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Abstract: Engagement is enhanced by the ability to access the state of flow during a task, which is
described as a full immersion experience. We report two studies on the efficacy of using physiological
data collected from a wearable sensor for the automated prediction of flow. Study 1 took a two-level
block design where activities were nested within its participants. A total of five participants were
asked to complete 12 tasks that aligned with their interests while wearing the Empatica E4 sensor.
This yielded 60 total tasks across the five participants. In a second study representing daily use of
the device, a participant wore the device over the course of 10 unstructured activities over 2 weeks.
The efficacy of the features derived from the first study were tested on these data. For the first
study, a two-level fixed effects stepwise logistic regression procedure indicated that five features
were significant predictors of flow. In total, two were related to skin temperature (median change
with respect to the baseline and skewness of the temperature distribution) and three were related to
acceleration (the acceleration skewness in the x and y directions and the kurtosis of acceleration in the
y direction). Logistic regression and naïve Bayes models provided a strong classification performance
(AUC > 0.7, between-participant cross-validation). For the second study, these same features yielded
a satisfactory prediction of flow for the new participant wearing the device in an unstructured daily
use setting (AUC > 0.7, leave-one-out cross-validation). The features related to acceleration and skin
temperature appear to translate well for the tracking of flow in a daily use environment.

Keywords: wearable; pre-frontal cortex; flow; flow theory; education; engagement

1. Introduction

Many people across the world spend time and energy on their hobbies, educational
endeavors, and careers that become an everyday part of their lives. When a task’s difficulty
is in balance with an individual’s level of skill, the individual becomes engaged in problem
solving, which can bring a euphoric feeling, a sense of satisfaction, and other positive
emotions. In order to name and coin this specific experience in research, Flow Theory was
created as an explanation of these creative experiences and the motivation behind engaging
in them [1]. Flow has been described and defined in many different ways, but can mainly
be denoted as the process of the ultimate experience and cognitive involvement that is
optimal and therefore extreme in its entirety [2]. Mihaly Csikszentmihalyi is one of the
founding researchers for flow, known for studying and naming Flow Theory. According to
his research, flow is experienced when the participant has clear goals and fully understands
the challenge ahead. Stemming from that foundation, the participant will enter a flow state
and feel intense concentration, a loss of self-awareness, and the sense that time is passing
at an accelerated rate, while the task is simultaneously rewarding. Flow is a dynamic
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equilibrium that moves with the participant as they complete the activity. Yet, this balance
can be fragile when feelings such as anxiety or boredom can turn the tide [3]. Flow tends to
occur when a challenge is presented at a high enough difficulty to require creative problem
solving, yet is manageable because of the level of skill needed for completing the task [4].

Increased concentration on a task that is deemed as challenging but not overwhelming
is accompanied by positive behavior and reflected by physiological activation or arousal.
Flow physiology is reflective of increased arousal and increased mental effort that is caused
by focused attention on and effort towards a task. Flow can also be compared to stress, in
that intense mental effort is demonstrated due to the high involvement and difficulty of
a task [5]. Even before Csikszentmihalyi’s work in 1996, Robert Woodworth described a
flow state as losing yourself in the act [6]. This is what we would commonly term today
as “being in the zone”. If the skill required is higher than difficulty, the participant feels
more confident in the task, which allows the likelihood of flow to increase. The threat
of failure or incompletion hinders the potential for flow. Therefore, along with a balance
of skill and difficulty, many environmental factors contribute to the experience of flow.
The environment can spawn distractions and discouragements from maintaining a flow
state [3]. The environment can also be enriching for flow, in that peaceful surroundings
with minimal distraction can promote the participant to put themselves into their work
fully and stay on task. Either way, the environment proves to be a factor in one’s ability to
enter into and maintain a flow state.

While environmental factors may influence flow, measuring flow states can be complex.
For example, qualitative surveys and anecdotal studies allow individuals to relay their
experiences, but they do not necessarily reveal insights into how the brain and the body
are activated during flow. Similarly, while recognizing the visual signs that someone
is in a flow state is important in initially pinpointing flow, being able to understand
what is happening within the human brain during flow and how this affects the body is
paramount to furthering our understanding of what happens when we engage in a flow
state. Measuring the physiological responses during flow that are coordinated by the brain’s
specific sensory and motor regions could serve as a valuable resource in connecting what we
see as the individual’s experience, what they self-report, and what physiological responses
occur during flow. The prefrontal cortex is responsible in coordinating these regions
together during times of higher processing for a specific task, making it an interesting
source in choosing the physiological markers that would best relay the flow experience.
What is needed is an understanding of how physiological indicators can be leveraged to
better understand these self-reported flow states. As such, the purpose of this paper is to
examine if we can use physiological indicators of engagement to predict when participants
are in a self-reported flow state.

2. Review of Literature

Researchers have used flow as a conduit for studies that are important for under-
standing the cognitive experiences of students, workers, and hobbyists. Flow is important
in understanding the connection between mental experiences and physical actions, and
sometimes even the appearance of the person working to successfully complete a task at
hand. However, as we have noted, while flow can be measured in many ways, there may be
advantages to a physiological sensor that could detect these flow states. For example, in a
training scenario, a wearable device could pick up physiological signals and provide haptic
and cognitive feedback to an individual to help them achieve and maintain a state of flow.
However, for work such as this to be possible, we must first understand what physiological
signals are relevant and how to interpret them in relation to flow. As such, we begin our
review of the literature with a discussion of flow, the common ways to measure flow, and
some of the physiological measurements that have been considered in research thus far. We
then make the case that we can likely use other, more easily captured indicators of brain
activity to measure and predict these flow states. We conclude with our hypotheses about
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the relationships between self-reported flow states and physiological measures based on
the literature.

