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Abstract: Reverse-time migration (RTM) has the advantage that it can handle steep dipping
structures and offer high-resolution images of the complex subsurface. Nevertheless, there are
some limitations to the chosen initial model, aperture illumination and computation efficiency.
RTM has a strong dependency on the initial velocity model. The RTM result image will perform
poorly if the input background velocity model is inaccurate. One solution is to apply least-squares
reverse-time migration (LSRTM), which updates the reflectivity and suppresses artifacts through
iterations. However, the output resolution still depends heavily on the input and accuracy of
the velocity model, even more than for standard RTM. For the aperture limitation, RTM with
multiple reflections (RTMM) is instrumental in improving the illumination but will generate
crosstalks because of the interference between different orders of multiples. We proposed a
method based on a convolutional neural network (CNN) that behaves like a filter applying the
inverse of the Hessian. This approach can learn patterns representing the relation between the
reflectivity obtained through RTMM and the true reflectivity obtained from velocity models
through a residual U-Net with an identity mapping. Once trained, this neural network can be
used to enhance the quality of RTMM images. Numerical experiments show that RTMM-CNN can
recover major structures and thin layers with higher resolution and improved accuracy compared
with the RTM-CNN method. Additionally, the proposed method demonstrates a significant degree
of generalizability across diverse geology models, encompassing complex thin layers, salt bodies,
folds, and faults. Moreover, The computational efficiency of the method is demonstrated by its
lower computational cost compared with LSRTM.

Keywords: convolutional neural network; reverse-time migration; surface-related multiples

1. Introduction

Reverse-time migration (RTM) [1–4] can handle steep geologic structure flanks and
lateral velocity variations. However, it suffers from coherent or incoherent artifacts in
diving and backscattered waves, as well as low resolution and illumination for deep
structure when given insufficient source-receiver offsets. A solution to suppress the artifact
issue is applying least-squares reverse-time migration (LSRTM) [5], which uses RTM
as the forward modeling and inverse engine to minimize amplitude differences between
observed data and predicted data and updates the reflectivity iteratively. Extensive research
on least-squares imaging such as compressive sensing [6], uncertainty quantification [7],
sparsity constraints [8], curvelet-domain sparse constraint [9], and multiplicative Cauchy
constraint [10] help to improve imaging.

Although LSRTM improves illumination with respect to RTM, it still has a limited
aperture problem, since it uses only primary reflections. Multiple migration used in
imaging [11] and the RTM (RTMM) [12–15] can help to broaden the subsurface illumination
and refine the accuracy and resolution.
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Another way to enhance imaging quality is through deep learning. Many researchers
have worked on this approach and addressed accuracy improvement and artifact suppres-
sion in seismic processing. For example, ground roll attenuation [16,17], seismic inversion
applications [18–21], transfer learning applications in modeling and imaging [22], and
generative neural networks in inverse problems [23,24] proposed to use the multilayered
convolutional neural network (CNN) [25–27] as the solution to the problem of sparse least-
squares migration (LSM) to suppress coherent and incoherent noise in migration results.
For deep learning in RTM and least-squares RTM, [28] proposed LSRTM with the adaptive
moment estimation in the frequency domain; Ref. [29] applied a generative adversarial
network on RTM images with a velocity attribute conditioner to estimate the inverse of
the Hessian and match with least-squares migrated images; Ref. [30] also used CNNs
on dip-angle domain elastic reverse-time migration to improve image quality; Ref. [31]
introduced the idea on minibatch LSRTM, and Torres and Sacchi [32,33] used blocks of
residual CNN on LSRTM with a preconditioned conjugate gradient least-squares algorithm
(CGLS) to enhance image resolution; Ref. [34] used deep learning for accelerating prestack
correlative LSRTM. These methods mitigate artifacts and foster resolution by training a
machine learning network.

Exploiting the two facts that multiple reflections can enhance the imaging bandwidth
and a convolutional neural network (CNN) can learn the lithologic structure from different
feature maps, we propose a CNN-based RTM with the multiple reflections energy method
(RTMM-CNN). In this approach, we use a U-Net [35] acting as a filter to learn the reflection
boundaries from the RTMM results, and we also make the filter learn the mapping of
multiple energy. We use the U-Net-based RTM image as the baseline model without
adding multiple energy (RTM-CNN). Models have two components: preconditioning
and fine-tuning. The preconditioning constrains the parameter range in the fine-tuned
models, improving the image quality. Results show that the proposed method can obtain
the reflectivity prediction with extended illumination, refined structural boundaries, high
accuracy, and enhanced resolution.

2. Methods

Before diving into the theory part, some basic geophysical variables need to be ex-
plained. Seismic waves, generated from the simulation of sources on the surface, are
extrapolated downwards into the subsurface. When they encounter some discontinuities
of physical properties, reflection and transmission waves are generated on the interfaces.

These discontinuities are called seismic impedance discontinuities. They are the
product of subsurface velocity and density and are components of the reflectivity equation
to generate wavefield perturbations.

Z = ρv (1)

where ρ is the density of rock and v denotes the velocity of that rock.
The goal of seismic imaging is to estimate, for each point of the subsurface, a pa-

rameter called reflection coefficient, or reflectivity. This parameter indicates the ratio of
waves reflected and transmitted through a discontinuity media, compared with incident
waves. For an acoustic normal incident wave situation, the expression of the reflection
coefficient is

R =
Z2 − Z1

Z2 + Z1
(2)

where Z1 and Z2 mean the impedance of the first and second medium, respectively. Thus,
the target of seismic migration and imaging is to obtain the approximation of reflectivity
and interpret subsurface structures by using collected wavefields.
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2.1. Four Scenarios in Reverse-Time Migration

Reverse-time migration involves two wavefields. The source wavefield produces
the wave propagation from shots, and the receiver wavefield reproduces the time-
reverse wave propagation from receivers (which is acquired data). Since the cross-
correlation of these two wavefields generates the desired reflectivity, it is essential to
make them physically consistent. The shot wavefield will be limited mainly by our
knowledge of velocities. Since velocities are usually not known at a level of detail to
create internal reflections, we usually deal with what is called the Born wavefield (no
internal reflections). This wavefield may or may not contain surface multiples depending
on how we perform modeling (for example, using or not using an absorbing boundary
condition on the surface). For the receiver wavefield, however, there is a limitation not
only on the velocities (the same as for the source wavefield) but also on what the data
contain (were internal or external multiples attenuated before migration?). There are
several possibilities for the relationship between these wavefields. For this paper, we
can separate the following four scenarios, although only scenarios 1, 3, and 4 are critical
for the following discussions:

• Scenario 1: Smooth or background velocity input to RTM and absorbing boundary
conditions on the surface. Multiples were attenuated from data before migration. This
scenario is the typical case in real data applications. The forward wavefield will be
Born modeling (no internal multiples)

• Scenario 2: True velocity input to RTM and data without multiples. This scenario is
not practical, because true velocities are not known at that level of detail. There is an
inconsistency between forward wavefields (which will have all multiples) and reverse
wavefields (which will have some attenuated multiples and some generated during
backward propagation). We leave this scenario out of the discussion.

