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Abstract: Lane detection in driving situations is a critical module for advanced driver assistance
systems (ADASs) and automated cars. Many advanced lane detection algorithms have been presented
in recent years. However, most approaches rely on recognising the lane from a single or several
images, which often results in poor performance when dealing with extreme scenarios such as intense
shadow, severe mark degradation, severe vehicle occlusion, and so on. This paper proposes an
integration of steady-state dynamic equations and Model Predictive Control-Preview Capability
(MPC-PC) strategy to find key parameters of the lane detection algorithm for automated cars while
driving on clothoid-form roads (structured and unstructured roads) to tackle issues such as the
poor detection accuracy of lane identification and tracking in occlusion (e.g., rain) and different
light conditions (e.g., night vs. daytime). First, the MPC preview capability plan is designed and
applied in order to maintain the vehicle on the target lane. Second, as an input to the lane detection
method, the key parameters such as yaw angle, sideslip, and steering angle are calculated using
a steady-state dynamic and motion equations. The developed algorithm is tested with a primary
(own dataset) and a secondary dataset (publicly available dataset) in a simulation environment. With
our proposed approach, the mean detection accuracy varies from 98.7% to 99%, and the detection
time ranges from 20 to 22 ms under various driving circumstances. Comparison of our proposed
algorithm’s performance with other existing approaches shows that the proposed algorithm has good
comprehensive recognition performance in the different dataset, thus indicating desirable accuracy
and adaptability. The suggested approach will help advance intelligent-vehicle lane identification
and tracking and help to increase intelligent-vehicle driving safety.

Keywords: lane detection and tracking algorithm; advanced driver assistance system; intelligent
vehicle; custom datasets; complex road geometry

1. Introduction

With the fast development of high-precision optical sensors and electronic sensors,
as well as high-efficiency and highly effective computer vision and machine learning
algorithms, real-time driving scene comprehension has become more practical. Many
academic and industrial research organisations have committed significant resources to the
development of sophisticated algorithms for driving scene interpretation, with the goal
of developing either an autonomous car or an advanced driver aid system (ADAS). Lane
identification is one of the most fundamental study areas in driving scene interpretation.
After obtaining lane locations, the car will know where to proceed and will avoid colliding
with other lanes [1].

In recent years, a variety of lane detection algorithms with sophisticated performance
have been presented and described in the literature. Among these approaches, some use
geometry models to describe the lane structure [2,3], while others express lane identification
as energy minimisation issues [4,5], and yet others segment the lane using supervised
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learning algorithms [6–9]. However, most of these approaches only provide solutions
for detecting road lanes in the currently active frame of the driving scene, leading to
poor performance in dealing with difficult driving scenarios, such as heavy shadows,
severe road mark degradation, and serious vehicle occlusion. In certain cases, the lane
may be anticipated in the wrong direction, only partially identified, or not detected at all.
The information offered by the present frame is insufficient for effective lane recognition or
prediction, which is one of the key reasons for the need for further developments in this area.

In general, road lanes are continuous line constructions on the road surface that appear
either solid or dashed. The location of lanes in adjacent frames is closely connected because
the driving scenarios are continuous and heavily overlapped between two surrounding
frames. More specifically, the lane in the current frame may be predicted using many
prior frames, even if the lane has been damaged or degraded due to shadows, stains, and
occlusion. This inspires us to investigate lane recognition using photos of a continuous
driving scenario.

Object detection [10–12], image classification/retrieval [13–16], and semantic segmen-
tation [16–19] are just a few of the computer vision problems that deep learning has been
shown to solve at or above human levels. Deep neural networks are classified into two
categories. The first is the deep convolutional neural network (DCNN), which is an example
of a neural network that performs well when it comes to feature abstraction for images
and video by analysing the input signal using multiple layers of convolution. The other is
the deep recurrent neural network (DRNN), which recursively analyses the input signal
by breaking it down into subsequent blocks and constructing complete connection layers
between them for status propagation and is skilled at information prediction for time-series
signals. Considering the aforementioned difficulty in lane recognition, it would appear
that the time series represented by the continuously captured images of the driving scene
can be analysed by DRNN.

The goal of the previously mentioned trajectory tracking controllers is to reduce
the lateral error between the autonomous vehicle and the reference trajectory. The issue
develops for the majority of path-tracking controllers when the autonomous vehicle goes
through a severe bend in the reference route [20]. Driving through a severe curve in the
trajectory is always risky if the vehicle’s speed and steering angle are not properly regulated.
In the actual world, a motorist must be able to lower their speed while still controlling the
steering wheel in order to remain on the road and safely navigate the tight bend. When
monitoring a reference trajectory, an autonomous vehicle should follow a similar concept.

This study proposes an innovative path tracking approach, the major contribution
of which is to decrease the lateral errors and tracking errors of the autonomous vehicle,
particularly while traversing steep bends, by constructing a hybrid longitudinal and lateral
control system. For speed control, the longitudinal control design is based on geometrical
curvature information and is combined with the Model Predictive Control (MPC). The
intended speed of the vehicle is calculated using the vehicle’s current speed and the road’s
curvature profile. Furthermore, the feedforward optimum preview control is utilised to
address lateral errors in the trajectory by controlling the vehicle’s steering angle, which is
caused by road curvatures. The preview capability is used to reduce the mistakes caused by
external and environmental disturbances. The proposed algorithm’s tracking performance
is measured using the average root-mean-square errors. Both simulation and experimental
findings are used to evaluate and validate the efficacy of the proposed strategy.

The paper’s main contributions are twofold. First, to address the issues involved
in lane detection and the tracking algorithm, such as occlusion on a clothoid road, a
solution based on MPC preview capability is designed and successfully deployed to
prevent occlusion by controlling the lateral error on the reference path and increasing
the lane detection performance. The existing models experience problems with occlusion
in inclement weather conditions, leading to significant concern over passenger safety.
Further, clothoid-shaped roads have been investigated far less in the existing literature. To
address this issue, the current paper presents a model based on the differential equation



Sensors 2023, 23, 4085 3 of 27

of motion that will calculate the kinematic steering angles needed to keep the vehicle in
the desired direction of motion. The developed model determines the actual direction of
motion by considering vehicle’s sideslip when calculating the direction of motion. This
is achieved by solving the vehicle’s dynamic equations for a desired direction of motion.
A learning-based approach for lane detection utilising continuous driving scene images
is presented to address the issue that a lane cannot be reliably recognised using a single
image in the presence of shadow, road mark deterioration, and vehicle occlusion. Because
more information can be derived from numerous continuous images than from a single
current image, the suggested technique may forecast the lane more accurately, particularly
when dealing with the aforementioned problematic conditions.

Second, a mathematical model of the vehicle is developed for the purpose of designing
the path tracking controllers in this work. We created the vehicle model while taking into
account inertial co-ordinate dynamics. It has been demonstrated in earlier studies that
building MPC controllers based on vehicle models of various complexity requires a lot of
effort, and tuning is challenging due to more complicated vehicle models. A simplified
“four-wheeler” model with a linear tyre model is chosen in this work because the goal
of this research is also to determine how to track the appropriate trajectory quickly and
steadily, which pertains to vehicle handling stability.