2.1. Flow and Measuring Cognitive Flow

Csikszentmihalyi describes that the feeling of exhilaration caused by flow leads to
an increased heart rate. He also states that a person’s body and/or mind is stretched to
its limits due to the influence of flow, which leads to a display of emotion [7]. Perhaps
as a result, flow and its related constructs have been measured in a wide variety of ways,
ranging from self-reports to sensor-collected data. In this section, we briefly summarize
some of the existing work with regard to the different types of data used.

2.1.1. Eye-Tracking Data and Flow

Some studies have used eye-tracking data in relation to flow states. For example, one
study used basketball and netball players’ eye movements in order to distinguish and
identify these states of flow in athletes [8]. Interestingly, they found that an increased flow
experience was the potential result of minimal eye movements, creating a better perfor-
mance in the game for the participant [8]. Continuing with this research on eye movements,
one study focused on the spatio–temporal relationship of the dynamics between eye move-
ments and objects to analyze mental focus. Computation using eye movement scanning
technology was used to study participants’ eye movements while watching videos. A
linear discriminant analysis was used to compile and perceive patterns in the data. They
found a correlation between increased dynamic eye movements and increased mental focus
while watching a video [9]. However, eye-tracking has not been the only approach used.
Researchers have also used physiological sensors to measure flow.

2.1.2. Physiological Measures and Flow

The use of physiological sensors to measure cognitive flow has proven to be increas-
ingly useful in connecting the relationship between cognitive flow to the physiological data
associated with its emotional and motor influences on the body. However, research in the
area is still relatively sparse.

Researchers have theorized that flow may be characterized by a decrease in the
amount of task-irrelevant cognitive demands; however, research in the area has produced
conflicting results [10]. It is logical, then, that some researchers have used brain-activity-
related measures to examine flow. For example, in a study of electroencephalograms
(EEG) and flow, researchers sought to examine if EEG-based attention measures from a
less-invasive EEG machine (i.e., it used 3 dry electrodes rather than 19 wet electrodes) were
related to self-reported flow. They found that there were significant correlations between
the attention measure and overall flow, as well as other aspects of the flow experience [11].

Flow can also be exhibited in daily activities linked to physical responses. As such,
measures of heart rate have also been of interest to flow researchers. For example, in one
self-report study from university students, 15 students collected seven days’ worth of
heart rate and acceleration data from a wireless ECG connected to a smartphone logging
platform. The ECG values were analyzed on plots, along with heart rate variability indices.
The authors found that experiences of flow were associated with an increased heart rate
and an increased acceleration ratio, which correlates to sympathetic enhancement [12]. Yet,
it has been proposed that the relationship between these heart-rate-related variables and
flow may be individualistic and may not be linear [10].

Researchers have also shown that different types of devices can be used to collect these
physiological data related to flow. For example, a project from the Palo Alto Laboratory [13]
attempted to measure the affective flow states in knowledge workers by using the Kyto ear
clip. An eye tracker was also used to collect the pupil dilations of both eyes.

The data from the ear clip and subsequent surveys were combined to analyze the
heart rate variability (HRV) features, skin conductivity (i.e., electrodermal activity (EDA)),
and pupil diameters. The pupil diameter data proved not to be significantly useful due
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to the movement of the participants with respect to the screen or the lack of recorded
movement of the eye; however, a strong classification performance was obtained from the
other features [13].

Finally, researchers have also investigated the relationship between EDA and flow. For
example, one study using video games set out to investigate the connection between flow,
immersion, boredom, excitement, challenge, and fun. Using an EEG, ECG, electromyogra-
phy, skin conductivity, and eye tracking, a positive correlation was discovered between the
gameplay experience and the self-reported descriptions of flow [14]. Other research has
found that the EDA increased as flow increased [15]. However, not all researchers have
found these patterns, as one study found no significant relationship between EDA and
flow [16]. Overall, it is clear that further research is needed to understand the relationship
between EDA and flow [10].

As shown, various physiological measures have been examined in relation to flow.
It is clear is that, in many cases, the research is relatively sparse or has produced mixed
results, and the relationships between constructs may not be linear [10].

2.1.3. Constructs Related to Flow and Their Physiological Measurement

As noted, flow itself can be related to other experiences such as stress or perceived
difficulty. These types of outcomes have also been examined in relation to physiological
data. For example, features such as heart rate variability, skin temperature, and photo-
plethysmograms have been used to associate work-related tasks of varying difficulties to
the physical and mental state of construction workers [17]. Electrodermal activity, mean
skin temperatures, HRV, interbeat intervals, and heart rate percentages were all used in a
data analysis to conclude that the use of a wristband sensor can lead to the early detection
of mental stressors in construction sites [17].

Sensors have also been used to measure other related constructs, such as concentration
and focus. In [18], rapid eye movements, EEG alpha values, and heart rates were studied
during six different cognitive tasks involving different levels of concentration. They found
that a high concentration yielded many rapid eye movements, a low EEG alpha, and a high
heart rate [18].

It is clear that there is no consensus on the best way(s) to measure flow, nor are there
agreed upon best practices for processing these data to be able to predict flow. With this
being the case, we turned our attention first to practicality: what sensors are non-invasive
and commonly available? Smartwatches are very common among the general public
and often include a variety of sensors. There are also research-grade wrist-worn devices
that capture more data than a consumer-grade smartwatch. However, just because data
exist and are capturable, this does not mean they will provide a valid metric of any given
construct. Accordingly, we next turned our attention to brain physiology to understand
what regions of the brain could influence and be influenced by flow, and the resulting
physiological changes that may be observed.

