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Abstract: Existing video Quality-of-Experience (QoE) metrics rely on the decoded video for the
estimation. In this work, we explore how the overall viewer experience, quantified via the QoE score,
can be automatically derived using only information available before and during the transmission of
videos, on the server side. To validate the merits of the proposed scheme, we consider a dataset of
videos encoded and streamed under different conditions and train a novel deep learning architecture
for estimating the QoE of the decoded video. The major novelty of our work is the exploitation and
demonstration of cutting-edge deep learning techniques in automatically estimating video QoE scores.
Our work significantly extends the existing approach for estimating the QoE in video streaming
services by combining visual information and network conditions.
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1. Introduction

According to Cisco’s Visual Network Index report, video accounted for 82 percent of
all Internet traffic in 2022, in contrast with 2017, when it occupied 73 percent [1]. Video-on-
demand services such as Netflix, YouTube and Amazon Prime, as well as live video services
from Twitch, YouTube Gaming, etc., will lead to a global market of 102 billion dollars
by 2023 [2]. Several challenges are related to video streaming such as stalls, pixelisation,
compression artefacts, changes in rate and rebuffering events, among others [3,4]. The
reason for these issues is that video is streamed over different types of networks, both
wired and wireless. Resolving these challenges leads to a satisfactory experience which
positively impacts customer turnover [5].

Non-streaming video content distribution approaches depended on peer-to-peer net-
works for progressively downloading videos for later consumption. This is not the case
with video streaming, where a large number of subscribers may request video from the
server, which leads to bandwidth issues [6]. In addition, due to the fact that viewers pay for
having access to video streaming services, they are not tolerant towards the aforementioned
issues which affect the quality of the video. This highlights the interest video streaming
providers have in assessing the Quality of Experience (QoE) and improving it [7]. Accord-
ing to ITU-T (2017) [8], QoE refers to “the degree of delight or annoyance of the user of an
application or service” (p. 25).

The heterogeneity of devices and networks [9] and the need to offer the best possi-
ble QoE led to the adoption of Hypertext Transfer Protocol (HTTP) adaptive streaming
(HAS) [10], with the most popular adaptive streaming solutions being Dynamic Adaptive
Streaming (DASH) over HTTP [11] and HTTP Live Streaming (HLS), by Apple [12]. These
consider the Hypertext Transfer Protocol (HTTP) on top of the Transmission Control Pro-
tocol (TCP), which constitutes the primary protocol for multimedia content delivery over
the Internet [11]. Despite the fact that TCP provides reliable delivery of data leading to the
effective transmission of packets, delay of data due to changes to network conditions may
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exist, thus resulting in affecting video quality [6,13]. Given these conditions, the actions
that a provider can take are related to the introduction of Automatic BitRate (ABR) for
continually adjusting the quality (i.e., bitrate) of the video. ABR algorithms decide which
segment will be played by taking several metrics such as bandwidth, latency and buffer
size into account [14].

An important factor for sustaining users’ satisfaction is the continuous and systematic
assessment, measurement and quantification of their User Experience (UX) [15], which
translates to the quality evaluation of the service/product they are experiencing. Video
quality can be assessed by employing video quality assessment (VQA) scores obtained
either through subjective or objective methods [16,17]. Regardless of the method employed,
researchers have to address the challenge of how to measure the opinion of each user of
each video since the topic of video quality is subjective [18]. In subjective methods, humans
are involved in measuring the quality of the video [17]. Users are exposed to distorted
videos and through this process a mean opinion score (MOS) is derived [19]. Although
subjective methods are the most accurate way for VQA [20], they require resources and
are time-consuming. This is the reason why objective methods are more attractive to re-
searchers and a lot of work has been done towards developing objective quality metrics [21].
Objective methods can be classified into full reference, reduced reference and no-reference
methods [22]. Full-reference methods require the entire video for comparison with the
distorted one. In reduced-reference methods, the comparison occurs between the distorted
video and part of the original one. In no-reference methods, the original video is not
available when assessing the distorted video [22].