The structure of this paper is as follows. Section 2 presents the key parameters of
the algorithm. Section 3 introduces the proposed mathematical model for the lane detection
algorithm that includes MPC preview capability strategy and steady-state dynamics. Section 4
reports the performance of the proposed algorithm in clothoid-form roads under a variety of
occlusion. Section 5 concludes our study and briefly discusses potential future work.

2. Key Parameters of Algorithm

In the next few sections, the key parameters of the mathematical model are obtained,
and the MPC preview strategy is developed and implemented. Steady-state dynamic
equations are used to calculate the steering angle, yaw angle, and sideslip of the vehicle
in the desired path, and a mathematical model is developed and tested in a simulation
environment on clothoid-shaped structured and unstructured roads.

2.1. Linear Tyre Model

To build the vehicle dynamics model and design the control convolution stages, a
tyre model must be created. The development of an accurate tyre model is critical for
vehicle dynamics simulation and vehicle handling stability research. The linear tyre model
proposes a straight-line relationship between lateral force and slip angle. Figure 1 shows
how to calculate the lateral force of a tyre.
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The general form of the magic formula is as follows:

Y(x) = Dsin(C arctan[Bx− E(Bx− arctan(Bx))]) (1)

where Y denotes the output variable, x denotes the input variable, D denotes the peak
factor, C denotes the shape factor, B denotes the stiffness factor, and E denotes the curvature
factor. Only the effects of the tyre sideslip angle, vertical load, and road adhesion coefficient
on the cornering force are discussed in this article. The formula has a higher fitting accuracy
and can still be used outside of the limit value, demonstrating good robustness.

2.2. Forces Acting on Passengers

The most frequent strategy utilised to improve passenger comfort is to optimise the
vehicle movement to reduce forces and jerks. A proper seat and suspension design might
reduce the vertical forces and vibrations caused by road disturbances. Horizontal forces
result from steering and acceleration. Passengers’ vertical oscillations are highlighted in [20],
and the researchers proposed that the ISO-2631-1 standard misunderstands passenger
comfort parameters, including lateral oscillations for seated passengers.

Smooth control is clearly preferred to avoid overshooting and minimise resulting
forces. To assist tracking, continuous trajectories might be generated. Path continuity
was noted in [21]. The intricacy of its synthesis and real-time execution prevented their
employment in time-critical applications such as highway navigation. Clothoid usage was
confined to parking assist devices, and parametric vector-valued curves with continuous
curvature, velocity, and acceleration were suggested. It is simple to implement these
planning approaches with trajectory tracking algorithms to reduce tracking errors and
overshooting [22]. Planning, generating, and tracking paths are supposed to reduce load
disruptions, and we already utilise acceptable longitudinal jerk and acceleration approaches
for passenger comfort and safety.

2.3. Designing a Control Strategy

Predicting the process output at a limited control horizon based on historical and
present values is known as prediction. The optimiser calculates a control sequence based
on the cost function and constraints and then repeats the procedure in a receding horizon.
MPC outperforms conventional control strategies in trajectory tracking because it can
manage both “soft” and “hard” constraints on state variables and control the input/output,
which enhances performance and stability. As a result, the vehicle’s lateral stability and
path-following accuracy may be improved (lane detection). Using the aforementioned
technique, the front steering wheel angle is controlled by the MPC preview capability (PC).

The perpendicular distance to the path determined from the vehicle’s centre is required
by the controller. This indicates that a straight line between the vehicle and the path is not
always the case, since it might be a non-perpendicular line (Figure 2 illustrates this idea).
From the vehicle to the path, the dotted red line is the shortest. The perpendicular line from
the vehicle centre to the path represented by ye, the mistake in the lateral position, is shown
by the red line in Figure 3. Two-line equations are used to answer this problem. A curve is
fitted to a tiny section of the path and the other line is drawn using the vehicle’s heading
angle. From the vehicle’s centre, a line is drawn with a slope equal to the heading angle +90◦.
With a fairly basic equation, y = ax + b, a line perpendicular to the vehicle is created.

By locating the intersection point of these two lines, the perpendicular point may be
obtained. As a consequence, the point is (px, py). The difference between (cx, cy) and (ye) is now
the distance ye (px, py). The perpendicular distance of the projected vehicle may be calculated
using the same method. To achieve the point cx, cy, there is one more step: add the length L in
the direction the vehicle is heading. In the future, both of these distances will be utilised in the
system. ye will be used to assess performance and will be an input to the controller.

In Figure 4, t indicates the current time, X and Y represent the longitudinal and lateral
position in the inertial co-ordinate system, respectively, and p and T represent the MPC
prediction horizon and PC preview time, respectively. The MPC theory predicts state
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variables at each sample point within a prediction horizon. With the PC and the estimated
state variable, the reference yaw rate is calculated at each sample point. In Figure 4, the
dotted red line shows the PC reference route, whereas the black line indicates the MPC
reference path. The red line outside the MPC prediction horizon shows the reference yaw
rate, while the green line shows the reference lateral displacement. The reference yaw
rate and lateral displacement are used to develop the MPC optimiser. Figure 4 shows a
metonymical strategy to increase the original basis’s effective reference trajectory range.
By expanding the effective reference path length, the vehicle’s lateral stability and path-
following accuracy may be increased.
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2.4. Implementation of Strategy

This section briefly presents the preview capability (PC). The car moves according
to the Ackerman mechanism, where R and V are the radius of the road curve and the
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vehicle speed, respectively. In Figure 5, F(X) is the reference path equation and y = Y(t).
The preview distance is d and the preview time is T = d/V and G is the rigid support. The
steering angle is defined by the trajectory curvature 1/R and lateral acceleration Y(t). After
T, the vehicle’s lateral displacement is stated as follows:

Y(t + T) = Y(t) + TY(t) +
T2

2
Y(t) (2)

The best trajectory curvature and lateral acceleration for aligning Y (t + T) with
F (X (t + T)) are:

Y(t) =
2

T2 [FX(t + T)− Y(t)− TY(T)] (3)

In the vehicle steering moves, the yaw rate j is decided by the vehicle speed and the
trajectory curvature:

ϕ =
V
R

(4)
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Figure 4 demonstrates the major components of a path-tracking system that uses
MPC-PC to estimate the front wheel steering angle. The reference generation module esti-
mates the vehicle condition and the reference yaw rate. The lateral acceleration measured
by the PC changes the predicted vehicle condition at each sampling time. The reference
yaw rate is produced by the consistent procedure of obtaining the ideal preview lateral
acceleration and predicting vehicle states. To reduce the accumulating error and provide a
more accurate reference yaw rate, rolling computation is required. The reference consists of
two modules: lateral displacement and yaw rate. This is because the lateral displacement is
determined by the reference path in the predictive horizon, whereas the reference yaw rate
is determined by a desired trajectory in the preview distance. Unlike the conventional MPC,
this approach expands the effective reference path without further computation. The model
predictive controller (MPC) optimiser with input and output constraints calculates the
steering wheel angle to follow the predefined path, and the solution becomes a quadratic
programming problem with constraints.