2.2. The Different Areas of the Brain and Stimuli Response

To briefly summarize some relevant areas of brain physiology and their roles in
cognition, behavior, and physiological responses, we draw the readers’ attention to the
frontal lobe of the brain. The higher cognitive function of the frontal lobe increases cognitive
flexibility. However, it is a difficult task to obtain direct measures of hypofrontality during
a flow state, which allows room within the field for further investigation [19].

The frontal lobe is covered by the frontal cortex. The entirety of the frontal cortex
encompasses the brain functions for influencing skeletal movement, emotion expression,
speech, and visceral control. More specifically, motor reactions can be seen via the stim-
ulation of a cortical area, including the prefrontal cortex. The orbitofrontal cortex, which
is part of the frontal cortex, has shown effects within the cardiovascular system, which
include blood pressure changes, heart rate, cardiac dynamics, and skin conductivity upon
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stimulation [20]. Many, if not all, of these indicators can be measured using non-invasive
wearable sensors.

As noted, some of the indicators of flow include focused attention and effort towards
a task. The ability to focus on one task and block out all outside distractions is located in
the brain’s prefrontal regions. Specific neuron networks boost the efficiency of incoming
signals that the participant chooses to focus on [21]. In the case of flow, our attention was
drawn to the prefrontal cortex, as its main function is the execution and planning of new
forms of goal-directed actions. The perception–action cycle represents the relationship
between this cortex and the environment, which is also a key player in the study of flow.

2.2.1. Linking Physiological Indicators to Flow Activities

Linking blood flow to certain areas of the brain, physiological data markers and
flow activities are important in understanding the biological workings behind what we
experience and feel in a state of flow. There are decades worth of research devoted to
understanding these brain behavior relations. On the basis of prior results, neural activation
through stimulation and connectivity in the medial prefrontal cortex has the ability to
predict the success of an advertisement [22]. Machine learning has also been used to
relate this brain activity to predictable behavior [22]. This is an important spotlight of
research in the neurology field [22]. However, work also exists directly in relation to the
concept of flow. For example, a study undertaken by [23] used functional near-infrared
spectroscopy to examine the brain activity in the prefrontal cortex during a flow state.
In their study, university students played a videogame called Tetris to induce flow and
boredom. They calculated the changes in the oxygenated hemoglobin concentrations of
the frontal brain regions, using the NIRS-SPM toolbox to analyze and identify the general
regions of activation [23]. They found that the oxygenated hemoglobin concentration
decreased during boredom and increased during flow states. A different neuropsychology
study of the prefrontal cortex [24] used single photon emission computed tomography
along with xenon inhalation to compare the activation of the cerebral blood flow with the
performance of widely used neuropsychological tests: the continuous performance test,
the Wisconsin Card Sorting Test, the Tower of London, and the Porteus Mazes. With these
different tests, different regions and circuits were stimulated. The overall findings found
that the activation of the regional frontal lobes occurred with cognitive challenges through
the execution of the tests, except for the Porteus Mazes [24].

Blood flow and oxygen concentration also relate to a common data point for many
flow studies—heart rate and heart rate variability. Higher levels of self-control exhibited
and maintained by the prefrontal cortex of the brain are linked to an increase in heart
rate variability [25]. More specifically, the ventromedial prefrontal cortex is a key node in
decision making and evaluation. Using activity patterns from the ventromedial prefrontal
cortex, heart rate variability (HRV) was associated in higher levels to these processes. HRV
has been used in control and experimental conditions, meaning that it is a good form of
measurement for focus. This is an important connection, because heart rate is a more
accessible measure than the oxygenation of blood flow to the brain. Being able to connect
physiological data with brain activity will be important in connecting experiences during
tasks and their physiological effects on the human body. Using this, it will also be possible
to predict what flow looks like based on the measurable physiological changes induced by
the brain activity in the prefrontal region.

Finally, the physiology of the human emotional response remains poorly understood
due to the ethical restrictions on the invasive experiments that would be needed to inves-
tigate. One study used photon emission to study the blood flow in the prefrontal cortex
during a male orgasm. The participants were eight healthy, right-handed heterosexual
males. It was found that the cerebral blood flow in all the areas of the brain, except for
the right prefrontal cortex, decreased significantly [26]. Another study examined the as-
sociation of emotional responses with brain activity, using joyful and prideful scenarios
on various subjects in order to see how these emotions mapped out the activation across
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the different regions of the brain. A total of sixteen university students used a phone app
to track their emotions and activities throughout the day, along with routine brain images
being taken. These events usually motivated the behaviors surrounding eating, economic
activities, and reproduction. The dopamine system, involved with the emotion of joy, from
the ventral tegmental area all the way to the nucleus accumbens, mediates the motivation
to obtain a reward from a task [27].

2.2.2. Summary

The frontal cortex of the brain, including the prefrontal cortex, has been theorized to
execute and perform goal-orientated actions, which include decision making, concentration,
self-control, and other typical behaviors that exhibit attentiveness [25]. While this region of
the brain is yet to be fully understood, it is possible to link its connection with motor and
sensory functions to the theory of flow. Increased blood flow in the prefrontal regions of
the brain and the selective activation of different regions based on a task’s requirements
can be beneficial for the challenge of predicting the specific physiological responses as one
enters a flow state. While other areas of the brain are responsible for motor and sensory
skills, the prefrontal cortex is of interest because the higher thinking physiology that takes
place in that area of the brain may correlate to flow. Those in a flow state are expected to
exhibit higher values in the easy tasks compared to those with a higher difficulty. With that
said, variability is also expected in physiological data. Variability in the heart rate, blood
pressure, skin conductivity, and acceleration is expected throughout a course of activities
that stimulate the prefrontal cortex.