• Scenario 3: Smooth velocity input to RTM and data with multiples. This scenario is
our goal, because it is close to reality (only the background model is known), and data
will contain multiples (unless attenuated explicitly). These multiples will provide
additional illumination for RTM. Nonetheless, there is an inconsistency between
wavefields that has to be addressed.

• Scenario 4: True velocity input to RTM and data with multiples. As for this scenario,
it is also hard to perform in reality, but it has an ideal result that combines high-
frequency bandwidth and multiple reflections, which makes migrated results with
high resolution and insight for subsurface structure interpretation. We try to build a
neural network on the basis of scenario 3 and make the result close to scenario 4.

From Figure 1, we can see that RTM in scenario 1 can adequately recover the structure
of a relatively simple thrust model. As expected, the illumination is stronger on the shallow
part of the thrust structure than on the deeper one. Significant shallow depth illumination is
the typical RTM result expected in practice. Although there are some difficulties to achieve
in practical conditions, the RTM of scenario 4 is an ideal result. The thrust structure is
estimated with high resolution and accuracy, and the illumination is very good for shallow
and deep reflectors. The RTM of scenario 3 seems somewhat better than in scenario 1
but worse than in scenario 4. The illumination is not inadequate for the deeper geological
structure. However, the more complicated the model, the more deterioration of the image
appears, as the crosstalk will introduce more artifacts. If the thrust model had many
reflectors in between, the crosstalk would be significantly visible, and the image would be
poor. The situation above is easy to obtain in practical applications if the multiples are not
removed from the data before migration.
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(a) (b) (c)

(d) (e) (f)

Figure 1. (a) RTM of scenario 1 using smoothed background velocity. (b) RTM of scenario 4 using
true velocity as the input with multiple reflections. (c) RTM of scenario 3 using smoothed velocity
with multiple energy. (d) Shot illumination of scenario 1. (e) Shot illumination of scenario 4. (f) Shot
illumination of scenario 3.

2.2. Wavefield Inconsistency

As mentioned above, an RTM with a smooth velocity and data with multiples (scenario 3)
will have inconsistency between wavefields. The forward wavefield will consist of traveltimes
from primaries, surface multiples, and internal multiples during the imaging process. How-
ever, the reverse wavefield will contain primaries and attenuated multiples due to the smooth
background velocity model, which does not generate internal reflections. Since the velocity
model lacks the information to unravel the traveltimes for multiples properly, the receiver
wavefield will incorrectly cross-correlate with the source wavefield, and crosstalk noise will
occur [5,12].

To mitigate the traveltime mismatch, previous work, for example, (Schuster [36,37])
and Jiang et al. [38], proposed using modified Green’s functions to migrate multiples.
The method above constructs the Kirchhoff imaging condition for multiples by combining
traveltime picked from a shifted source wavelet and obtained data, which is based on
Fermat’s principle. It assumes that the traveltimes of a lower-order event can be picked (or
windowed in the prestack data) in order to image a higher-order event. Another essential
factor is that the multiples’ energy must be sufficient for picking.

To alleviate the wavefield inconsistency and traveltime mismatch in the reverse-time
migration result, our proposed method lets the neural network learn the traveltime mis-
match and correct the inconsistency iteratively during training. Certainly, this is not a trivial
assumption. Like other deep learning applications, it is impossible to provide a justification
or proof that this would be the case, and experimentation is critical. The benefit is that
we can take advantage of all the receiver’s information, including primaries, multiples,
or crosstalks (if they help improve reflection coefficient information). Thus, the extended
illumination brought from multiple reflections can help us improve the subsurface image
result. A smoothed reflectivity model from background velocity and corresponding RTM
outcome with multiple energy are considered the input channels of this neural network.
In other words, we want to try to obtain high-resolution results of scenario 4 from scenario 3.
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2.3. RTM with Multiples

The workflow of reverse-time migration is given by a forward- and reversed-time
propagation of source and receiver wavefields, respectively, followed by an imaging condi-
tion. As multiple reflections are considered in the RTM process, free surface boundaries
need to add to the top of velocity models.

Similar to Liu et al. [12], using primaries P(x, z, t), we apply the total observations
(P(x, z, t) + M(x, z, t)) as the virtual source to generate multiples M′(x, z, t), where M(x, z, t)
represents internal multiples generated from the first forward modeling. Then, multiples
M′(x, z, t) have the total wavefields, including primaries and surface and internal multiples.
During the imaging process, those virtual-source wavefields will be forward-extrapolated
into the subsurface as PF(x, z, t) + MF(x, z, t). The newly acquired data M′(x, z, t) will be
backpropagated into the subsurface and considered as our reversed-time receiver wave-
fields M′B(x, z, t).

A zero-lag cross-correlation imaging condition based on the virtual-source and receiver
wavefields Liu et al. [12] can be applied:

I(x, z) =
tmax

∑
t=1

(PF(x, z, t) + MF(x, z, t)) ∗M′B(x, z, t) (3)

Even though the imaging condition generates crosstalks, the trained neural network
can learn patterns and features from the relationship between the migrated result and the
true reflectivity model. In that case, the neural network can exploit the benefits of multiple
energy and mitigate artifacts in the image.

Figure 2 shows the Pluto migration images with respect to a background reflectivity by
applying RTM (scenario 1, Figure 2c), RTMM (scenario 3, Figure 2d), and RTMM with true
band-limited reflectivity (scenario 4, Figure 2e), respectively. The migrated image using
multiple energy (Figure 2d) can help extend horizontal-layer illumination, recover deep
thin-layer structures and provide lateral continuity structural information. It is beneficial
for a neural network to identify reflection events using multiple reflections in the migration.
In the next section, we see that reflectivity predictions can be improved by using migration
velocity models as constraints introduced into the network in a secondary channel.