A considerable number of studies have focused on VQA methods that have access to
the entire original and distorted video and quantify distortions by applying psychophysical
characteristics which stem from human visual perception characteristics [23]. In full-
reference methods, Peak Signal-to-Noise Ratio (PSNR) [16], Structural Similarity Image
Metric (SSIM) [24] and Video Multimedia Assessment Fusion (VMAF), proposed by Net-
flix [25], are used as the main quality metrics for 2D videos. This class of methods is of
paramount importance when adjusting compression parameters. However, they cannot
handle the case of no-reference streaming video.

In the case of no-reference VQA, deep learning-based methods are utilized [26]. In
general, these methods rely either on hand-crafted features or on automatically extracted
features. In video streaming services, what is of essence is a metric that captures the overall
satisfaction of users. For the case of streaming, network-related Quality of Service (QoS)
metrics such as packet loss, delay and jitter are used to measure the impact of network
conditions [27]. However, these metrics cannot be easily translated into quantifying user
experience [28]. A significant amount of research has been conducted to understand,
measure and model QoE in different video services and in different network environments
(e.g., [29,30]). Zhou et al. [31] provide an overview of subjective studies and objective
methods for assessing the QoE of adaptive video streaming. They also compare machine
learning-based and non-machine learning-based models, proving that the former exhibit
better performance. This knowledge can help service and network providers deliver
high-quality and cost-effective services while efficiently managing network operations [32].

1.1. The ITU-T P.1203 Standard

The need to capture users’ satisfaction of video quality resulted in the development of
the ITU-T P.1203 standard, whose purpose is to measure the quality of HAS sessions [33].
The estimation of QoE is achieved by considering aspects such as audiovisual quality,
loading delay and stalling [34,35]. Specifically, P.1203 targets HAS-type streaming of
segmented H.264-encoded video sessions with lengths between 1 min and 5 min [33,36].
The P.1203 comprises three modules, namely an audio module Pa, a video module PV
and an audio–visual integration module Pq [37]. As mentioned in the work of Satti et al.
(2017) [37], depending on the available information, the Pv module offers four input classes
termed “modes”:
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1. Mode 0: Display resolution, frame rate, instantaneous video bitrate
2. Mode 1: All of Mode 0, frame type/frame size (bytes)
3. Mode 2 and 3: All of mode 1. It also involves detailed parsing of partial or com-

plete bitstream.

For video information, P.1203 encodes resolution (in pixels), bitrate (in kbit/s) and
frame rate, while the network state is encoded in initial loading delay and stalling events [35].
The ITU-T P.1203 is a bitstream-based model. In bitstream-based methods, the bitstream is
analyzed without decoding the video (and/or comparing it to the original one) [38]. While
this approach offers the benefit of not requiring a lot of computation time [38], it relies
heavily on the specific parameters of each codec and thus faces limitations in scenarios
with limited control [39].

1.2. Deep Learning in Image/Video QoE Estimation

The disadvantages of subjective and objective methods have led to using machine
learning-based methods for QoE prediction [40]. Deep learning is a subcategory of machine
learning [41], with convolutional neural networks (CNNs) being one of the most popular
and remarkable deep learning networks [42]. CNNs have proved more accurate than
other traditional methods and in many cases human annotators in tasks such as image
classification and object detection [43]. One benefit of deep learning models is that they can
generalize if they are trained on large-scale labeled datasets [44]. However, this constitutes
a challenge since there is usually a lack of training data [45].

In several works the capabilities of deep learning in QoE prediction are explored.
In [46], Chen et al. (2022) consider the extraction of relevant spatio-temporal features
through deep learning for no-reference VQA with the aim to improve the generalization
capability of the quality assessment model when the training and testing videos differ in
content, resolutions and frame rate. In the work of Zhang et al. (2020) [47], the DeepQoE, an
end-to-end framework for video QoE prediction for multiple sources of data, is proposed.
The approach considers three steps, namely feature processing, representation learning
and QoE prediction, which aim at predicting either discrete (classification) or continuous
QoE (regression) scores from multiple inputs including text, video, categorical information
and continuous values. In [45], Tao et al. (2019) use a large-scale QoE dataset to study if it
can analyze the relationship between network parameters and users’ QoE and the results
show that the introduced deep neural network (DNN) approach predicts subjective QoE
scores with high accuracy.