The larger, encompassing question surrounding all the past research and investigations
into the brain, sensors, and flow measurement is: what trends in physiological data are
expected for those undergoing difficult and easy tasks? If there is a basic understanding
of the physiological indicators of prefrontal cortex engagement, what flow is, and the
balance of skill and challenge between difficult and easy tasks, then it would be feasible
to connect these to the use of physiological sensors to predict flow. In its simplest form,
what is understood about the prefrontal cortex’s function and motor capabilities can be
directly linked to the data collected by a wearable sensor during self-reported flow states.
Being able to create a predictive model for flow is extremely useful, in that students can use
these models to complete their schoolwork when they are in a recognized flow state, learn
more about how their brains and bodies initiate and experience higher-level thinking, and
be able to continuously improve their skills, such that they continue to accomplish tasks
with increasing difficulty. Predictive models are also important in the job industry when
employers want to understand how engaged their workers are and if they are receiving the
support they need to succeed.

3. Purpose of the Research

Flow is a construct of interest across many different contexts and fields, such as serious
gaming [28], collaboration [29], exercise [30], education [31–33], and even work [34], to
name a few. While flow is typically measured through subjective means, there is no
widely agreed upon “best” measure [35]. As we have discussed, various physiological
measures have been used as well, and the comparably limited work in the area shows
that additional research is necessary. A recent review on flow concluded that the field is
still working towards a comprehensive understanding of flow and how to measure it [35].
To our knowledge, there is currently no wrist-worn wearable device that provides useful
automated measures of flow for students within learning contexts. Building upon previous
work, we proposed a system that can accomplish this using physiological data which are
readily available from a wrist-worn wearable.

Accordingly, the purpose of this study is to establish the efficacy of using wearable
sensors to provide near real-time predictions of flow based on ubiquitous physiological
measures. By using a wristband wearable sensor to collect the physiological data over
a period of participant-chosen tasks and the prior knowledge of the prefrontal cortex’s
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ability to coordinate the brain regions while completing these tasks, it is possible to create a
more complete picture of what is happening to an individual during a flow state. Based
on prior research, the stimulation of the prefrontal cortex induces increases in EDA, heart
rate variability, circulation, and body movement [25,36–38]. Hence, we utilize an inter-
pretable machine learning framework to explore how physiology changes in response to
the inducement of flow within the involvement and execution of tasks. We address the
following questions:

(1) What types of physiological measures are most applicable to the prediction of flow?
(2) What is the efficacy of the physiological measures collected by a wearable sensor to

predict an individual’s experience of a flow state during a task?
(3) How do these physiological features support a wearable device that is able to detect

an individual’s flow state within an uncontrolled daily use environment?

4. Materials and Methods
4.1. Experimental Design
4.1.1. Study 1: Finding the Most Important Physiological Features for Detecting Flow
during Activities in a Controlled Setting

We used a 2-level block design where 60 activities were nested within five participants.
Statistical power considerations indicated that 60 activities were sufficient for detecting
the features with moderate effects on flow at a 95% confidence level, and the nesting of
these activities within multiple participants provided a framework for discovering the
features that were most useful for providing predictions which were robust across multiple
device users. The participants consisted of four females and one male, all of whom were
19–20 years old and currently students at a research-intensive university in the midwestern
United States. All 5 students were STEM majors, meaning that their majors were focused
on the fields of science, technology, engineering, or mathematics. The participants were
recruited through contacting students in the same classes or connections between other
participants. The procedures were approved through the university’s Institutional Review
Board (#06046).

Each participant completed two different activity sets with six different and specific
tasks embedded within each of those activity sets. Since the achievement of flow requires a
balance between skill and difficulty [3], the participants chose their own activities based
on their personal interests or hobbies and selected tasks within each activity with a range
of difficulties, in order to obtain the variance catering to their individual access to flow
during the tasks. Therefore, we obtained 12 distinct tasks for each participant (Table 1), for
a total of 60 tasks across the five participants. The task durations ranged between one and
seventeen minutes, with an average duration of six minutes and fifteen seconds.

As seen in Table 1, each participant had twelve key distinctive data collection periods
in which they had the opportunity to be in a flow state or a non-flow state. The order
of the completed activities was randomized in order to eliminate the predisposed bias
from the participant in the scores of the surveys or their performance during the activities.
After all the activities were lined up by the tasks in a specific order, the participants wore
the E4 Empatica (E4) watch during the entire duration of all the tasks. Before beginning
the activities, a 5 min baseline was collected in order to obtain a participant’s baseline
measurement when they were not engaged in an activity. An additional 5 min baseline
was collected after the six tasks within each activity were completed. The E4 is specifically
designed to combine EDA and PPG sensors to measure the sympathetic nervous system’s
activity and the heart rate [39], making it a good source for data acquisition in the context
of flow. After each task was completed by the participant, 9 Likert questions from the Flow
State Scale created by Jackson and Marsh were completed to quantify the participant’s
self-reported experience of flow during the task [40].
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Table 1. Summary of activities and embedded tasks completed by the participants.

Activity 1 Activity 2

Playing the Violin Solving Sudoku Puzzles

Participant 1

The Scientist
(Coldplay)

La
Cinquantaine

(Vivaldi)

Surprise
Symphony

(Haydn)
Easy puzzle Easy puzzle Easy puzzle

18 (Josephine
Trott)

Concerto in G
Major (Vivaldi)

The Giga
(Corelli) Hard puzzle Hard puzzle Hard puzzle

Playing Video Games Reading

Participant 2
Minecraft Mario Kart Nintendo Dogs Hide & Seek Spillover The Gone

World

Super Mario 64 Luigi’s
Mansion

Super Smash
Bros Zone One American War Biophysical

Journal Article

Playing Video Games Reading

Participant 3

MLB 2021 Assassin’s
Creed

Call of Duty
(Easy Mode)

Sports Research
Article Hide and Seek Oh the Places

You’ll Go!