2.4. A U-Net-Based RTM with Multiples

Given a particular type of input in deep learning, we train a multilayer network
to predict the desired outcome. A series of weights are calculated to map the inputs
to the desired output during training. Although, essentially, this is just a geometrical
mapping, the transformation contains both linear (the weights) and nonlinear elements (the
activation functions), which, added to a large number of weights, have the potential to take
into account many complex effects. By choosing the types of inputs and the desired outputs
(known as labels), we can make the network learn any particular mapping we need. There
are many limitations on what this type of geometrical transformation can learn, but more
importantly, there are limitations on the generality of this mapping. In general, it is difficult
to say whether a particular mapping will succeed, and we often have to rely on numerical
experiments to achieve a conclusion. In this paper, we propose to use a U-Net (Figure 3) to
map the outcomes of a reverse-time migration obtained from data with multiples and a
migration velocity model (smooth) to a well-resolved image (RTMM-CNN). The reflectivity
obtained from the migration velocity is incorporated as a physical constraint to provide
low-frequency information to the network.
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(a) (b)

(c) (d)

(e) (f)

Figure 2. Pluto example: (a) background reflectivity, (b) true reflectivity, (c) RTM image without
multiple energy, (d) RTM image with multiple energy, (e) RTMM with true band-limited reflectivity,
and (f) true velocity model.

U-Net [35] is an encoder–decoder approach commonly used for image segmentation
(pixel classification), but we utilize it here for a regression problem. In this paper, we
develop a U-Net (Figure 3) with additional multilayer convolutional blocks and skip
connections to learn from residuals and patterns in the data. Convolutional blocks are
used for capturing detailed input features. For example, they help distinguish signals
and noise from images with multiple reflection information. The network downsamples
the input data into small sizes for the encoder part. It reduces its dimensionality to
learn key features of different reflectors from RTMM images, smoothed initial reflectivity,
and accurate reflectivity labels. Then, these subsurface key features are upsampled to the
original dimensions by transposed convolutions. Additional skip connections work as
identity mapping because the signal could be directly propagated from one unit to any
other unit [39]. These identity shortcut connections help to smooth key feature propagation
and strengthen the training result with weak constraints. For the output layer, a linear
activation function is used for obtaining positive and negative prediction values, which
obey the nature of reflectivity amplitude.

The U-Net provides a mechanism to design a prediction filter from our training data
(the RTM images and additional support channels) to the labels (the simulated reflectivity
obtained from true velocities). This U-Net operator acts similarly to an image domain
LSRTM, but the inverse of the Hessian is calculated not from inverse filtering but by
training. In comparison, LSRTM in the image domain yields a high-definition image by
removing the effect of the Hessian from the migrated image. The calculation of the inverse
of the Hessian filter can be calculated with different methods [40–45], but for simplicity, we
can summarize as follows:

m∗ = arg min
m
{1

2
||Γm−mmig||22}. (4)
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Figure 3. Detailed workflow of the U-net architecture. Each blue box represents a multichannel fea-
ture. The yellow boxes stand for the concatenated copied features from the encoder part. The arrows
between boxes correspond to the different operations, as shown in the right legend. The number of
channels is located on top of the box and the image dimensionality is denoted on the left or right edge.

A formal solution to Equation (4) is

m∗ = Γ−1mmig = Γ−1(LTd), (5)

Γ = LTL, (6)

where Γ−1 is the inverse Hessian, LT is the adjoint operator, and d represents the observed
seismic data. From Equation (5), we can find that prediction m∗ is generated from the
deblurring process of the first migrated image mmig by the inverse of the Hessian matrix Γ.

Similarly, a neural network, U-Net in our case, can be used as an approximate inverse
Hessian [29,32] to determine the imaging result. The benefit is that there is no need to
compute the expensive inverse Hessian operator. The Hessian contains the effects of limited
acquisition aperture, uneven illumination, and band-limited source wavelets. These effects
compromise the goal of obtaining a true-amplitude and high-resolution reflectivity [45].
The feed-forward procedure in our proposed method for a multilayer CNN is Γunet, and the
solution can be determined as follows, depending on the different scenarios:

Workflow 1 : mpred1 = Γunet_ f ine_tuned_work f low2(mrtm_scenario1, msmooth), (7)

Workflow 2 : mpred2 = Γunet_work f low2(mrtm_scenario2, mtrue), (8)

Workflow 3 : mpred3 = Γunet_ f ine_tuned_work f low4(mrtmm_scenario3, msmooth), (9)

Workflow 4 : mpred4 = Γunet_work f low4(mrtmm_scenario4, mtrue), (10)

where mrtm means RTM image, mrtmm is the RTMM image, and mpred represents the output
reflectivity coefficient prediction. The subscripts after mrtm and mrtmm correspond to the
different scenarios mentioned before. For instance, mrtm_scenario1 represents the RTM image
from scenario 1. The neural networks used in the workflows are set individually depending
on the preconditioning or final imaging demand. For example, the neural network model
generated from workflow 2 (Γunet_work f low2) is used for preconditioning, because its inputs
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are the true reflectivity and the RTM image from scenario 2. Then, this saved model is
treated as a pretrained model for workflow 1. After fine-tuning, workflow 1 will obtain
a final training model Γunet_ f ine_tuned_work f low2. A detailed explanation for decisions about
preconditioning and final imaging models is delineated in a later section. As for mtrue and
msmooth, the former denotes the true band-limited reflectivity, which is used as our labels
during training; the latter is an initial reflectivity calculated from the background velocity
used for migration. This reflectivity contains only low-frequency information, similar to
what migration normally uses, but uses it as an additional input channel, providing a
supplementary constraint for the network. The workflows correspond to scenarios 1 to 4,
mentioned previously.

For a detailed U-Net architecture (Tables 1 and 2), there are 45 layers for encoding
and 44 layers for decoding, respectively. In the contracting path, each convolutional block
has three convolutional layers for the first four blocks. The last two blocks contain two
convolutional layers. After each block, the maxpooling layer, with a size of 2 by 2 cells,
halves the image’s size and increases the neural network’s depth. Table 1 indicates that,
at the end of the encoding part, the image size is reduced from 256× 256× 2 to 4× 4× 512
by using the convolutional blocks and maxpooling layers. The number of channels increases
from 2 to 512. On the other side, in the expansive path, extracted features are upscaled by
transposed convolutional layers and back to the image’s original size. Following transposed
convolution, the resized image is concatenated with an image from the contracting path
sharing the same size. Skip connection combines previous image information and makes a
stable and accurate prediction. Before outputting the prediction, another skip connection
layer is added to obtain a precise result.