Tran, Nguyen and Thang (2020) [48] use the HAS protocol to study QoE estimation for
video streaming by taking advantage of a long short-term memory (LSTM) network. The
authors propose an open software where they consider five parameters, namely stalling
duration, quantisation parameter (QP), bitrate, resolution and frame rate. They evaluate
their software against four reference models (Vriendt’s, Yin’s, Singh’s and P.1203) which
are outperformed by the proposed solution. The LSTM network architecture for quality
prediction in HAS is also proposed in the work of Eswara et al. (2020) [49], where the
model they introduce (i.e., LSTM-QoE) shows better performance than other well known
models such as ITU-P.1203. In [50], Gadaleta et al. (2017) use a D-DASH framework that
employs deep-q learning algorithms. In this work, the authors consider an LSTM cell
along with LSTM and their findings indicate that the proposed framework yields better
results compared to other adaptation approaches in terms of video quality, stability and
rebuffering avoidance.

Finally, several models for deep learning-based no-reference image quality assessment,
also known as blind image quality assessment (BIQA), have been proposed, e.g., [51–53].

2. Materials and Methods
2.1. Proposed Framework and Implementation Methodology

In this work, we propose a QoE estimation framework that does not assume that
specific QoE monitoring tools are installed by the client. As a result, the entire process
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of QoE estimation is performed directly on the Content Distribution Server (CDS). The
client-side metrics must rely on no-reference QoE estimation approaches when the original
video is not available. The objective in our case then is to offer almost real-time tracking of
the achieved QoE and suggest appropriate adaptation, i.e., reduction in bitrate. Metrics
like average throughput, initial playout delay and buffer level cannot estimate the actual
QoE since they do not capture users’ perceptual experience. Furthermore, client-side QoE
estimation methods are not appropriate for the real-time aspect of video streaming since the
information reported back to the server is always late, i.e., by the time the client executes
the QoE estimation and reports back to the server, the network conditions may very well
change dramatically. Therefore, the feedback sent back to the server is outdated.

The proposed approach seeks to capture nuanced phenomena of video streaming
QoE like the observation that shorter startup delays have little effect on the QoE [49] or
that rebuffering events severely influence QoE [3,49]. In addition, viewers prefer lower
resolution than interruptions [54]. We explore the “no distorted video” scenario where we
do not have access to the decoded video during the QoE estimation process. The proposed
solution includes the advantages below:

1. It does not require dedicated services running on the client.
2. It does not introduce additional complexity to the client side.
3. It does not suffer from lag due to the delays caused by the feedback channel.

As a consequence of our design choices, the proposed scheme can work in real-time
scenarios (no need for client feedback) and can be employed for prediction under a proactive
operating model. Formally, in our model, we consider three entities:

1. The CDS;
2. The network/Internet;
3. The client.

The CDS has access to two sources of input, i.e., visual information encoded in different
versions of the same video and up-to-date network parameters. With respect to the visual
content, the server has access to different versions which are created by deploying different
compression parameters on the H.264 standard. For the compressed stream production,
the original videos were compressed using FFmpeg. The considered network parameters
include throughput, rebuffering duration and stalling events.

The block diagram of the proposed scheme indicating the types of interactions between
the client and the server is shown in Figure 1. Effectively, in our scheme, the server has
access to different versions of compressed videos and is “as close as possible” to real-time
information related to network conditions and, based on these sources of information, it
must estimate the user’s QoE.