Call of Duty
(Hard Mode) Madden (Hard) UFC Fluid dynamics

textbook

Economy
Learning

Handbook

Astrophysics
book

Drawing Reading

Participant 4

Draw simple
shapes

Draw a picture
of a hill covered

with flowers

Draw a picture
of favorite pet

Goodnight
Moon The Giving Tree

The Very
Hungry

Caterpillar

Draw a picture
of a family of
birds in a nest

with eyes
closed

Draw an entire
detailed forest
landscape in 5

min

Draw a sea
monster with
eyes closed

Scientific
Journal

Scientific
journal

Scientific
journal

Playing Video Games Drawing

Participant 5

Apex Legends
(normal) God of War Animal

Crossing
Free-hand draw

for 10 min

Use simple
shapes to create

a monster

Draw a picture
of Rowdy

Raider using a
reference pic

Outlast Apex Legends
(Ranked)

Super Smash
Bros

Draw detailed
ocean scene in 5

min

Draw a
self-portrait
with eyes

closed

Draw 10 cats
while talking

about personal
opinion on
pollution

4.1.2. Study 2: Testing the Features Derived from Study 1 for Prediction of Flow with a
New Device User in an Uncontrolled Setting

Upon the selection of the most important features for the prediction of flow in Study 1,
we wished to see how well these features facilitated the prediction of flow for a new
participant in a comparatively uncontrolled “daily use” setting. This participant was a
female freshman of 19 years of age, completing a STEM program at a research-extensive
university in the midwestern United States. This participant utilized the Empatica E4
device using the same procedures as the participants in Study 1; however, this participant
used the device in the context of a greater variety of activities and across a longer period
of time, which is consistent with how a regular user might use the device. When the
participant noticed her degree of flow changing during an activity, she documented her
state of flow on the Flow State Scale [40] and then started a new session. Otherwise, the
nine questions from the Flow State Scale [40] were completed at the end of each activity.
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This participant collected data in the context of 10 sessions across a 2-week time span. The
activities included journaling (1 session), academic writing (1 session), exercising at the
gym (2 sessions), lifting weights (1 session), cartoon drawing (2 sessions), and playing
Zelda on a Gameboy video game system (3 sessions). The task durations ranged between
10 and 83 min.

4.2. Instrumentation
4.2.1. Use of the Empatica E4

To predict the students’ cognitive flow based on physiological parameters, the E4
wearable device collected 6 different measures from each data session. The E4 has four
sensors, including a photoplethysmography sensor, an EDA sensor, a 3-axis accelerometer,
and an optical thermometer [39]. The measures utilized in this study included: EDA (µS),
skin temperature (TEMP) (◦C), heart rate (HR) (beats per minute), and acceleration (ACC)
on three orthogonal axes (X, Y, Z). The E4 wristband collected the heart rate at a frequency
of 1 Hz, the skin temperature and EDA at 4 Hz, and the acceleration at 32 Hz [39]. False
readings were removed at the start of each session as the Empatica E4 device calibrated and
stabilized. The first 20 s of data were removed from all the readings. The EDA, temperature,
and acceleration were also edited to remove false readings by integrating their sampling
frequencies of 4 Hz (EDA and temperature) and 32 Hz (acceleration). Therefore, the first
80 readings of the EDA and temperature were removed, along with the first 640 readings
for the acceleration. The initial 10 readings for the heart rate were removed, which was
sampled at 1 Hz. It is important to note that the heart rate was calculated as a moving
average of the previous 10 s of data; hence, the first 10 s of readings were removed. In
Study 1, with 60 tasks executed by 5 participants, over 10 h of data (over 36,000 heart
rate measures, 144,000 skin temperature and EDA measures, and 1,152,000 acceleration
measures) were collected to be used for further analysis. In Study 2, in the context of
10 tasks undertaken by a single participant over a 2-week period, over 7.5 additional hours
of data (over 27,000 heart rate measures, 108,000 skin temperature and EDA measures, and
867,000 acceleration measures) were collected in order to test the efficacy of the features
derived from Study 1 within a comparatively uncontrolled daily use context.

4.2.2. Modeling the Measurement of the Flow State Scale

After each task was completed by the participant, a survey was also completed
corresponding to each individual task, in order to get a measure of the flow during that
task. All the questions were the same for each survey, along with the same answer scale that
included the answer options: “strongly agree, agree, neutral, disagree, or strongly disagree”.
These questions were derived from the Flow State Scale in order to maintain questions that
were solely focused on the participant’s experience with flow [40]. The original 36-item
instrument, which was tested on 394 athletes aged 14–50 in the context of performing
athletic activities in their chosen sport, was structured as a 9-dimensional assessment
that contained 4 parallel questions, aligning with each of the 9 elements of flow: (1) the
challenge–skill balance, (2) action–awareness merging, (3) clear goals, (4) unambiguous
feedback, (5) the concentration on the task at hand, (6) a sense of control, (7) a loss of
self-consciousness, (8) the transformation of time, and (9) the autoletic experience. In the
interest of a shorter survey and given our interest in obtaining a single measure for flow
instead of nine distinct measures, we selected one question per element of flow in order to
construct a nine-item survey which we initially hypothesized to be unidimensional.