Table 1. U-net architecture encoding.

Layer Number Type Size Output

1 Input 256 × 256 × 2

2 Conv2D 16 filters 256 × 256 × 16

3 Batch Normalization 256 × 256 × 16

4 Conv2D 16 filters 256 × 256 × 16

5 Batch Normalization 256 × 256 × 16

6 Conv2D 16 filters 256 × 256 × 16

7 Batch Normalization 256 × 256 × 16

8 Dropout 20% 256 × 256 × 16

9 MaxPooling2D 2 × 2 128 × 128 × 16

10 Conv2D 32 filters 128 × 128 × 32

11 Batch Normalization 128 × 128 × 32

12 Conv2D 32 filters 128 × 128 × 32

13 Batch Normalization 128 × 128 × 32

14 Conv2D 32 filters 128 × 128 × 32

15 Batch Normalization 128 × 128 × 32

16 Dropout 20% 128 × 128 × 32

17 MaxPooling2D 2 × 2 64 × 64 × 32

18 Conv2D 64 filters 64 × 64 × 64

19 Batch Normalization 64 × 64 × 64

20 Conv2D 64 filters 64 × 64 × 64
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Table 1. Cont.

Layer Number Type Size Output

21 Batch Normalization 64 × 64 × 64

22 Conv2D 64 filters 64 × 64 × 64

23 Batch Normalization 64 × 64 × 64

24 Dropout 20% 64 × 64 × 64

25 MaxPooling2D 2 × 2 32 × 32 × 64

26 Conv2D 128 filters 32 × 32 × 128

27 Batch Normalization 32 × 32 × 128

28 Conv2D 128 filters 32 × 32 × 128

29 Batch Normalization 32 × 32 × 128

30 Conv2D 128 filters 32 × 32 × 128

31 Batch Normalization 32 × 32 × 128

32 Dropout 20% 32 × 32 × 128

33 MaxPooling2D 2 × 2 16 × 16 × 128

34 Conv2D 256 filters 16 × 16 × 256

35 Batch Normalization 16 × 16 × 256

36 Conv2D 256 filters 16 × 16 × 256

37 Batch Normalization 16 × 16 × 256

38 Dropout 20% 16 × 16 × 256

39 MaxPooling2D 2 × 2 8 × 8 × 256

40 Conv2D 512 filters 8 × 8 × 512

41 Batch Normalization 8 × 8 × 512

42 Conv2D 512 filters 8 × 8 × 512

43 Batch Normalization 8 × 8 × 512

44 Dropout 20% 8 × 8 × 512

45 MaxPooling2D 2 × 2 4 × 4 × 512

Table 2. U-net architecture decoding.

Layer Number Type Size Output

1 Conv2D Transpose 256 filters 8 × 8 × 256

2 Batch Normalization 8 × 8 × 256

3 Concatenate 8 × 8 × 768

4 Conv2D Transpose 256 filters 8 × 8 × 256

5 Batch Normalization 8 × 8 × 256

6 Conv2D Transpose 256 filters 8 × 8 × 256

7 Batch Normalization 8 × 8 × 256

8 Conv2D Transpose 256 filters 16 × 16 × 256

9 Batch Normalization 16 × 16 × 256

10 Concatenate 16 × 16 × 512

11 Conv2D Transpose 256 filters 16 × 16 × 256

12 Batch Normalization 16 × 16 × 256
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Table 2. Cont.

Layer Number Type Size Output

13 Conv2D Transpose 256 filters 16 × 16 × 256

14 Batch Normalization 16 × 16 × 256

15 Conv2D Transpose 128 filters 32 × 32 × 128

16 Batch Normalization 32 × 32 × 128

17 Concatenate 32 × 32 × 256

18 Conv2D Transpose 128 filters 32 × 32 × 128

19 Batch Normalization 32 × 32 × 128

20 Conv2D Transpose 128 filters 32 × 32 × 128

21 Batch Normalization 32 × 32 × 128

22 Conv2D Transpose 64 filters 64 × 64 × 64

23 Batch Normalization 64 × 64 × 64

24 Concatenate 64 × 64 × 128

25 Conv2D Transpose 64 filters 64 × 64 × 64

26 Batch Normalization 64 × 64 × 64

27 Conv2D Transpose 64 filters 64 × 64 × 64

28 Batch Normalization 64 × 64 × 64

29 Conv2D Transpose 32 filters 128 × 128 × 32

30 Batch Normalization 128 × 128 × 32

31 Concatenate 128 × 128 × 64

32 Conv2D Transpose 32 filters 128 × 128 × 32

33 Batch Normalization 128 × 128 × 32

34 Conv2D Transpose 32 filters 128 × 128 × 32

35 Batch Normalization 128 × 128 × 32

36 Conv2D Transpose 16 filters 256 × 256 × 16

37 Batch Normalization 256 × 256 × 16

38 Concatenate 256 × 256 × 32

39 Conv2D Transpose 16 filters 256 × 256 × 16

40 Batch Normalization 256 × 256 × 16

41 Conv2D Transpose 16 filters 256 × 256 × 16

42 Batch Normalization 256 × 256 × 16

43 Concatenate 256 × 256 × 16

44 Conv2D 1 filter 256 × 256 × 1

Mean Squared Error (MSE)

As estimating the reflectivity coefficient from a seismic migration profile with an initial
reflectivity model is a regression problem, a mean squared error (MSE) loss is used to
evaluate the model performance and calculate the gradient:

MSE =
1
n

n

∑
i=1

(mi
pred −mi

true)
2, (11)

where n is the total number of samples, mpred is derived from the workflows above
(Equations (7)–(10)), and mtrue denotes the true reflectivity model.
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Peak signal-to-noise ratio (PSNR)

A peak signal-to-noise ratio (PSNR) is used to evaluate the model performance:

PSNR = 20 log10(
MAXI√

MSE
), (12)

where MAXI denotes the maximum possible pixel value of the image, and MSE is the mean
squared error based on the Equation (11).