Figure 1. Block diagram of the proposed server-side QoE estimation framework.
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For the visual features, we consider the PatchVQ [55] model which consists of three
stages: (1) extraction of spatio-temporal features; (2) feature pooling; and (3) temporal
regression. Spatio-temporal feature extraction occurs by taking into account four scales for
each video sequence:

• The entire sequence (full video);
• Spatially localized features (sv-patch);
• Temporally localized features (tv-patch);
• Spatiotemporally localized features (stv-patch).

In all cases, feature extraction is performed by employing DNN-based architectures
and more specifically Residual Network (ResNet) and Region-Based CNN (R-CNN) models.
The ResNet, which was introduced by Het et al. 2016 [56], applies skip connection and can
have a high level of accuracy in feature extraction even in deep networks [57]. The R-CNN
is a successful deep leaning technique for object detection because it detects the class of
the object and its location [58]. The multilayered hierarchical structures of CNNs allow the
extraction of both simple and complex information [59,60]. There are various layers in CNN
architectures, but the three main ones for image analysis tasks include convolutional layers,
pooling and fully connected layers [61,62]. These types of layers are presented below:

• Convolutional layers: These are responsible for learning the input’s feature represen-
tation. These layers consist of several kernels which produce feature maps [61].

• Pooling layers: These layers reduce the height and width of the features and they are
applied after the convolutional layers [62].

• Fully connected layers: These layers map the output of the previous layer onto the
neuron of the current layer [63].

In this report, regarding spatial features, we consider the features extracted from the
PaQ-2-PiQ network [55], a multiscale extension of the 2D ResNet-18 network architecture,
which was pre-trained on the LIVE-FB dataset. Furthermore, spatio-temporal features were
extracted using a 3D ResNet-18 architecture [64], in which case the model was pre-trained
on the Kinetics dataset [65]. Feature pooling was employed in order to reduce the number
of trainable parameters and to allow the network to focus on specific regions of interest
(ROIs). To extract features, the Faster R-CNN [66] network is considered for both spatial
and temporal domains. Faster R-CNN employs a region proposal stage that is considered
to select the appropriate regions.

2.2. Specifying and Training a DNN Model for QoE Assessment

Deep learning falls under the category of supervized learning. As such, a training
dataset needs to be constructed, which plays a significant role in the network’s final
performance. The methodology used for effectively optimizing a neural network consists
of three main pillars, i.e., a loss function, backpropagation and an optimization algorithm.
Using these main ingredients, an iterative process can be constructed to train the network.

After randomly initializing the weights of each layer, the iterative process begins by
feeding the training data through the network. This produces an output which is then
compared to the expected label with the help of a loss function. This loss function quantifies
the error of the network, meaning the degree to which the network can accurately classify
the input. The problem of training the network can now be described as the problem of
minimizing this error. Given a set of inputs x, the DNN produces predicted labels ŷ which
are evaluated against the ground truth y using the L1 error metric

L(x, y) = ∑
i
|yi − ŷi| (1)

Given the output of the loss function, a set of error gradients with respect to each of
the network’s weights is calculated using the backpropagation algorithm. These gradients
are then fed to an optimization algorithm, usually a derivative of gradient descent, which
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fine-tunes each weight to minimize the error, searching for a local optimum. In this work,
we employ the Adam optimizer to train the network.