2.5. Steady-State Dynamic Equation

We designed sample roads (straight and clothoid) and used them to determine the
kinematic steering angle required to keep the vehicle in the desired path of motion. The next
step is to identify the actual path of motion. This situation refers to when the sideslip of the
vehicle is considered when determining the real path of motion and can be accomplished
by solving the vehicle’s dynamic equation of motion for a desired path. The clothoid and
straight-line equations were used to develop the sample road but, after two or three steps,
they became complicated to solve analytically. After solving these equations for the sample
road, it was confirmed that the equations of motion are impossible to solve in advance
due to complications; however, the steady-state response can be used as an appropriate
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replacement. The aforementioned scenarios were investigated by solving the differential
equations of motion and introducing a new method, i.e., steady-state dynamic control.

3. Design of the Mathematical Model

The four-wheeler model is constructed using Newton’s second law of motion, and the
equations for lateral and yaw motion may be stated as follows:

may= ∑ Fy (5)

Izr = ∑ Mz (6)

m = mass of the vehicle;
ay = lateral vehicle acceleration.

The total of forces in the y-direction and the maximum moment of the z-axis are as follows:

∑ Fy= Fy f+ cos δ+Fyr (7)

∑ My= lFyr+ cos δ−Fyr (8)

The y-direction acceleration ay is composed of two components: the acceleration vy
and the rotational effect vx, where r is the angular velocity around the z-axis, commonly
known as the yaw rate. Thus:

ay= vy+rvx (9)

3.1. Stability

The stability of the linear dynamic four-wheeler model is examined in this subsection.
Since this is a linear system, stability can be established if the eigenvalues contain no
positive real components. Vehicle instability is usually produced by a sudden tripping
rollover or a non-tripping rollover. As a result, while examining such vehicles in path
tracking, the problem of roll stability control must be taken into account.

LTR (lateral transfer ratio) =

(
Ff ront − Frear

)
(

Ff ront + Frear

)
The idea is to derive the lateral transfer ratio (LTR) index by feeding the vehicle’s

real-time tyre vertical force to the controller, comparing it to the LTR threshold index, and
determining whether there is a rollover hazard based on preview capability control theory.
After taking into account the effect under high-speed and low-adhesion conditions, the
LTR rollover threshold is adjusted to LTR = 1.

3.2. Longitudinal Dynamic

The objective of longitudinal control in this research is to ensure that the longitudinal
speed of the vehicle’s centre of mass (vx) is the same as the desired longitudinal speed (v).
In order to use the sliding mode approach [23], it is necessary to determine a relationship
between the longitudinal speed and the applied torques to the wheels.

However, this research suggests that the steering angle and lateral forces be used
together in the prior step in order to increase accuracy. The next section is a short description
of the equations used in calculating the control inputs.

The slip surface is evaluated according to the following equation:

sx= (vx−vR) (10)



Sensors 2023, 23, 4085 8 of 27

We may now differentiate the slip surface Sx and suppose that it is equal to zero as a
result. The equation is obtained by substituting the corresponding term from Equation (10)
for vx, resulting in the expression:

(Fx cos δ− Fysin δ + Fz) + vy−vR = 0 (11)

The symbol that appears in the equation represents the steering angle of the previous
step that is known. After simplifying the relationship, the longitudinal force for each tyre is
replaced by its equivalent.

Tt= Rw( ftFz cos δ + fxFz+ fy sin δ + Faro
)
−mvy + mv (12)

The acceleration torque delivered to the front and rear wheels may be calculated using
the second rule.

Tf= Tt and Tτ=
Fx

Fy
Tt (13)

3.3. Tyre Forces and Angle

At low slip levels, the longitudinal and lateral forces are mostly determined by the
tyre’s elastic characteristics; however, as the slip angle grows, the contribution reduces and
the friction between the tyres and the road increases gradually.

The kinematic condition is applied for both steering angles. Equations (2)–(4) depict
the vehicle’s kinematics in accordance with the geometry connection depicted.

may = Ff sinδ f + Frcosδr + Fr

x0 = vcos(ϕ + β)

y0 = vsin(ϕ + β)

ϕ = ε

where longitudinal and lateral co-ordinates (x0 and y0) are located at the centre of gravity
(CoG) and are the vehicle’s yaw angle, yaw rate, and sideslip angle, respectively. Assuming
that the path’s curvature is minimal, it creates minor variations in the vehicle’s yaw angle
and sideslip angle. As a result, the kinematic model may be depicted as:

x0 = v

y0 = v(ϕ + β)

ϕ = ε

When the vehicle’s speed increases and the curvature of the road changes, it is difficult
to monitor the trajectory using merely the kinematic model of the vehicle. If the vehicle’s
longitudinal velocity is considered to remain constant, the dynamics of the vehicle may be
shown using Newton’s law, as follows:

ay = v(β + ϕ)

where ay is the starting acceleration at the CoG in the y-axis direction. The acceleration v
along the y-axis and the centripetal acceleration v both contribute to ay. As a result, the
vehicle’s lateral angular motion equation may be represented as:

mv(ϕ + β) = Ff + Fr

The equation for yaw dynamics in the z-axis is as follows:
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Iz= I f Ff − IrFr

where If and Ir are the distances of the front and rear tyres from the vehicle’s centre of
gravity, respectively, Ff and Fr are the front and rear lateral tyre forces, and Ff and Fr are
defined as:

Ff= C f α f

Fr= Crαr

where C f and Cr are the front and rear tyre cornering stiffnesses. The following are the
front and rear tyre sideslip angles of vehicle f and r:

α f=
I f (β + ϕ)

v

α f=
Ir(β− ϕ)

v
It is possible to compute the lateral and yaw dynamics of the vehicle. The equation for

the lateral dynamics is:

β =

(
C f + Cr

)
mv

−

(
I f C f − IrCr

)
mv

+
C f

m
δ

Similarly, the yaw rate updated equation is as follows:

.
ϕ =

(
I f C f − IrCr

)
β

Izv
−

(
I f C f + IrCr

)2

Izv
+

I f C f

Iz
δ

The vehicle lateral state space model is defined and stated as:

d
dx

y0
ϕ
β

 =


0 1 0

0 − (C f +Cr)
mv 0

0 0 (I f C f +IrCr)
2

Izv


Simulation controls require the vehicle dynamic plant model to find cross-track error.

3.4. Introduction to Steady-State Equations

In steering angle control system analysis and design, it is crucial to evaluate the whole
system response and to develop controllers in such a way that a satisfying response is
produced for all time instants t(0), where t(0) is the initial time. The system reaction is
known to have two components: transient response and steady-state response, that is:

y(t) = ytr(t) + yss(t) (14)

The transient response is present for a short period of time and then disappears. If the
system is stable, the transient response may potentially be recorded:

lim
t→0

ytr(t) = 0

In addition, if the system is unstable, the transient response will grow extremely
quickly (exponentially) in time, resulting in the system becoming completely unusable or
even destroyed in most circumstances during the unstable transient response. It is critical
in control systems that steady-state response values are as close to the desired (specified)
ones as possible, so we must investigate the corresponding errors, which represent the
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difference between the actual and desired system outputs at steady state and examine the
conditions under which these errors can be reduced or even eliminated.