2.5. Neural Network Plan for Four Workflows

In this section, we introduce in detail four workflows that are defined in the previous
section. To train the neural network and make it learn patterns from both accurate and
smoothed inputs, workflows 1 and 3 are fine-tuned based on the neural networks obtained
from workflows 2 and 4. The networks trained by workflows 2 and 4 act as initialization
and regularization constraints. The pretraining process can act as a regularizer [46] to
introduce a helpful prior and implicitly minimize the appropriate parameters’ range for the
next steps of fine-tuning training. For high-level abstraction learning in a deep architecture,
the regularizer imposes some constraints on the parameters to direct the minima where the
cost function seeks. As in workflows 2 and 4, true reflectivity is used as one input channel.
This helps to reduce the neural network parameter space and provides fine-tuned neural
networks in workflows 1 and 3 with an initial model to train on. Even though the input
channel changes to a smoothed background reflectivity, the neural network will learn the
critical reflector information. Furthermore, the pretrained models prevent networks 1 and 3
from creating new reflectors or artifacts not present in their inputs. Because the migrations
from sharp velocities used in workflows 2 and 4 are impossible in practice, these networks
cannot be used directly during inference. Instead, they help to initialize and constrain
the other networks for optimization. A detailed description is shown in Figure 4, where
reflectivity and RTM/RTMM images are the input for training the neural network. This
neural network plan is similar to the idea of ensemble learning [47–49], which combines
several learning algorithms to solve the same problem for obtaining a better prediction.
This paper’s workflows share the same training neural network structure but with different
training inputs. The difference is that workflows 2 and 4 are first trained using the true
band-limited reflectivity and corresponding RTM/RTMM images obtained from scenarios
2 and 4, respectively. Then, workflows 1 and 3 use the pretrained models R2 and R4 to
fine-tune the neural network given on a smoothed input, whose RTM and RTMM images
are generated from scenarios 1 and 3 and produce the updated models R1 and R3. Model
R1, meaning the network trained from workflow 1, is then used to predict our baseline
model, which is a result that we can easily obtain but want to improve.

Note that the smoothed input now is the reflectivity calculated from the background
smoothed velocity. The reason for smoothing the input is that the neural network tolerates
slight incorrect velocity errors more. After learning patterns from smoothed inputs, the neu-
ral network can distinguish reflectivity events from crosstalk or artifacts. This process can
mitigate unexpected noise from migrated images and result in high accuracy and resolution.
The comparison between different model outputs and performance is illustrated in detail
in the numerical result section. We expect that, in general, models R1 and R3 will produce
better images than R2 and R4. Furthermore, we expect that R3 can take advantage of
multiple reflections’ wide illumination and information to predict an improved reflectivity.
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Figure 4. Neural network model plan for four scenarios.

Although scenario 4’s RTMM image is fed into workflow 4 to train a preconditioned
model R4, we want to let the fine-tuned model R3 learn and predict an accurate image
close to scenario 4’s output. To clarify the whole process, let us recall the definitions of
scenario 4, workflow 4 and model 4: scenario 4 uses true velocity to obtain the RTM with
surface multiples; workflow 4 uses the true reflectivity and output, as we would have in
scenario 4. In this workflow, a U-Net trains the input with two channels: true reflectivity
and RTMM images from scenario 4. The model R4 is then stored from workflow 4 and
will be used as a pretrained model for workflow 3. After training, the model R3 will be a
fine-tuned neural network obtained from workflow 3, which uses smooth reflectivity and
RTMM images as input. The initial model for R3 was R4 (from workflow 4); therefore, there
will be an improvement from model R4.

2.6. Train and Test Set

We chose a series of common velocity models for training: Sigsbee2b, Amoco, Pluto,
BP2004, Marmousi I and II, and others we built arbitrarily. We generated synthetic data,
migrated all these velocity models, and used their RTM/RTMM images as training data.
We calculated their reflectivities from their true velocities as training labels and made
them band-limited by convolving with a time-domain 25 Hz Ricker wavelet. The shots
and receivers were located just below the surface with 160 and 16 m spacing, using a cell
size of 8 m. The sources are Ricker wavelets with a 20 Hz dominant frequency. The total
record time was variable and longer for the deeper salt models, with a maximum of
7.2 s for the Sigsbee2b case. For the modeling and migration, we used a fourth-order
finite-difference method with a 15 Hz dominant frequency, implemented with CUDA for
GPUs [50].

We employed data augmentation techniques such as image resizing and smoothing
to increase the dataset instead of image rotation and flipping. Although very common in
computer vision, these last two techniques are inappropriate in seismic imaging, because
physical and geological principles constrain geophysical images. The vertical direction
represents depth, while the horizontal direction denotes offset. Rotating or flipping the
images would violate the fundamental principle that migration results are obtained from
seismic wave propagation. We defined shots on the surface and simulated them to generate
seismic waves that were then extrapolated into the subsurface. These waves were reflected
and transmitted by subsurface structures, and the receivers on the surface generated shot



Sensors 2023, 23, 4012 13 of 28

records. The final step is to use these shot records to migrate reflections to their correct
positions and create subsurface images. Therefore, we refrained from using rotation or
flipping as a data augmentation method. Furthermore, no new data points were created in
the input.

Our baseline model R1 is trained on workflow 1, corresponding to scenario 1, using
smoothed reflectivity calculated from the background velocity and RTM images without
multiples as the input channels. On the other hand, the proposed model R3 uses RTM im-
ages with multiple energy as one of the inputs. Before training, the RTM and RTMM images
of scenarios 2 and 4 are divided randomly into 2700 spatial windows with 256 × 256 grid
points. For example, the Pluto model has 601 × 1750 points. Suppose the random se-
quence numbers for horizontal distance and depth are 100 and 50, respectively. In that case,
a chosen window should be located in the original model with offset numbers 100-356 and
50-306 points in depth, because the window size is 256 points in a square shape. Working in
windows is not only practical for handling large images but also introduces a regularization
effect since, if the predictions are correct, they should contain the same information where
they overlap. If the predictions are not similar, the summation of predictions from different
windows will reduce the resolution.

As for scenarios 1 and 3, RTM/RTMM images are separated into 2500 subwindows.
The train and validation set ratio is 0.8:0.2. We chose these numbers because a large training
data size can help generalization. The maximum number of iterations for each training
model is limited to 200 using the Adam optimizer with a batch size of 64. The learning rate
is reduced during iterations to avoid the solution falling into local minima.

Then, we test our neural networks on three examples: the Canadian Foothills, a 2D
slice of the Overthrust, and the SEAM Phase 1 geology models. These examples were not
used during the training to test generalization; that is, how the neural network performs
on new data. In the next section, we show a detailed comparison between neural networks
in different scenarios and situations.