One potential problem with this approach is that a unidimensional model was shown
to provide an inadequate representation of the data using a confirmatory factor analytic
(CFA) approach [40]. Specifically, each of the 9 elements of flow was moderately correlated
(r = 0.224–0.795), leading the authors to conclude that the 9 elements of flow may be related
through a higher-order factor; this was supported through their CFA approach [40]. In
short, there is little consensus from the data on how to best use the Flow State Scale in a
parsimonious way and leaves a considerable gray area as to how the Flow State Scale should
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be used to measure flow in this study. For example, the authors note that the presence of a
higher-order factor does not necessarily imply that flow can be treated as a single score,
but given that the nine dimensions are correlated with each other, a 9-dimensional model
likely has an unnecessary level of complexity [40].

To inform us of how we should use the Flow State Scale in this study, we needed
to obtain a more detailed understanding of how it worked as a measure of flow for our
participants. To this end, we used a Rasch modeling approach, using the responses from
Study 1 [41]. The Rasch approach to exploring the validity of the constructs relies on pro-
viding a fixed definition of the measurements based on the law of measurement invariance
and evaluating the validity of the instrument based on its conformity to this law. The
information about the instrument’s functioning is gathered through an inspection of the
anomalies in the data with respect to the model, which is held to be true a priori, which
aligns well with the post-positivist hypothetico-deductive approach to inquiry and the
process of falsification [42]. This can be contrasted with the confirmationist approach used
by Jackson and Marsh [40], where increasingly complex models were fitted to the data until
an acceptable level of fit was achieved.

We used the Rasch Rating Scale Model [43] as a definition of measurement, which
allowed us to evaluate the efficacy of the ideal case, where the nine elements of flow are
used to construct a single measure for flow. With this model, the rating scale was fixed
across all the nine elements of flow, and the probability of a participant attaining a particular
level for an element of flow was defined to be proportional only to the difference between
the participant’s level of flow and the difficulty of achieving that particular element of flow.
In order to inform our decision on how to use this scale to yield a measure for flow, we
focused on three questions: (1) to what extent do the nine elements of flow conform to
the unidimensional hierarchy defined by the Rasch Rating Scale Model [43], (2) are there
particular elements of flow that do not fit well into the flow construct, and (3) what does a
full flow experience look like? The conformity to the unidimensionality assumption was
evaluated using a principal components analysis (PCA) on the residuals with respect to
the Rating Scale Model. Random residuals, indicated by a first eigenvalue of less than 2,
indicated a conformity of the nine elements of flow to the unidimensionality assumption,
implying that the nine elements of flow can be treated as a unidimensional hierarchy. If a
first eigenvalue greater than 2 was observed, then the loading of the particular elements
of flow onto the residual factors was inspected in order to tease out which elements of
flow fell outside of the main factor of interest [44]. An observation of the elements of flow
that did not fit well was carried out through analysis of misfit of the response pattern
for each element of flow with the model-expected response pattern. Mean squares infit
(information-weighted) and outfit (outlier-sensitive) indices were used as the measures
of fit [45]. These have expected values of 1 but can range between 0.5–1.5 for productive
measures [46]. Values above 1.5 (worse-than-expected fit) are of the greatest concern, as
these would indicate that a particular element of flow is biased in favor of the participants
with lower flow states, which contradicts the intended directionality of the scale [45]. Values
below 0.5 (better-than-expected fit), although less of a concern, indicate that an element of
flow as it is defined contains other dimensions which artificially bias it in favor of those
who tend toward higher flow states [47].

4.3. Calculation of Distribution Features from the Physiological Signals

A total of 30 distributional features were calculated from the physiological measures
for each task. For the heart rate, skin temperature, EDA and acceleration in the x, y, and
z directions, we calculated the following features for each activity within each individual: a
mean change with respect to the baseline, a median change with respect to the baseline, a
change in the standard deviation with respect to the baseline, skewness of the measures
during the task, and kurtosis of the measures during the task. The purpose of the mean
and median changes with respect to the baseline was to quantify the average change in
the value of the measure due to the task. The change in the standard deviation with
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respect to the baseline was calculated to provide insight into how the variability of the
parameter changed due to the engagement in the task. The skewness was calculated
for each physiological parameter in order to quantify the directionality of the outlying
data, where a positive skewness indicated extreme values in the positive direction and a
negative skewness indicated extreme values in the negative direction. Finally, the kurtosis
was calculated for each physiological parameter in order to quantify the peakedness/tail
thinness of the distribution. A high kurtosis indicated smaller tails, indicating the tendency
for the measures to take more similar values. A lower kurtosis, which is indicative of larger
tails, indicated a greater tendency toward multimodality.

4.4. Inferential Analysis of the Relationship between Physiology and Flow

A 2-level stepwise fixed effects logistic regression model with SPSS 21 was utilized as
an interpretable framework for selecting the features which served as significant predictors
of the outcome of achieving flow. With this approach, the “participant” was first forced into
the model as a factor. After controlling for the unique effects of the individual participants,
we used a forward stepwise model building procedure [48] in order to select the features
that improved the fit of the model after accounting for the participant-level differences [48].
We used a 90% confidence level based on the likelihood ratio test as a criterion for the
addition of a feature to the model. One limitation of stepwise regression is that, as a greedy
approach, it does not necessarily identify the best set of variables [49]. We therefore used
a more liberal Type 1 error rate so that the features providing robust predictions across
the participants were added to the model, with the understanding that the potential for
overfitting would be assessed using a between-participant cross-validation framework [50]
that evaluated the efficacy of the features in providing predictions that were robust across
the individuals.