The following set of nonlinear coupled differential equations of motion control of the
vehicle are represented in the main body co-ordinate frame B: the steering angle is the
input, while the mass centre is forward velocity, and the lateral velocity and yaw angle
are the outputs in this equation. The steering angle issue can be investigated from other
perspectives. The steering angle required to keep the vehicle in between different lanes will be
calculated in this section. Figure 5 shows a rigid vehicle in planar motion, with the global (G)
and body (B) frames fixed to the ground as well as to the vehicle’s mass centre, respectively.

A rigid vehicle is supposed to behave like a box on a horizontal surface (planar motion),
with three degrees of freedom: x and y translation and rotation around the z-axis. In the body
co-ordinate frame B, the Newton–Euler equations of motion for a planar rigid vehicle are:

vx =
F
m

+ rvy (15)

The car’s yaw rate is r = ϕ = z, and the front and rear wheels’ steer angles are the
cot-average of the associated left and right wheels.

3.5. Speed Control for Sharp Curve Road

The longitudinal speed controller is built in this study using the derivation of the
trajectory curvature Ktarjectory and the vehicle curvature Kvehicle. While monitoring the
reference trajectory, the autonomous vehicle calculates Ktarjectory and Kvehicle repeatedly.
The trajectory and vehicle curvature may be computed iteratively as:

K =
∆δ

∆L

where K and L are the trajectory’s curvature, central angle, and length. Based on the current
curvature, the curvature function f (Ktarjectory, Kvehicle) value is utilised to calculate a suitable
speed decrease for the autonomous vehicle while moving in a risky curve. We extract the
new required velocity Vd by subtracting the curvature function from the present velocity
Vc, which prevents the vehicle from cutting corners while following the track.

Ve = Kd −Vc

The estimated velocity error Ve is supplied into the MPC controller, which accurately
adjusts the throttle pedal position to maintain the ideal speed. The MPC velocity controller
equation is as follows:

Uv = KpVc + Kd
∆Ve

∆t
Furthermore, we can calculate the slip angle of the vehicle as well as the required

traction force to maintain a constant forward speed.

Fx = −mvx

r
(16)

β = tan−1 vy

vx
(17)

When the vehicle is turning at a steady-state condition on straight and clothoid-shaped
roads, it is governed by the following equations. As illustrated in the figure, the ground
has a global co-ordinate frame G, while the car mass centre C has a vehicle co-ordinate
frame B. Z is considered to be parallel and the angle shows how B in G is oriented when ϕ
is the angle of the heading of a vehicle.
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When a vehicle is travelling in the first quadrant:

Steering angle =
a2

πS
cos
(

πS2

2b2

)
cos ϕ +

a2

πS
sin
(

πS2

2b2

)
sinϕ

When a vehicle is travelling in the second quadrant on a clothoid road:

Steering angle =
a2

πS
cos
(

πS2

2b2

)
cos ϕ− a2

πS
sin
(

πS2

2b2

)
sinϕ

Based on the above equation, we can define the curvature response and steady-
state response:

Sk =
k
δ
=

1
Rδ

Yaw angle
The yaw angle is the angle between the longitudinal axis of the vehicle and an axis

parallel to the surface of the Earth in an Earth-fixed co-ordinate system.

S f =
r
δ
=

k
δ

v = Skv (18)

Centripetal acceleration
A body travelling in a circular direction will experience centripetal acceleration, which

is the acceleration of the body. Given that velocity is a vector quantity (that is, it has both a
magnitude, which is the speed, and a direction), when a vehicle travels in a circular path,
the direction of the body continually changes, causing the body’s speed to vary, resulting
in the body experiencing an acceleration.

a =
v
r

∆S (19)

Lateral velocity
V = vcosϕ

v = Vx +
∫ t

t0

ardt (20)

Surface sideslip angle

β− V
R

As previously stated, this route will be utilised and is made up of two separate
clothoid and straight roads. The clothoid is used as a sample road for determining a
vehicle’s kinematic steering angle as an example of how the lane detection and tracking
algorithm can maintain a vehicle kinematically on the road. Figure 6 shows the desired
path of motion by minimising cross-track error.

The parametric equation of the road, which is moving in the X direction and starts from
the origin, is as follows. The parameter t is not constant and it varies in all equations of motion.

X(t) =
∫ t

0
cos(

π

2
× v2)dv 0 ≤ t ≤ 1 (21)
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3.6. Rotation Centre

The Laplace transform is applied to the vehicle equations of motion for the steering
wheel angle and the rear wheel steering angle and, when the yaw rate response to the
steering angles is solved, the following results are obtained:

Y(s) =
1
n Gδ(0)

(
1 + 1

2K S2
)

1 + 2
ωn

S + 1
w2

n

(22)

The yaw rate is calculated using the first-order lag yaw rate. The impact of altering
the steering angle:

δG(t) = FSGδF(t) (23)

We can calculate the steady-state location of the centre of the vehicle using the steady-
state response:

δ− l
R1

= αR−αF (24)

and:
δ− l

R2
= αR+αF (25)

where R1 and R2:

R1 =
1

cos2α
(xcosϕ− ysinϕ)

R2=
1

cos2α
(ycosϕ− xsinϕ)

This results in a greater turning radius for the front wheels, which is normally in order
to track the tracking at a point on a tangent to the turn circle of the rear wheels. It will be
shown that the steady-state response equation is sufficient for predicting the transition
behaviour of a vehicle in a steady state. It will also be considered whether a step steer angle
adjustment and a lane change steering input should be used.
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3.7. Change in Steering Angle

A realistic step change of the steering angle with fluctuating speed will be expressed by:

δ = δ0(H(t− t0) + sin2(
t

2t0
) H (t0 − t)) (26)

H (t− t0) =

{
0
1

where:
t0 = response time

and:
δ = constant Steer angle

To determine the reaction of the vehicle for a given value:

δ = 20 rad

t0 = 30 s

v = 60 m/s

To determine the solution of the equation of motion:
r = H (t− t0)e4.963(0.0493sin3.7688(t− 1)) + 0.2924 cos(3.7688(t− 1))− H(t− t0 ) 0.0588 sin (πt)+
0.0870 sin (πt) + 0.2439+e−0.493t(0.2925cos(3.7688t)) + 0.0493 sin(3.7888t)+0.1223 cos (πt) + 0.2440

v = H (t− t0)e4.9622(1−t)(0.0492)sin 3.7688(t− 1) + 0.2924 cos(3.7688t) + 0.1223cos(πt) + sin(πt)− 0.415

R =
1
k

These are dynamic variables, which are calculated by solving the equation of motion
where in 0-1 and l-1 are used. As can be observed in Figure 7, the actual steer angle for the
left and right front wheels is not the same but is somewhat smaller for the left wheel and
slightly bigger for the right wheel, respectively. In reality, this is accomplished by the use
of a steering link mechanism but, if sl and sd are both small, the difference between the two
wheels’ steer angles may be assumed to be the same, and the left and right wheels can be
considered to have the same steer angle.
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Figure 7. Exact location of the curvature.