3. Results and Discussions

This section tests predictions for the Canadian Foothills, Overthrust, and SEAM
examples by independently working through workflows 1, 3, and 4. These examples test
the neural networks’ capability for generalization. The spatial interval for each example is
8 m with an 0.8 ms time sampling rate. As discussed previously, we can use the prediction
from model R4, the network trained from workflow 4, as a reference and a regularization
network. This result corresponds to a neural network trained using true band-limited
reflectivity and RTMM images. However, the results could be better, because the inputs
for inference are migrations with wavefield inconsistency (data with multiples migrated
with smooth velocity). The model R1 from workflow 1 is our baseline model trained on a
smoothed input without multiple energy.

On the other hand, although workflow 3 is similar to workflow 1, utilizing a smoothed
reflectivity input, model R3 has RTMM images as input instead of RTM images. Af-
ter learning patterns from multiple reflections’ energy and smoothed inputs, model R3
can distinguish reflectivity events from crosstalk or artifacts. This process can mitigate
migrated noise and improve resolution. Detailed numerical analysis and comparison is
shown in the next part.

3.1. Example 1: Canadian Foothills

The Canadian Foothills example initially has 1000× 1600, but we chose 768× 1536 grid-
points for the neural network prediction. We simulated 78 shots and 795 receivers at the
near surface, with 160 and 16 m spacing separately. Figure 5 shows the results of the neural
network models R1, R3, and R4 predictions on workflows 1, 3, and 4, correspondingly.
A smoothed reflectivity generated from the background velocity (Figure 5a) is the first
input channel for models R1, R3, and R4. Note that the smooth reflectivity input (Figure 5a)
is in its original value, which does not have high frequencies due to smoothing, but the
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amplitude will be scaled during testing. RTM image (Figure 5c) is set as the second input
for model R1; on the other hand, RTM image with multiples (Figure 5d) is used as the
second input channel for models R3 and R4. The migration of the Canadian Foothills
model using multiples with smooth velocity (Figure 5d) has increased illumination and
artifacts due to the wavefield inconsistency described earlier. The result for workflow 3
(model R3 (Figure 5f)) tries to correct for these inconsistencies and shows somewhat better
lateral event continuity with artifact reduction in comparison with model R1 prediction
(Figure 5e), which did not use multiples. For example, the shallow curvatures in the middle
horizontal distance can be seen clearly in Figure 5f, with higher resolution and less noise
(Table 3) in comparison with Figure 5e. Additionally, compared with the model R4 result
(Figure 5g), which is set as our reference, model R3 (Figure 5f) can also give a more accurate
prediction of geological structures with improved resolution, which is closer to the true
band-limited reflectivity (Figure 5b) calculated directly from the velocity model.

The example was also tested with LSRTM, and after 15 iterations, the resulting image
is displayed in Figure 5i. Compared with RTM and RTMM results, the LSRTM image
provides additional high-resolution information about the reflectors, particularly the side
curvature boundary between 10,000 and 12,000 m at a depth of approximately 2000 m.
However, the computational cost of LSRTM is at least twice that of RTMM for one iteration,
and it requires several hours to complete 15 iterations, even when using OpenMPI. This
time is longer than required for RTMM calculation and neural network training. On the
other hand, the model R3 result, which is a fast approximation of the LSRTM output, can
recover most of the reflectors with noise suppression. Therefore, this result confirms that
the proposed method achieves enhanced efficiency in reflectivity calculation compared
with the LSRTM method.

In Figure 6, we compare the average amplitude spectrum of the results of the different
networks. The reflectivity obtained from the smooth velocity model and used as an input
channel (long dashed line) has lost low and high frequencies as expected, since it comes
from a background velocity. Even though model R1 (point dashed line) can aid in recovering
low frequencies between 0.002 and around 0.002 m−1, model R3 (solid line) predicts a
broader frequency band and higher values after about 0.008 m−1. This observation indicates
that model R3 takes advantage of true band-limited reflectivity on the low-frequency band,
which is learned from the pretrained network R4 and the multiple energy from RTMM
images on high frequencies. Thus, model R3 can predict and rebuild more information on
low and high frequencies, promoting output resolution and accuracy.

When comparing the peak signal-to-noise ratio shown in Table 3, the model R3
application has the highest value of the three results, which means it has the most confidence
in predictions compared with other outputs. Most of the structural information of the true
band-limited reflectivity image is preserved.

Table 3. PSNR (dB) comparison for Foothills example.

Prediction Model R1 Model R3 Model R4

Total Foothills 24.84 25.80 20.59

Example 1 20.88 22.58 16.40

Example 2 19.16 20.18 17.03
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i)

Figure 5. Canadian Foothills model results: (a) reflectivity from the background velocity, (b) true
band-limited reflectivity, (c) RTM image without multiple reflections, (d) RTM image with multiple
reflections, (e) model R1 result based on workflow 1, (f) model R3 result based on workflow 3,
(g) model R4 result based on workflow 4, (h) true Foothills velocity, and (i) LSRTM result after
15 iterations. The boxes indicate areas shown in detail in the next figures.
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Figure 6. Amplitude spectrum comparison between models R1, R3, and R4 results for the Canadian
Foothills example.

Figure 7 contains the same information as Figure 5 but zoomed into a window at
middle depth (red block No. 1 in Figure 5h). A normalization scaling is applied to make
the smooth reflectivity input more visible. The migrated image with multiple energy
(Figure 7d) shows more illumination than the regular (no-multiples) RTM image (Figure 7c).
For instance, the small fault on the top right can be migrated with higher illumination in the
RTMM image (Figure 7d). The prediction from model R3 (Figure 7f) shows fewer artifacts
and enhanced resolution and accuracy, whereas the prediction from model R1 (Figure 7e)
shows artifacts at around 2800 m in depth. The forecast from model R4 (Figure 7g) is
similar to the smooth reflectivity input. It shows no improvements as expected, since the
network from workflow four was pretrained using accurate inputs and cannot handle
smoothing inputs.

Figure 8 shows a different (shallower) window (red block No. 2 in Figure 5h). The mul-
tiples used in the RTMM image (Figure 8d) predict workflow 3 (Figure 8f) better than the
predictions from workflows 1 and 4 (Figure 8e,g). For example, the depth structure between
0 and 1000 m can be predicted with larger amplitude and accuracy in Figure 8f. Moreover,
the model R3 result can have better lateral event continuity than Figure 8e,g. The PSNR
value of model R3 in Table 3 is 20.18 dB, which is also the highest among other models,
yielding that it can recover more reflectivity events at accurate locations.