2.2.1. Proposed Model

Our proposed model builds upon the P.1203 [33] and PatchVQ [55] models. In par-
ticular, it is a variant of the PatchVQ model. This model involves three sequential steps:
feature extraction, spatiotemporal pooling and temporal regression. For spatial feature
extraction, the PaQ-2-PiQ [67] backbone is used, while for temporal features a 3D ResNet-18
backbone is used. On the extracted features, a spatiotemporal pooling using a region of
interest (ROI) [68] (spatial) followed by a segment of interest (SOI) [69] (temporal) pool
approach is applied and the results are then fed to an Inception Time model [70]. PatchVQ
has the property of taking into consideration the semantic information of the video features;
however, video quality-related metadata such as the encoding QP, bitrate and frame rate, as
well as streaming metadata originating from the network over which the video is streamed,
such as throughput, can constitute valuable information for inferring the MOS for a given
video. To include these features, we had to change the Inception Time component of
PatchVQ. The architecture of Inception Time consists of multiple inception blocks, each
of which contains multiple parallel convolutions with different filter lengths, followed by
a concatenation layer to combine the outputs of the parallel convolutions. The inception
blocks are stacked one on top of the other to form the full Inception Time architecture. The
output of the Inception Time block network is followed by a Global Average Pooling (GAP)
layer and a fully connected layer with a softmax activation function. In our model the
final fully connected layer of the Inception Time component was modified to output 20
values instead of one. Then, to those 20 values we concatenated a vector containing: (1)
video features, namely the video bitrate, frame rate and a vector of 15 QP values estimated
for equally divided segments in the video sequence; and (2) streaming data, i.e., current
network throughput. Furthermore, we added another two fully connected layers (FC1, FC2)
to enable the model to infer the relations between the MOS and the provided streaming
metadata. Our proposed model is depicted in Figure 2.

Figure 2. Block diagram of proposed scheme which accepts compressed video segments and associ-
ated metadata that produces the MOS.

2.2.2. Model Training

Instead of training the model from scratch, we froze the weights which are provided by
Ying et al. in [55] and we only trained the three last fully connected layers. For the training
procedure, we employed the L1 loss function and the Adam optimization algorithm for a
batch size of 128, following the approach in [55].
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For the proposed model training, we used the LIVE-NFLX-II dataset (see Section 2.3),
which comprises a total of 420 videos stemming from 15 different uncompressed videos
that have been encoded according to the provided dataset information. To train our model,
we randomly split the 15 video datasets so that 13 of the original videos are employed for
training and two for testing. For each video, all available streamed versions are considered
in both training and validation. Figure 3 illustrates the training loss (L1 Loss) which
indicates its variance across multiple training cycles.

Figure 3. Training loss as a function of training epoch.

2.3. Dataset Analysis

There are numerous QoE-relevant datasets in the literature. However, very few of
them provide the retrospective MOS along with the streaming metadata such as frame
rate and bitrate. One dataset that fulfils the prerequisites mentioned above and that was
used in this work is the LIVE-NFLX-II dataset [3,71]. Other datasets such as Waterloo
Streaming QoE Database III (SQoE-III) [72] do not include continuous QoE scores while
the LIVE Netflix Video Quality of Experience Database [73,74], although it provides the
retrospective MOS, does not contain network metadata. Typical datasets that have been
considered in VQA such as the LIVE Video Quality Challenge (VQC) Database [75] neither
contain different sources nor consider different network conditions. LIVE-NFLX-II includes
420 videos that were evaluated by 65 subjects, resulting in 9750 continuous-time and 9750
retrospective subjective opinion scores. Continuous-time scores capture the instantaneous
QoE, while retrospective scores reflect the overall viewing experience. These videos were
generated from the 15 original videos by considering streaming under 7 different network
conditions and employing 4 client adaptation strategies. These 7 network conditions are
actual network traces from the High Speed Downlink Packet Access (HSDPA) dataset [76],
representing challenging 3G mobile networks. The 4 client adaptation strategies cover
the most representative client adaptation algorithms, such as rate-based, buffer-based
and quality-based. The selected videos span a wide spectrum of content genres (action,
documentary, sports, animation and video games). The content characteristics present
a large variety including natural and animation video content, fast/slow motion scenes,
light/dark scenes and low and high texture scenes (Figure 4).

The metadata for each video include the following types of information:

1. Four types of no-reference image quality scores (estimated per frame after removing
black bars and rebuffered frame), including PSNR, SSIM and VMAF;

2. Information related to the video reproduction such as video and playback duration
and number of frames;

3. Information related to visual content including width, height, frame rate, the QP
value, scene cuts and the compression bitrate;

4. Information related to network conditions such as rebuffering frames, number of events
and duration, throughput and lastly the MOS, both retrospective and continuous.
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Figure 4. Image samples of the videos used for training.