When the equations for the straight and clothoid roads are given, then the point that
the car should turn around can be evaluated. The exact location of the curvature centre and
adjusted angle of the steering of the vehicle to coincide with the vehicle’s turning centre
can be used to calculate the kinematic motion of the vehicle.
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.
x = vcarcosθ = u1cosθ

We know the equation of the straight and clothoid road and the values of the turning
centre for the first and second quadrant. The clothoid is a curve in which the combination
of the radius of curvature by the arch length is constant at every point along the curve. In
addition to making it an excellent transition curve, it also provides for the straightforward
calculation of the arc length parameterisation of the curve.

vcar

cosθ
sin∅ = vcartanθ = vtangent (27)

For the steering angle for the front wheel in the first and second quadrant of the
straight and clothoid road, the ratio of front-to-rear stiffness is expressed as:

Cr/ f=
CR
CF

(28)

δ− l
R

=
T
lR

[
1 + Cr/ f

]
+ayK (29)

It has features similar to the vehicle response to the front wheel steer angle. The
vehicle’s response to the steering wheel angle is characterised by the following features.
When considering the circular motion of the vehicle at higher speeds, the centrifugal force
becomes more relevant. In order to counteract this centrifugal force, the cornering forces at
the front and rear wheels must be applied, resulting in the production of sideslip angles.

3.8. Effect of Acceleration

The impact of acceleration (varying forward velocity) on the steady-state and transient
reaction of the turning centre and the motion of the vehicle is studied in this section. A
comparison of the two stated vehicle responses is used to demonstrate that there is a small
difference between the steady state and centre of rotation of the vehicle. The dynamics
of a car with a fixed steering angle and changing forward velocity will be studied and
reported. It has been shown that, by using a steady-state response, it is feasible to predict
the vehicle’s dynamics within acceptable engineering applications. We will calculate the
dynamic rotation centre of the vehicle and compare it to steady-state data. The outcome is
essential in developing a lane detection and tracking algorithm for self-driving cars. The
reaction of an understeer passenger vehicle travelling with a constant steering angle equal
to the equation and a variable forward velocity that varies with time is calculated in the
following equation. Solving an equation of motion will determine the vehicle’s transition
behaviour, which will be identified using steady-state responses. It has been shown that
steady-state response equations are adequate for predicting the car’s transition behaviour.

δ(t) = 0.1 rad ≈ 5.37 deg

The forward velocity of the vehicle is directly proportional to time according to the
following function:

vx=
20
t0

tH(t0 − t) + 10H(t− t0) m/s

H(t− t0)=

{
0 t ≤ t0
1 t ≥ t0

The sideslip ratio is as follows:
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= 1− (R + t)δ
r
R

× 100

=
t
T
× 100

An illustration of a clothoid is a curve in which the product of the radius of the
curvature by the arch length is constant at every point along the curve. In addition to
making it an excellent transition curve, it also provides for the straightforward calculation
of the arc length parameterisation of the curve.

cαL = F (30)

α =
1

CL
t2

2R
(31)

It follows mathematically that a slip angle, denoted by the letter f, is essential to
counteract the understeer contribution given by the solid back axle. Clearly, significantly
more effort will be required to enable the vehicle to turn around the bend. The following
circumstances, which are adequate for a formula student car on a 20 m skid pan, may be
used to make an estimate.

3.9. Longitudinal Response

Roll steer is defined as the angular displacement of the wheel caused by the roll of
the vehicle. In contrast to a negative roll steer, which operates in the opposite direction of
the real steer angle, a positive roll steer acts in the same direction as the actual steer angle.
The geometry and relationship of a steady-state cornering vehicle with roll steer is seen
in Figure 7. With the exception of roll steer, the geometrical relationship of steady-state
cornering is provided by following Equation. When using roll steer, the equation is:

δ =
L
P
+ δr − δ f (32)

Roll steer, in addition to the steady-state steer angle, may be used to analyse vehicle
steer characteristics in the connection between the steady-state steer angle and the lateral
acceleration (y) when the roll steer is taken into account.

Sideslip angle of a vehicle for a clothoid road:

S =
y1 − 0.5× 108th(−t + 20)− 0.1× 1010h(t− 20)
y3 + 0.25× 1010h(−t + 20) + 0.5× 109h(t− 20)

where:

y2 =
0.9375× 1010

th(−t + 10) + 20h(t− 10)

and:

y3 =
0.625× 1011

th(−t + 10) + 20h(t− 10)

Yaw rate:

Y =
0.625× 1010

y3 + 0.25× 108th(−t + 10) + 0.5× 109h(t− 10)

Lateral velocity:

Lv =

(
y3 − 0.5× 108)th(−t + 10)− 0.1× 1010h(t− 10)th(−t + 10) + 10(t− 10)

y2 + 0.25× 108th(−t + 10) + 0.5× 109H(t− 10)
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We can calculate the steady-state location of the rotation of the centre of a vehicle in
the vehicle body co-ordinate frame using the steady-state response Sk =

1
R AND S = L

COsteady =−Kx(k) (33)

and:
COsteady = Kx(k)+R sin α (34)

The dynamic rotation of the understeer vehicle travels away and forward as the
forward velocity of the vehicle increases at a constant steer angle. The rate of deployment
of the rotation centre is directly proportional to the rotational speed of the vehicle, so it
increases with displacement. The location of the centre of rotation in relation to the vehicle’s
body frame varies with speed. At the critical speed, we have ∝ = 0 and the dynamic centre
of rotation is on the y-axis. At the start of movement, the global frame G is fixed on the
ground and B corresponds with G. The B travels with the vehicle, yet the Z-axis remains
parallel at all times. As a result, the vehicle velocity vector in the global frame is:[

Fx
Fy

]
=

[
cosδ −sinδ
sinδ cosδ

]
+

[
Fx
FY

]
(35)

The body frame is given by velocity vector:

Bv =

[
vx
vy

]
(36)

Therefore, the global co-ordinates of the mass centre of the vehicle would be:

X = (RN + h)(∅−∅0) + ∆X (37)

and:
Y = (RN + h)(∅ + ∅0) + ∆Y (38)

When the steer angle is constant, the vehicle reaches a maximum speed of 70 m/s or
above and the vehicle will ultimately turn in on the clothoid route; the vehicle’s steady-state
centre is located.

CO1steady = −Rsin ∝
CO1steady = − 1

k sin ∝
(39)

and:
CO2steady = Rcosα

CO2steady = 1
R cosα

(40)

The global co-ordinates of the steady-state rotation centre are:

RN =
Rmajor

(
1− e)2(

1− e2∅)3/2 (41)

3.10. Look-Ahead Distance Effect

The effect of changing ks can be seen directly (the effect of the look-ahead distance
examined at the end). A significantly larger error is not caused by the smaller control
parameter, as was the case with the ks change. When the parameter is larger than the
optimum, a larger error occurs. There is a resemblance between the two, with a larger value
resulting in cutting corners and a smaller value resulting in a slower steering response.