4.5. Using Machine Learning to Evaluate Efficacy for Prediction of Flow

We utilized two interpretable machine learning algorithms, logistic regression and
naïve Bayes, to explore the efficacy of the retained features in predicting whether or not
participants were experiencing a flow state. Logistic regression is a discriminative classifier
which directly models the probability of being in a flow state conditioning on the feature
inputs. A naïve Bayes is a generative classifier which learns the joint probability of whether
or not a participant is in a flow state and uses that participant’s feature measures as
inputs [51]. Predictions are then made using the Bayes rule to calculate the probability
of being in a flow state given the physiological measures. Given that we had 60 tasks
which were given flow state labels based on the Flow State Scale [40], it was instructive to
utilize both generative and discriminative classifiers, given the research suggesting that,
while discriminative classifiers such as a logistic regression have a lower asymptotic error,
generative classifiers like naïve Bayes tend to approach their asymptotic error quicker,
which increases their efficacy when less training data are available [52].

In order to obtain an idea of the efficacy of physiological data for predicting whether
or not a participant is in a flow state, we used three model training–testing scenarios. First,
we used participant-fold cross-validation, where we trained the algorithm on the data from
four participants and tested it on the fifth participant. This was repeated for each respective
participant. This style of validation was of the greatest interest in this study, in that it
delivered the most direct insight into how well a flow detection device that utilizes the
statistically significant physiological features would perform on a new individual. Second,
we used participant-stratified 10-fold cross-validation, which allowed the algorithms to
make predictions about a participant’s flow state after seeing some of the other data from
the same participant, as well as from the other participants. Third, we tested the algorithms
on the same data that were used for training, which provided a best-case scenario for the
prediction. Furthermore, the difference in the predictive efficacy between these different
cross-validation methods is indicative of the extent to which the models were overfitting.
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In sum, person-fold cross-validation indicates how well a flow detection device would
work right away on a new participant, while 10-fold cross-validation indicates how the
prediction might improve if a participant went through a short training phase where they
manually labeled whether or not they were in a flow state. Since no model is perfect, we
must negotiate a trade-off between Type 1 (false positive) and Type 2 (false negative) errors.
For this, we evaluated the efficacy of each algorithm and cross-validation strategy by using
precision and recall. Precision refers to the ability of the model to identify only the flow
states. A low precision means we will detect many non-flow states (higher Type 1 error).
Recall refers to the ability of the model to detect the observed flow states. A low recall
means we will miss many actual flow states (higher Type 2 error). We used F1 score and
the area under the ROC curve as omnibus measures for the performance. The F1 score
was calculated as the harmonic mean of the precision and recall. The ROC curve was
constructed as a graph of the true positive rate vs. the false positive rate for a range of
probability cutoffs, and the area under the curve (AUC) was used as a measure of the
algorithm performance [51]. All the machine learning was implemented using the sci-kit
learn package in Python.

5. Results
5.1. Analysis of the Flow State Scale

The Rasch Rating Scale Model with the Study 1 data indicated that the nine elements
of flow provide a hierarchy that exhibits some departure from unidimensionality. The
eigenvalue of 2.76 on the first residual factor was greater than the cutoff of 2 suggested
in the simulation work to indicate a reasonable conformity with the unidimensionality
assumption [44]. The infit indices for the individual elements of flow ranged between
0.62 and 1.43, and the outfit indices ranged between 0.68 and 1.60. Loss of self-consciousness
was the only element of flow that fell above the upper bound of 1.5 that was recommended
by [46]. Given that it also had the highest loading onto the residual dimension (l = 0.79),
we can conclude that this particular element of flow is discordant with the other elements.
The other elements with high loadings included the challenge–skill balance (l = 0.64) and
unambiguous feedback (l = 0.54). In this sense, although the nine elements of flow make
up a reliable scale (reliability = 0.86), the elements are not necessarily unidimensional.

With this in mind, it is useful to look at what a full flow experience might look like
based on the hierarchy of the elements of flow, in terms of their difficulty in achievement. In
the map below (Figure 1), the level of flow measured during each activity (reliability = 0.86)
and the difficulty of each element of flow (reliability = 0.91) are plotted on a common
log-odds scale derived from the Rasch Rating Scale Model. The difficulty levels for the
elements of flow represent the center of the rating scale, which is the point at which a
participant is equally likely to select the highest rating (strongly agree) and the lowest
rating (strongly disagree). It follows that a measure above the difficulty level for an element
of flow implies a higher likelihood of a high rating than a low rating for that element of flow.
Conversely, a measure below the difficulty level implies a higher likelihood of a low rating
than a high rating. Using this representation, we observe that the different elements of flow
are experienced sequentially. As a person’s immersion in a flow state increases, they will
first experience a clear vision of their goals. To progress further, they will need to report a
balance between their skill and the challenge of a task. After this, the person will experience
a sense of control and reward. A progressively higher immersion in flow is accompanied by
a loss of self-consciousness and action–awareness merging. The transformation of time is
the last element of flow to occur, and its position at the top of the Rasch hierarchy suggests
that it will only occur after the other elements of flow have occurred. We highlight this
in Figure 1, which shows the activities where the participants did not experience flow at
all (green box) and the ones where they reported a full flow experience (orange box). The
activities between the boxes indicate a partial flow experience, which included some of the
easier elements, but not the more difficult elements. In this sense, we decided to define flow
in this study as the reporting of a full flow experience, which is indicated by a participant’s
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reporting of “agree” or “strongly agree” for the transformation of time. For the subsequent
analyses, a report of “agree” or “strongly agree” for the transformation of time was coded
as a 1 (a full flow state achieved), and all the other responses were coded as a 0 (a full flow
state not achieved).

Figure 1. A map of the level of flow achieved during a task and the difficulty level of the nine flow
elements on the Rasch logit scale. The green box indicates activities by participants achieving no
flow and the orange box indicates activities that achieved full flow according to the Rasch Model.
Activities between the boxes indicate partial flow.