To have a better understanding of the characteristics of the dataset, we performed
an analysis relating the MOS with different video and network conditions. Overall, we
observed that the MOS is distributed normally with a mean of 48 and a standard deviation
of 17; the histogram is presented in Figure 5.

Figure 5. Distribution of the MOS over the entire dataset.

As can be observed, MOS values follow distribution close to normal distribution,
according to which the most frequent subjective opinion score is located in the middle of the
scale, while more extreme scores are less likely. Furthermore, we found possible correlations
between the MOS and some of the provided metadata. Specifically, we observed that the
average MOS has a tendency to increase along with the frame rate and the bitrate, as
depicted in Figures 6 and 7 respectively.
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Figure 6. Impact of frame rate of the average MOS.

Figure 7. Impact of bitrate on the MOS for video in the dataset.

It can be easily observed that the highest average MOS is being given to the videos
with a frame rate equal to 30 frames per second. Furthermore, it is worth mentioning that
the videos’ MOS does not change drastically when the frame rate increases from 24 frames
per second to 30.

Figure 7 clearly demonstrates that increasing the bandwidth has a positive impact on
quality. Although real observations are inherently noisy, we can observe that the impact is
more apparent in the case of very low bitrates, where even small increases have a dramatic
effect. On the other hand, we observe that increasing the bitrate above a threshold (around
1Mbit per second) does not appear to affect the MOS to the same extent. This indicates that
there are clear quality cut-offs in the low bitrate ranges and there is space for optimization
in the case of sufficiently capable network links.

3. Results

In order to be able to compare the results yielded by our approach, we proceeded
with the evaluation of both P.1203 and the PatchVQ models on the LIVE-NFLX-II dataset.
The metrics used for the evaluation are the L1 loss, which is a typical loss function used
in regression tasks, the linear correlation coefficient (LCC), also known as the Pearson
correlation coefficient and the Spearman correlation coefficient (SRCC).
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3.1. PatchVQ Model

The PatchVQ model implementation is provided by its authors on GitHub. We set up
and ran the model according to the guidelines of the authors and we acquired the results
in Figure 8.

Figure 8. Scatter plot of predicted and measured MOS.

The rounded mean absolute difference between the predictions and the MOS (L1
loss with mean reduction) is calculated to be 23.451 for the investigated dataset. Finally,
regarding the histogram of the PatchVQ model’s predictions, a normal distribution of
the results was observed with a rounded mean value of 71.119 and a rounded standard
deviation of 12.188.

3.2. P.1203 Model

The P.1203 standard is provided by ITU. However, there is not an official implemen-
tation available. The implementation that we used is available on GitHub and has been
verified in terms of performance in relation to subjective test databases created by the
authors of the software. Following the guidelines of the authors, we applied the algorithm
on the LIVE-NFLX-II dataset for all of the available modes of P.1203.

As the mode increases, the number of inputs that P.1203 takes into consideration
increases accordingly. Table 1 presents the inputs of the model for each mode.

Table 1. Inputs for the different modes of ITU P.1203.

Mode 0 Mode 1 Mode 2* Mode 3*

(metadata only):
bitrate, frame rate
and resolution

(frame header data
only): all of mode
0 plus frame types
and sizes

(bitstream data, 2%):
all of mode 1 plus 2%
of the QP values of
all frames

(bitstream data, 100 %):
all of mode 1 plus QP
values of all frames

* The difference between mode 2 and mode 3 is the amount of the QP values extracted from the bitstream. The
reason for choosing mode 2 over mode 3 is computational complexity. Since in our case this is not an issue,
we group modes 2 and 3 together and assume access to the full bitstream. This way, we consider all available
information for each method.