Figure 9 denotes the crossplots between the two traces (x = 2400 and 8000 m) from the
true band-limited reflectivity of the Foothills example and the ones predicted using model
R1 (diamond scattered points) and model R3 (round scattered points) separately. Both
traces indicate that model R3, using multiple reflections, can predict a higher correlation
with the true band-limited reflectivity values than model R1. Since the relation between the
prediction and true label should be linear, the slope of model R3 results (round scattered
points in Figure 9) is closer to one compared with model R1 (diamond scattered points).
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 7. Foothills red box No. 1 results: (a) reflectivity from the background velocity, (b) true
windowed band-limited reflectivity, (c) RTM image without multiple energy, (d) RTM image with
multiple energy, (e) model R1 result based on workflow 1, (f) model R3 result based on workflow 3,
(g) model R4 result based on workflow 4, and (h) true windowed velocity.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 8. Foothills red box No. 2 results: (a) reflectivity from the background velocity, (b) true
windowed band-limited reflectivity, (c) RTM image without multiple energy, (d) RTM image with
multiple energy, (e) model R1 result based on workflow 1, (f) model R3 result based on workflow 3,
(g) model R4 result based on workflow 4, and (h) true windowed velocity.
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(a) (b)

Figure 9. Crossplots for the Canadian Foothills example: the true band-limited reflectivity against
the predicted reflectivity by using models R1 and R3, respectively.

3.2. Example 2: Overthrust

A 2D subset of a synthetic 3D Overthrust model is the second numerical example,
representing a more complicated geological structure with thin layers. The example size
is 818 × 1602 points, with 79 shots simulated at the near surface. For further neural
network prediction purposes, we extract 768 × 1536 points from the original example.
Figure 10 represents the result for this Overthrust example. The smooth reflectivity is
shown in Figure 10a. We can observe that the RTMM image (Figure 10d) yields extended
subsurface illumination compared with the RTM image (Figure 10c). Correspondingly,
model R3 prediction using smooth input and multiple energy in Figure 10f still provides
better augmented resolution and accuracy than model R1 and R4 results (Figure 10e,g).
The PSNR value of model R3 results in Table 4 is 24.61 dB, whereas model R1 and R4 results
are 24.09 dB and 20.61 dB, respectively.

Table 4. PSNR (dB) comparison for Overthrust example.

Prediction Model R1 Model R3 Model R4

Total Overthrust 24.09 24.61 20.61

Example 1 19.06 20.11 15.99

For the windowed example (red box in Figure 10h), Figure 11f displays enhanced
information for the reverse fault from model R3 prediction in comparison with models R1
and R4 (Figure 11e,g). For example, the top layer above the small Overthrust at around
2500 m depth can be seen clearly with fined resolution in Figure 11f, whereas Figure 11e,g
gives blurred and smoothed predictions. Furthermore, model R3 can recover the lateral
variations with significant amplitude for the thin-layer structures below the reverse fault.
The PSNR of the model R3 result is the highest value, 20.11 dB, shown in Table 4.

3.3. Example 3: SEAM Phase 1

The two examples above show our proposed neural network R3 can handle complex
subsurface structures with faults and thin layers. We use another example to show model
R3’s generalization ability on a more complicated model with thinner layers, folds, and a
salt body. Figure 12 shows the SEAM Phase 1 velocity model. Note that SEAM Phase 1 has
not been used in training or validating neural network workflow. We extracted a part of
the original model with 801 × 1301 points. There are 35 shots and 250 receivers separated
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by 240 and 40 m, with a 15 Hz dominant Ricker wavelet. We chose sparse source–receiver
coordination, because insufficient obtained data are normal in a real case. We want to
explore the power of multiple reflection energy and neural network applied in this project
to see if the pretrained neural network can classify useful multiple reflections from noisy
data. The total time recording length is 7.2 s, with a 0.8 ms sampling rate. Since we resized
this model to 768 × 1024 points to be fed into our pretrained neural network, the maximum
offset is changed to 8.192 km. A smoothed background velocity is input to the reverse-time
migration to avoid accurate information leakage.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 10. Overthrust model results: (a) reflectivity from the background velocity, (b) true band-
limited reflectivity, (c) RTM image without multiple energy, (d) RTM image with multiple energy,
(e) model R1 result based on workflow 1, (f) model R3 result based on workflow 3, (g) model R4
result based on workflow 4, and (h) true Overthrust velocity.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 11. Overthrust red box results: (a) reflectivity from the background velocity, (b) true windowed
band-limited reflectivity, (c) RTM image without multiple energy, (d) RTM image with multiple energy,
(e) model R1 result based on workflow 1, (f) model R3 result based on workflow 3, (g) model R4
result based on workflow 4, and (h) true windowed velocity.

Similar to previous examples, reverse-time migration after using multiple reflec-
tions (Figure 12d) gives a more accurate top layer structure than without using multiples
(Figure 12c). Combined with PSNR comparison (Table 5), the model R3 prediction shown
in Figure 12f improved reflectivity resolution and precision. Its PSNR is 26.32, which is
larger than the model R1 prediction of 24.58.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 12. SEAM model results: (a) reflectivity from the background velocity, (b) true band-limited
reflectivity, (c) RTM image without multiple energy, (d) RTM image with multiple energy, (e) model
R1 result based on workflow 1, (f) model R3 result based on workflow 3, (g) model R4 result based
on workflow 4, and (h) true SEAM velocity.

We list a windowed example in Figure 13 for a detailed comparison. Model R3 result
(Figure 13f) can indicate clearer events compared with model R1 prediction (Figure 13e).
For example, in Figure 13e, model R1 result has a more blurred top layer with artifacts near
the top above 800 m depth, whereas the prediction generated by model R3 at that area is
clear with enhanced quality. For deeper events, model R3 also provides high resolution
for dipping reflectors below 1500 m. Accordingly, the PSNR of this windowed example
obtained by model R3 is 22.88, which is higher than the model R1 result.

Table 5. PSNR (dB) comparison for SEAM example.