The one parameter used is look-ahead distance. The impact of adjusting the look-ahead
distance must be weighed against two problems:

1. The vehicle is far from the path and this must be rectified.
2. Path maintenance, i.e., the vehicle is on the path and wants to remain there.
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If the controller has a small look-ahead distance parameter, the heading error affects
the steering reaction more than the predicted distance error. Due to the short look-ahead
distance, these errors start to increase at the same moment.

The result is overshoot.
The yef response is virtually identical but occurs later; thus, reducing this distance

parameter causes the vehicle to respond later to path changes, increasing the heading errors
(Figure 8).
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Figure 8. Small look-ahead distance.

If the controller has larger look-ahead distance parameters, the vehicle begins steering
before the real turn has been reached. When the vehicle is turned slightly to the right,
the look-ahead distance crosses the path, resetting the computations such that the error
distance yef is positive. This generates an oscillating response that decreases after a period
of time, only to return at the end of the corner.

Another observation is that the acceleration values of the controller are higher than the
simulation in both conditions (smaller look-ahead distance and larger look-ahead distance).
Once the value of ks was changed, they both shrank. This is explained by evaluating the
steering angle in Figure 9.
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We learned some of the limitations of our path tracking method over the last year
from the literature. The two main problems are connected to dynamics. The method
assumes optimal responses to desired curvatures, since it does not simulate the vehicle or
its actuators. This causes two problems:

1. A dramatic change in curvature might cause the vehicle to rear.
2. The vehicle’s path will not be stopped as soon as expected due to a first-order lag in

steering.

Table 1 presents the relationship between lateral acceleration and its consequences for
the passenger when travelling at different speeds.

The algorithm used to calculate the front wheel steering angle utilizing MPC preview
capabilities is depicted in Figure 10. The vehicle controller is made up of three compo-
nents: the reference generation, the MPC optimiser, and the vehicle model. The reference
generation module estimates the vehicle state and precomputes the reference yaw rate.
The anticipated vehicle condition at the following sample time will change depending
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on the lateral acceleration determined by the controller at every sampling time of every
prediction horizon. The reference yaw rate is then derived by the repeated process of
obtaining the ideal preview lateral acceleration and foretelling vehicle states. The changing
state variables at the next sampling period will then result in a new optimal preview lateral
acceleration. In general, in MPC, the state estimation is finished all at once but, when
the preview capability is used, the lateral vehicle speed and acceleration will change at
the next sample time. As a result, the rolling computation is essential for lowering the
cumulative error and obtaining more precise reference yaw rates (step1). The reference is
made up of two modules: the reference yaw rate and the reference lateral displacement. The
planned trajectory in the preview distance superimposed on the predictive horizon is used
to produce the reference yaw rate, whereas the reference lateral displacement is derived
from the reference route in the predictive horizon. When compared to the general MPC,
our previously developed learning-based lane detection approach [24] is applied in step 2
to lengthen the effective reference path without adding to the workload. In order to follow
the reference path, the MPC optimiser with input and output constraints calculates the
steering wheel angle, and the solution of the MPC-PC joint control method with constraints
is converted into a quadratic programming problem with constraints (steps 3 and 4).

Table 1. Consequences of lateral acceleration and its effects on passengers.

Lateral Acceleration Consequences

0 ≤ ay ≤ 1.7 Comfort

1.7 ≤ ay ≤ 3.7 Medium comfort

3.8 ≤ ay ≤ 5.1 Discomfort

5.1 ≤ ay ≤ above Uncomfortable
Sensors 2023, 23, x FOR PEER REVIEW 19 of 28 
 

 

 
Figure 10. Steps involved in the proposed MPC-PC strategy incorporating a learning-based lane 
detection algorithm. 

4. Experimental Results and Discussion 
4.1. Learning Based Lane Detection Simulation Model 

This research article mainly concentrates on mathematical model development from 
steady-state dynamic motion equations to find key parameters of the learning-based lane 
detection algorithm, such as yaw angle, sideslip, and steering angle. We have applied and 
tested this algorithm to develop a simulation model for lane detection for straight roads 
in our previous study [24], which has not been tested for clothoid-form roads. Therefore, 
we apply the same algorithm for simulation experiments for the clothoid-formed roads in 
the present study. More details on the evaluation of the algorithm and the procedure of 
the simulation model can be found in [24]. The image processing and lane detection algo-
rithm developed provides the inputs to the MPC controller. The middle line of the car is 
the centreline, which is used to compute the offset of the car position from this centreline 
and the yaw angle. This information is used by the MPC controller that tries to keep the 
car on the desired path on unstructured roads. In addition, the front view of the car is 
captured with a camera that is mounted on top of the car. Offset distance from the region 
of interest (ROI) and bird-eye view can be determined automatically and adaptively in 
every frame. Likewise, offset distance from the centreline is calculated and the yaw angle 
is adjusted so that algorithm detects the lane; so, the self-driving car can be controlled to 
stay within a lane on unstructured roads. These major steps involved are summarised and 
shown in Figure 11.  

Figure 10. Steps involved in the proposed MPC-PC strategy incorporating a learning-based lane
detection algorithm.



Sensors 2023, 23, 4085 19 of 27

4. Experimental Results and Discussion
4.1. Learning Based Lane Detection Simulation Model

This research article mainly concentrates on mathematical model development from
steady-state dynamic motion equations to find key parameters of the learning-based lane
detection algorithm, such as yaw angle, sideslip, and steering angle. We have applied and
tested this algorithm to develop a simulation model for lane detection for straight roads
in our previous study [24], which has not been tested for clothoid-form roads. Therefore,
we apply the same algorithm for simulation experiments for the clothoid-formed roads
in the present study. More details on the evaluation of the algorithm and the procedure
of the simulation model can be found in [24]. The image processing and lane detection
algorithm developed provides the inputs to the MPC controller. The middle line of the car
is the centreline, which is used to compute the offset of the car position from this centreline
and the yaw angle. This information is used by the MPC controller that tries to keep the car
on the desired path on unstructured roads. In addition, the front view of the car is captured
with a camera that is mounted on top of the car. Offset distance from the region of interest
(ROI) and bird-eye view can be determined automatically and adaptively in every frame.
Likewise, offset distance from the centreline is calculated and the yaw angle is adjusted so
that algorithm detects the lane; so, the self-driving car can be controlled to stay within a lane
on unstructured roads. These major steps involved are summarised and shown in Figure 11.
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4.2. Experiments

Experiments were conducted to ensure the precision and strength of the proposed
method. We analyse the impact of the parameters and compare the results from testing
the proposed networks in a wide range of climates and atmospheric conditions. In this
research, a lane identification algorithm was tested in a simulated driving environment
using videos of actual roads. Real-time footage captured by a car’s camera was used in
the experiment, and lane lines were identified in a variety of challenging scenarios (e.g.,
highways and structured and unstructured roads).

