
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Figure 9. CIE Illuminant A scene relighting error heat maps in ∆E00. The ground-truth relighted
scene is shown in sRGB in the leftmost column. From the top to the bottom row, the tested imaging
condition is in turn the original, rotation, and two Gaussian blur conditions.

Figure 10. CIE Illuminant E scene relighting error heat maps in ∆E00. The ground-truth relighted
scene is shown in sRGB in the leftmost column. From the top to the bottom row, the tested imaging
condition is in turn the original, rotation, and two Gaussian blur conditions.

6. Conclusions

The spectral reconstruction (SR) problem studies the recovery of light’s spectral signals
from the RGB camera responses, which is regarded as a physics-based computer vision
problem. In this work, we challenged ourselves to surpass the leading deep neural networks
(DNN) in SR using only a pixel-based mapping model. We developed a new sparse
coding architecture, called “A++”, where an RGB is mapped to the spectrum, firstly by a
polynomial regression SR, and secondly by a linear SR map depending on the location of
its first estimation in the spectral space. We show that this A++ method—despite being
much simpler than the leading DNNs—delivers leading spectral accuracy across a range of
realistic imaging conditions, including image rotation and blur. While we also addressed
the discovered leading DNN’s robustness issue via a data augmentation process, our
A++ method still delivers consistently better performance than the augmented DNN. A
practical study on applying SR to the scene relighting application also shows the superior
performance of A++ compared to the DNNs. Combined, we see that not only does our
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pixel-based A++ deliver SR of leading performance and robustness, but its lack of heavy
DNN structures also ensures much faster training and real-time processing.

Supplementary Materials: The code of the methods introduced in this paper is available at https:
//github.com/EthanLinYitun/A_Plus_Plus_Spectral_Reconstruction (accessed on 12 April 2023).
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