Prediction Model R1 Model R3 Model R4

Total SEAM 24.58 26.32 23.75

Example 1 21.52 22.88 20.14
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 13. SEAM Phase 1 red box results: (a) reflectivity from the background velocity, (b) true
windowed band-limited reflectivity, (c) RTM image without multiple energy, (d) RTM image with
multiple energy, (e) model R1 result based on workflow 1, (f) model R3 result based on workflow 3,
(g) model R4 result based on workflow 4, and (h) true windowed velocity.

Furthermore, the crossplot for this example, shown in Figure 14, proves that model
R3 prediction (round scatter points) gives a higher correlation with the true band-limited
reflectivity compared with model R1 prediction (diamond scatter points).
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Figure 14. Crossplots for the SEAM Phase 1 example: the true band-limited reflectivity against the
predicted reflectivity by using the model R1 and R3, respectively.

3.4. Discussion

Input channels selection: We relied mostly on intuition and experimentation for de-
ciding the input channels. For example, we compared results with a background velocity
instead of a smooth reflectivity for the second input channel, but the results deteriorated.
Although both results were alike, we observed more artifacts when using the background
velocity, in particular at the boundaries between windows. This observation suggests
that the network learns to calculate the directional derivative from the velocity in the
second case, which accentuates the footprint caused by window overlapping. This example
shows that often we can understand what the network does simply by experimenting with
different inputs.

True labels/output selection: The currently proposed method uses a band-limited
reflectivity as the true label for training, generated from the training velocity models by
converting to time, convolving with a wavelet, and converting back to depth. This is one of
many possible choices. For example, we also tried to use the full bandwidth reflectivity
with the expectation of extending the frequency band from the inputs when making the
inference. The average spectrum for the output was undoubtedly more expansive than a
band-limited label, but the results show many artifacts. We can explain this result by the
network learning to perform deconvolution, which is sensitive to noise levels larger than
the signal as we move away from the dominant frequencies. Once again, we can understand
the network by experimenting with different inputs and outputs and conclude that the
same constraints as classical processing limit the network. It calculates the operators by
extracting the information from the data instead of hard-coded rules.

U-Net architecture selection: For the U-Net architecture, we tried a shallower network
as well, with five blocks of convolutional layers on the encoder and decoder parts, instead
of the six blocks shown in Figure 3. The results were blurry for thin layers and small
structures and not as good as the U-Net results in this paper. This indicates that small
details extracted by the sixth block, shown at the bottom in Figure 3, were important
for training and prediction. For the input size, we chose to use 256 × 256 points with
two channels. We also tried other sizes, larger and smaller and square and rectangular,
but the chosen size seemed to be optimal for this problem. For the encoder part, the filter
shape changes from 16 to 512, and the kernel size decreases from 11 to 1 as the filter shape
increases. There is no stride included in the convolutional layers. The padding is set
to “same”, preserving the input size for each layer. The activation functions for all the
convolutional layers were set to Rectified Linear Unit (ReLU). To initialize the layer weights,
we use the “He” initializer [51], which draws samples from a truncated normal distribution
centered on zero. For the downsampling, we use maxpooling with a 2 × 2 size. A batch
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normalization layer was applied after each activation function. Additionally, we combined
“drop out” with batch normalization in each block to reduce generalization errors.

Mean squared error (MSE) and mean absolute error (MAE): Mean squared error (MSE)
penalizes larger prediction errors compared with mean absolute error (MAE), because sig-
nificant errors are emphasized and have a relatively greater effect on the value of the
performance metric. After testing with MSE and MAE, respectively, we found MAE results
can be lower than MSE in workflows 2 and 4, whereas they perform worse when applied
in workflows 1 and 3. The result indicates the MAE can handle well with accurate input,
but it has limits on smooth input.

3.5. Model Performance and Computation Time

Figure 14 illustrates the model loss comparison between RTM-CNN and RTMM-CNN
with fifty iterations when the starting learning rate is 0.001. Due to the true band-limited
reflectivity input, model R4 (point dashed line) provides the lowest loss value. The model
R3 (solid line) can converge to a smaller loss value, e.g., 0.0005, than the baseline model R1
(dashed line) for a smoothed input. For the validation loss shown in Figure 15, model R4 (point
dashed line) gives the lowest loss value after 50 iterations, as it is used as a regularizer. Model
R3 (solid line) can still converge to a smaller value than model R1 (dashed line), meaning
model R3 works better in the validation set.

1 

(a) (b)

Figure 15. (a) Model train loss and (b) validation loss comparison between different neural network
models with fifty iterations.

When training the network, each iteration takes around 53 s. We set the number of
iterations to a large number (200), but training usually stops at around 50 iterations, which
stops converging. Each neural network will take approximately 2650 s of runtime with an
NVIDIA K80/T4 16GB GPU and 25.46GB RAM. The migration process is performed on
an NVIDIA GeForce RTX 2080 Ti with 64 GB RAM. For the data preparation, each shot
takes around one second for forward modeling and three seconds for imaging. Compared
with the proposed method in this paper, LSRTM requires one forward modeling and one
migration per iteration. The runtime for LSRTM can extend to several hours when the
number of iterations is large. By contrast, the proposed method works directly with a single
RTM calculation. The computational cost is reduced, because the cost of inference in neural
networks is very small. Although the training can be computationally expensive, more
than a regular LSRTM, this is performed only once. These were all simple 2D models, so an
extension of this work to 3D would probably add one order of magnitude to this time.

4. Conclusions

The proposed RTMM-CNN method, which incorporates multiple energy in illumina-
tion, is capable of improving the quality of reflectivity obtained from migration, particularly
when applied to a smooth initial model. The trained neural network takes advantage of
multiple reflections and a reflectivity input from the background velocity model. The for-
mer enhances subsurface structure illumination, while the latter allows the neural network
to accommodate for velocity errors. The network, trained with multiple reflections and a



Sensors 2023, 23, 4012 26 of 28

true velocity model, serves as a preconditioner that restricts the range of potential parame-
ters due to the supplementary information it contains. Once a smoothed reflectivity is fed
into the pretrained model, a new fine-tuned model can be obtained by further training to
tolerate additional biases caused by preconditioning. The U-Net operator functions as an
approximation of the inverse of the Hessian, suppressing image artifacts and enhancing
the resolution of reflectors. This paper represents an initial step towards using multiple
reflections for subsurface imaging with U-Net in realistic scenarios with limited velocity
information. The neural network model exhibits robust generalization capabilities across
diverse geology models. It is expected that the effectiveness of the neural network will be
further improved with the emergence of even smoother migration velocity models.
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