4.3. Datasets

Based on the TuSimple lane dataset (Global autonomous driving technology company,
San Diego, CA, USA) [25], BDD110K [26], KITTI [27], and our own lane dataset, we created
a set of data. In total, there are 3626 image sequences in the TuSimple lane dataset. In these
pictures, your forehead replaces the highway. Each sequence comprises 20 consecutive,
one-second-long frames. The lane ground truth labels are applied to the 20th image in each
sequence. Every 14th image in each sequence was labelled to expand the dataset (randomly
selected; Table 2). We added over 1600 image sequences of rural roads to our own lane
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dataset. Since then, the lane dataset has grown substantially richer in variety. In addition,
testing datasets were created using the interpolation technique [28]. This technique was
used to perform a dynamic analysis of the lane recognition system in the simulation test
experiment. Interpolation was originally developed as a method for testing software and
hardware prototypes.

Table 2. Training and testing datasets.

Type Primary and Secondary Data Labelled Images Labelled Frame

Training set BDD100K (Highway), KITTI, TuSimple
(Our dataset) Interpolation approach

547
312

14th and 21st
18th and 26th

Testing set Test 1
Test 2 1600 images -

In order to train the proposed network and correctly identify lanes in the last frame,
we used a sample of 1600 continuous images and the ground truth of the last frame as input.
The training set was built from the ground truth label on the 18th and 26th frames (which
were obtained in the previous step). Meanwhile, we sampled the input images at three
different strides, i.e., at an interval of one, two, and three frames, to fully adapt the proposed
network for lane detection at different driving speeds. Then, as shown in Table 2, three
distinct sampling strategies can be used for each ground truth label. In data augmentation,
operations such as rotation, flip, and crop are applied to generate a total of 1600 sequences,
with 1600 labelled images used for training. The input was randomly transformed into
new lighting conditions, expanding the dataset’s usefulness. Ten continuous images were
sampled for testing, with the goal of lane detection in the last frame and comparison to the
last frame’s ground truth. We developed a pair of totally separate test datasets.

There were two sets of tests. The first test set (TuSimple, BDD100K, and KITTI) was
designed for typical testing. The second set of testing data comprised realistic examples
taken from a variety of real-world scenarios in order to gauge robustness.

We also tested our method (proposed algorithm) with image sequences where the
driving environment changed dramatically, namely, a car coming into and out of structured
and unstructured roads on clothoid. The result shows the robustness of our method. We
compared the proposed methods to other methods reported in the TuSimple lane detection
competition to further confirm the excellent performance of the proposed methods. The
TuSimple, BDD100K dataset served as the basis for our selection of training data. In
contrast to the pixel-level testing standard we used previously, in this case, we adhered to
the TuSimple, BDD100K testing standard, sparsely sampling the prediction points. Since
crop and resize were used during the preprocessing phase of creating our dataset, we first
mapped them to their original image size. Figure 11 shows that our FN and FP are very
competitive, with the best results, and have the highest accuracy of all methods tested. The
results from the TuSimple competition show that the proposed framework performs well
when compared to state-of-the-art methods. We also used our dataset (interpolation) to
train and test our networks and Pan’s approach, both with and without additional training
data. These methods achieve marginally lower accuracy, higher FP, and lower FN when no
supplemental data are used.

4.4. Implementation of Details

The resolution of the images used for lane detection in the experiments was 240 × 560.
Windows 10 64-bit, MATLAB (2022a), and the Driving Scenario Designer program were
all part of the simulation test environment. The system had a 3.20 GHz Intel Core i5-6000
CPU, 16 GB of RAM, and a two-terabyte hard drive. The model predictive control (MPC)
was built using the MATLAB Model Predictive Control ToolboxTM, which includes the
necessary functions, an app, and Simulink® blocks. Different testing conditions, such as
wet, cloudy, and sunny scenes, as well as a clothoid road, were used to verify the relevancy
of the low-resolution images and the effectiveness of the proposed detection method.
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4.5. Robustness of Lane Detection and Tracking Algorithm

Even though the proposed lane detection model did well on the previous test dataset,
we still needed to test how well it works in real life. This is because even a small mistake
can make it more likely that a car accident will occur. A good lane detection model should
be able to handle a wide range of driving situations, from everyday scenarios, such as
driving on a city street or highway, to more difficult ones, such as driving on a rural road
with poor lighting and vehicles in the way on clothoid roads.

A new dataset consisting of simulated and actual driving scenarios was used to
test the system’s reliability. As explained in the dataset section, test set #2 consisted of
1600 images with lanes in highway scenes (structured and unstructured roads). This
dataset was recorded by a data recorder (monocular camera mounted on the top of the
vehicle) at different heights, inside and outside the front windscreen, in different weather
conditions and generated ground truth using an interpolation approach (linear and cubic
spine interpolation). It is a large and difficult test set, with some lanes that are so hard
to see that even humans fail to identify them. Figure 12 shows the lane detection model
developed to evaluate the performance of the proposed algorithm. Table 3 shows the
accuracy of the proposed algorithm at different times.
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Table 3. Lane detection accuracy of the algorithm under different scenarios.

Video
Sequence

No. of
Positive
Samples

No. of
Negative
Samples

No. of True
Negatives

No. of True
Positives

True Negative
Rate

True Positive
Rate Accuracy

1. Day time 1504 34 05 03 1% 99% 99.7%

2. Night time 1145 56 07 05 1.4% 98.06% 97.9%

3. Rainy 1222 68 09 06 1.6% 98.07% 97.3%

4. (Day time) 1404 57 08 09 2.3% 97.07% 94.7%

5. (Night time) 1290 78 11 07 0.4% 99.06% 100%

Figure 12 shows how effectively the suggested method worked in different settings.
With a mean processing time (per frame) of 20 ms, the lane detection accuracy reached 99%
(milliseconds). Overall, the accuracy varies from 98.7% to 99%, with detection times ranging
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from 20 ms to 22 ms. In comparison to lane detection in the driving video sequences, the mean
lane detection rate was marginally lower and the mean time interval (per frame) was much
longer. However, in the BDD100K, TuSimple, and KITTI datasets, the suggested approach
still outperformed the competition while maintaining adequate accuracy and adaptability. An
intersection detection matrix was used to evaluate the performance of the algorithm.

Figures 12 and 13a,c show some of the proposed algorithm’s results before any post-
processing. Lanes in difficult situations are identified perfectly, even when the lanes are
hidden by cars, shadows, or dirt and when the lighting and road conditions are different.
In some extreme situations, such as when all of the lanes are covered by cars and shadows
or when the lanes are slanted because of seams in the road structure, etc., the proposed
models can still identify them. The proposed models also work well with different camera
angles and positions. As shown in Table 4, test 3 is more accurate than the others in all
scenes by a large margin and obtains the highest F1 values in most scenes, which shows
that the proposed models are superior.
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Table 4. Performance evaluation of the algorithm.