The results that were yielded for all the modes of P.1203 are presented in Figure 9.
Figure 9 illustrates the relation between the MOS and the predictions of P.1203 (mode 0).
The rounded SRCC for these results is 0.509 and the rounded LCC is 0.546. These metrics
indicate a weak positive correlation as can also be inferred from the plot in Figure 9.
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Figure 9. Measured vs. predicted MOS using P.1203 mode 0.

The rounded mean absolute difference between the predictions and the MOS (L1 loss
with mean reduction) is calculated to be 46.242 for these results. The reason that the L1 loss
is so high can be easily inferred by observing the mean and the variance of the model’s
predictions as illustrated in Figure 10. Specifically, the P.1203 model’s predictions (for mode
0) are marginally distributed according to the normal distribution, with a rounded mean
value of 95.122 and a rounded standard deviation of 1.015. Clearly, the model predictions in
mode 0 are not satisfactory. A reason for this is because the model takes into consideration
only the bitrate, the frame rate and the resolution.

Figure 10. Distribution of estimated QoE using P.1203 mode 0.

The relation between the MOS and the predictions of P.1203 (mode 1) is visualized
in Figure 11. The rounded SRCC for these results is 0.492 and the rounded LCC is 0.459.
These metrics indicate a weak positive correlation as well.
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Figure 11. Measured vs. predicted MOS using P.1203 mode 1.

The rounded mean absolute difference between the predictions and the MOS (L1 loss
with mean reduction) is calculated to be 34.974 for these results. The L1 loss is decreased by
24% with respect to mode 0, just by adding the extra input features of frame type and frame
size. Finally, we calculated the histogram of the P.1203 model’s (for mode 1) predictions
and we observed that they are normally distributed with a rounded mean value of 83.855
and a rounded standard deviation of 7.408.

For the LIVE-NFLX-II dataset the results of the P.1203 in modes 2 and 3 are identical.
Thus, we present them both in this section. The relation between the MOS and the predic-
tions of P.1203 (mode 2,3) is illustrated in Figure 12. The rounded SRCC for these results is
0.765 and the rounded LCC is 0.753. These metrics indicate a strong positive correlation as
can be inferred from the aforementioned plot.

Figure 12. Measured vs. predicted MOS using P.1203 modes 2 and 3.
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The rounded mean absolute difference between the predictions and the MOS (L1 loss
with mean reduction) is calculated to be 15.441 for these results. The L1 loss decreases
by 56% with respect to mode 1. The P.1203 model’s predictions (for modes 2 and 3)
are normally distributed with a rounded mean value of 60.863 and a rounded standard
deviation of 21.956. So, in modes 2 and 3 P.1203 achieves its best results.

3.3. The Proposed Model

To evaluate our architecture, we performed the evaluation procedure 12 times to make
sure that the performance of the model is not a product of variation due to the weight
initialization of the model parameters. In Table 2, the metrics for each evaluation cycle
are summarized.

Table 2. Metrics per evaluation cycle.

Cycle ID Test LCC Test SRCC Test L1 Loss

1 0.90 0.91 5.84
2 0.90 0.89 6.62
3 0.85 0.84 7.47
4 0.94 0.93 4.61
5 0.54 0.55 13.38
6 0.72 0.71 12.65
7 0.75 0.75 9.59
8 0.90 0.90 9.13
9 0.70 0.70 11.0
10 0.78 0.76 10.37
11 0.80 0.77 11.60
12 0.65 0.65 12.10

The standard deviation and the mean of those metrics are displayed in Tables 3 and 4,
respectively.

Table 3. Standard deviation.

Test LCC Test SRCC Test L1 Loss

0.11 0.11 1.75

Table 4. Mean values.

Test LCC Test SRCC Test L1 Loss

0.77 0.76 10.84

In accordance with the other models, we provide pertinent plots regarding the pro-
posed model’s predictions. Specifically, the results shown in Figure 13 adhere to the
evaluation cycle with ID 3 (see Table 2).

The relation between the MOS and the predictions of the model is presented in
Figure 13. The rounded mean SRCC for these results is 0.84 and the rounded mean LCC is
0.85. These metrics indicate a strong positive correlation.