Algorithm
Test Accuracy

Recall F1-Measure Running Time Precision
Clothoid Highway Rural

(Test#1) 97.35% 97.67% 0.985 0.892 0.0043 0.786

(Test#2) 98.46% 97.98% 0.974 0.895 0.0041 0.787

(Test#3) 98.37% 98.56% 0.948 0.897 0.0049 0.863

We also tested our methods with image sequences that show considerable changes
in the driving environment, such as when a car goes into and out of the shade. Figure 14
shows how well our method works.

Table 4 shows that the accuracy and F1 measure increase when more consecutive
images are used as input with the same sampling stride. The benefits of the proposed
network design using multiple consecutive images as input are demonstrated. The methods
that take in more than one image are much better than the methods that only take in one
image. As the stride length becomes longer, the performance tends to stay the same. For
example, going from four frames to five frames does not improve the performance as much
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as going from two frames to three frames. This could be because information from frames
farther back is less useful for predicting and identifying lanes than information from frames
closer to the present. Then, we examined how the other parameter, which is the sampling
step between two consecutive input images, affects the outcome. From Table 4, we can
see that when the number of frames stays the same, the proposed models perform very
similarly at different sampling rates. In fact, the effect of sampling stride can only be seen
in the results down to the fifth decimal place, meaning that the sampling stride does not
seem to have much of an effect.
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The developed lane detection approach was compared with other algorithms pub-
lished in the current literature to demonstrate its superiority. In this study, the proposed
algorithm was contrasted with learning-based methods and traditional detection techniques
(Table 5). Similarly, in [29–33], the suggested algorithm was used to analyse all pertinent
lane recognition tests on the primary and secondary dataset on various road geometries.
In addition to providing a thorough performance comparison for accuracy measures, the
results reveal that the proposed algorithm, which is based on a learning-based approach,
performs better than more conventional methods, demonstrating the robustness of the
proposed system in this research work.
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Table 5. Comparison of our results with existing literature.

Methods Road Geometry Accuracy Rate
(Exiting Literature)

Accuracy Rate
(This Study)

[29] Traditional method Structured road <97.00% 97.67%

[30] Spatial Ray Feature extractions Straight road 94.40% 97.98%

[31] Hough transform Structured road 95.70% 98.56%

[32] Fast Draw Resnet Structured road 95.2% 99.7%

[33] ConvLSTM (Deep learning) Unstructured road 97.3% 97.9%

4.6. Visual Examination

A high-quality neural network for semantic segmentation should be able to accurately
divide an input image into discrete regions, both at the coarse and fine levels of detail. The
model is required to accurately predict the total number of lanes in the images at the coarse
level. Lane detection processing should take care to avoid two specific types of detection
errors. Both missing detection and excessive detection result in incorrect predictions of
background objects as lanes, with the former occurring more frequently. These two types of
detection errors will have a negative and far-reaching impact on ADAS judgement because
they will lead to discrepancies in the predicted and actual number of lanes.

4.7. Running Time

Due to the proposed models’ use of time-series data, which requires processing a
series of images as input, the proposed models may be more resource-intensive to run.
When compared to other lane detection models that only process a single image, which uses
an image segmentation block, such as SegNet and U-Net [34,35], the proposed algorithm
can still reduce the processing time by 20–22 ms when SegNet and U-Net is not applied
to all 1600 frames. If the proposed methods are implemented online, where the encoder
network only needs to process the current frame because the previous frames have already
been tested, the running time can be significantly reduced. Due to the fact that GPUs can
run the ConvLSTM block in parallel, the ConvLSTM model is one of the most interesting
deep-learning blocks that is used to predict next-frame video or image, the per-frame
processing time is only about 20–22 ms, and this is almost identical for models that only
use a single image as input.

4.8. Robustness

While the proposed lane detection model has shown promising results on previous test
datasets, its robustness still needs to be verified. This is because any misidentification, no
matter how slight, can raise the probability of an accident. To be effective, a lane detection
model must be adaptable to a wide range of driving conditions, from the typical urban road
and highway to the more difficult rural roads, poor illumination, and vehicle occlusion
on both structured and unstructured roads. For the purpose of testing robustness, we
employed a newly created dataset based on interpolation and secondary data (BDD100K
dataset) that contained numerous actual driving scenes. The data in this set were recorded
by a device mounted on the dashboard at varying heights, both inside and outside the front
windshield, and in a variety of climatic conditions. Detecting some lanes is difficult enough
for human eyes, making this a comprehensive and difficult test dataset.

5. Conclusions

This study proposes a novel steady-state dynamic control for robust lane recognition
in a driving situation for clothoid-form roads. Two different situations are offered and ex-
amined to analyse the features of an automobile on a clothoid road: constant steering angle
and variable longitudinal velocity, and variable steering angle and variable longitudinal
velocity. The proposed network architecture is built on a framework based on learning
that receives several continuous frames as input and predicts the lane of the current frame
using semantic segmentation.
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Simulation tests for the lane detection approach were performed using a road driving
video in Melbourne, Australia, as well as the Berkeley DeepDrive Industrial Consortium’s
BDD100K dataset, TuSimple, and KITTI dataset. With our suggested approach, the mean
detection accuracy varies from 97% to 99% and the detection time ranges from 20 to 22 ms
under various driving circumstances. In terms of efficiency and overall performance in
real time, as well as detection efficiency and anti-interference abilities, the suggested lane
detection algorithm was found to be superior to traditional techniques and learning-based
approaches. Both the accuracy and mean time interval were significantly improved. When
compared to existing controllers, the performance of the suggested technique demonstrates
a considerable reduction in tracking errors. The suggested technique contributes by estimat-
ing the kind of future sharp curves and computing the proper speed and steering angle for
each curve to drive the autonomous vehicle, which is the desired aim of any autonomous
vehicle in real-world driving situations. When the route curvatures are normal, the vehicle
maintains a steady speed by appropriately managing the steering angle. If the impending
curves are sharp, the car slows down before approaching them and achieves the correct
speed and steering angle to avoid lateral mistakes.

In terms of lane identification accuracy and algorithm time reductions, the suggested
lane detection algorithm displayed considerable gains. In addition to playing an important
role in terms of driving assistance, our algorithm significantly enhanced the driving safety
of autonomous vehicles in real-world driving conditions and effectively met the real-time
goals of self-driving cars. Furthermore, the lane recognition algorithm’s inclusiveness
and accuracy might be further optimised and improved to boost the method’s overall
performance. First and foremost, the whole model should be tested using a simulator that
simulates real-world road settings utilising input photographs and delivering feedback
from the vehicle model. The suggested model outperformed existing models, with higher
precision, recall, and accuracy values. Furthermore, the proposed model was tested on a
dataset with very difficult driving circumstances to demonstrate its robustness. The results
demonstrate that the proposed models can recognise lanes in a range of situations while
avoiding false positives. Longer sequences of inputs were demonstrated to improve param-
eter analysis performance, confirming the idea that many frames are more advantageous
than a single image for lane identification. We want to enhance the lane detection system
in the future by including lane fitting into the proposed framework. As a consequence, the
identified lanes will be smoother and more consistent.
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