Sensors 2023, 23, 3998 14 of 19

Figure 13. Average predicted vs. measured MOS using the proposed model.

3.4. Comparison of the Approaches

To compare the aforementioned models, we summarize the metrics for each of them
in Table 5.

Table 5. Comparison of the different approaches studied.

P.1203 m = 0 P.1203 m = 1 P.1203
m = 2,3 PatchVQ Proposed

Model *

LCC 0.55 0.46 0.75 0.42 0.77
SRCC 0.51 0.49 0.76 0.40 0.76
L1 Loss 46.24 34.97 15.44 23.45 10.84

* The metrics of the proposed model are the mean metrics of the 12 evaluation cycles.

According to the aforementioned results, the proposed model’s predictions correlate
better with the actual MOSs, as is indicated by the greater values of SRCC and LCC.
Furthermore, in terms of the mean absolute difference (L1 loss), the mean L1 loss of the
proposed model is considerably less than P.1203’s (modes 2 and 3). In comparison with
the PatchVQ model, the proposed model is clearly superior. We attribute this significant
increase of the performance to the fusion of both the semantic information of the video
and the streaming metadata. We expect that by combining more input features, such
as throughput or QP values of the encoder, which are available to the server and in a
more efficient manner, the margin between P.1203 and the proposed model could become
even wider.

3.5. Ablation Study

We ran ablations to explore the effectiveness of our model. We first took network
parameters (i.e., throughput) to assess the relationship between the predicted and the
measured MOS. We then repeated the process by also taking into consideration visual infor-
mation, such as QP. The results of the ablation study are provided in Table 6. The ablation
studies show that combining visual information and network parameters is necessary for
increasing the accuracy of MOS prediction (smaller L1 loss).
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Table 6. Mean metrics when taking into account network parameters and when combining network
parameters and visual information.

Network Parameters Network Parameters and
Visual Information

LCC 0.77 0.77
SRCC 0.77 0.77
L1 Loss 15.88 10.84

4. Discussion

In this paper, we investigate how deep learning architectures can facilitate the opti-
mization of video streaming by forecasting the user’s experience. The objective, in this case,
is to identify the video coding parameters for maximizing the user QoE given visual and
network information. The paper analyzes the key issues related to this specific problem
and outlines the current landscape in terms of existing and proposed solutions. Given this
analysis, we address these issues by introducing multi-modal deep learning architectures.
The major novelty of our approach is that the estimation process is executed at the server
and thus does not require direct access to the decoded video at the client. To the best of our
knowledge, this work is the first machine learning-based method that can simultaneously
capture the impact of both video compression and network-related impairment in the user-
derived QoE. By leveraging the training dataset, the proposed scheme can act proactively,
adapting the streaming characteristics to match the anticipated network conditions, instead
of reacting to them.

Given this major difference compared to the state of the art, we propose the exploitation
of both visual and network-related information for the automated estimation of the MOS,
a reliable proxy to QoE. Overall, the experimental results indicate that the proposed
scheme surpasses the performance of both visual-only deep learning methods and network-
oriented methods. Specifically, based on the experimental analysis provided in Section 3,
we can outline a number of key findings, specifically:

• Approaches that consider network conditions lead to significantly higher prediction
performance, compared to visual-only methods when investigating dynamic video
streaming conditions.

• Exploiting semantic information encoded in videos through deep learning methods
can significantly increase performance, compared to approaches that focus on the
networking aspect only.

• It is possible to introduce both visual and network-related information into a unified
deep learning model that can be trained in an end-to-end fashion.

Continuing in this line of research, the plans for the following period involve exploring
the enhancement of our model by including more parameters that are available on the
server side and by introducing contextual, visual and network information. Specifically,
motivated by the findings of the proposed approach which indicate that simultaneously
encoding visual and network information can lead to higher QoE estimation accuracy, it is
interesting to explore how introducing high-level contextual information such as image
and video semantics could lead to even higher performance.
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