5.2. Feature Selection and Explanation

When the five participants were forced into the model for the achievement of a full
flow experience, the model was significant at the 95% confidence level (χ2 = 11.59, df = 4,



Sensors 2023, 23, 3957 14 of 23

p = 0.021), indicating some individual differences in how flow was reported. We found
no significant relationship between the frequency of the reported flow states and the
temporal sequencing of the tasks within each activity (r = 0.16, p = 0.77, r2

adjusted = 0), and
so our models treated the sequencing of the tasks as arbitrary. After attempting to add the
30 features to this model using the forward stepwise algorithm, 5 features were selected:
(1) the change in the median skin temperature with respect to the baseline (likelihood ratio
χ2 = 4.78, p = 0.029), (2) the skewness of the skin temperature measures (likelihood ratio
χ2 = 10.57, p = 0.01) (3) the skewness of the acceleration in the x direction (likelihood ratio
χ2 = 9.14, p = 0.02), (4)the skewness of the acceleration in the y direction (likelihood ratio
χ2 = 12.64, p < 0.001), and (5) the kurtosis of the acceleration in the y direction (likelihood
ratio χ2 = 14.63, p < 0.001). Adding these variables improved the model’s fit significantly
compared to the model with just the participants (χ2 = 29.45, df = 5, p < 0.001) and resulted
in a statistically significant final model (χ2 = 41.04, df = 9, p < 0.001).

Based on these five variables (Table 2), the data indicate that skin temperature and
acceleration are the key physiological features to look at when attempting to draw robust
inferences on the experience of flow from a wearable sensor. The finding that we found
most interesting was the relationship between flow and the increase in skin temperature
with respect to the baseline (OR = 10.3, p = 0.063). This implies that a flow experience is
accompanied by vasodilation, which allows for circulation to the extremities. This is backed
up by the fact that a more negative skewness in the skin temperature was associated with
being in a flow state (OR = 0.0756, p = 0.0077). A negative skewness occurs when the bulk
of the skin temperature values shift in the positive direction and the values left at the lower
tail of the distribution pull the mean in the negative direction. This likely explains why the
difference in the median skin temperature, as opposed to the difference in the mean skin
temperature, ended up being a significant predictor.

Table 2. Statistically significant features for prediction of flow after controlling for between-participant
differences (not shown).

Feature Estimate SE Wald χ2

(df = 1)
p-Value Odds Ratio Explanation

Difference in Median
Skin Temperature 2.33 1.26 3.46 0.063 10.3 Flow is associated with an increase in

skin temperature
Skewness of Skin
Temperature −2.58 0.969 7.10 0.0077 0.0756 Flow is associated with more negative

skewness in skin temperature
Skewness of Acceleration
in the X Direction 1.66 0.695 5.67 0.017 5.24 Flow is associated with more positively

skewed acceleration in the x direction
Skewness of Acceleration
in the Y Direction −1.59 0.624 6.47 0.011 0.205 Flow is associated with more negatively

skewed acceleration in the y direction

Kurtosis of Acceleration
in the Y Direction −0.300 0.112 7.23 0.0072 0.741

Flow is associated with a more
platykurtic distribution of acceleration in
the y direction

With regard to acceleration, the higher-order distributional features (the skewness and
kurtosis) ended up providing robust predictions, as opposed the lower-order features (mean
and variance). Flow was associated with a more positive skewness for the acceleration in
the x direction (OR = 5.24, p = 0.017) and a more negative skewness for the acceleration
in the y direction (OR = 0.205, p = 0.011). Given that the differences in the magnitude
(mean or median) with respect to the baseline were not significant, this meant that there
was enough non-systematic variance in the participants’ movement during the activities
to render the difference non-detectable. However, the skewness statistics show that the
bulk of the values for the acceleration in the x direction shifted to lower values during
a flow state, while those for the acceleration in the y direction shifted to higher values.
The negative relationship between the kurtosis for the acceleration in the y direction and
the flow (OR = 0.741, p = 0.0072) indicates that, during a flow state, the acceleration in
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the y direction became more platykurtic, meaning that the tails of the distribution got
heavier. This implies a heavier presence of the values further way from the center of the
distribution. In sum, these relationships imply that a flow state is accompanied by a change
in the activity level and an associated activation of the sympathetic vasodilator system [53],
which would explain the increase in the skin temperature with respect to the baseline and
a shift in the distribution toward higher skin temperature values.

5.3. Efficacy for Prediction of Flow
5.3.1. Study 1: Between-Participant Efficacy in a Controlled Setting

Using the five statistically significant features from Table 2, both logistic regression and
naïve Bayes provided models for achievement of flow that were robust to the differences
between the participants (Tables 3 and 4). The logistic regression performed best, with an
AUC of 0.77 and an F1 measure of 0.72 (confusion matrix in Table 4). As expected, the
classification performance improved when the algorithm was tested on the data used for
training (resubstitution) (AUC = 0.86, F1 = 0.80). However, this degree of improvement was
modest. In sum, our data indicate that these five features comprise a classifier for flow that
is robust across different users and is resistant to overfitting. Hence, this classifier shows
promise as a framework for a wrist-worn wearable that is capable of detecting flow.

Table 3. Performance of logistic regression and naïve Bayes algorithms for prediction of flow.

Between-Participant Cross-Validation Stratified 10-Fold Cross-Validation Resubstitution
Algorithm AUC a F1 b Precision Recall AUC a F1 b Precision Recall AUC a F1 b Precision Recall

Logistic
Regression 0.77 0.72 0.75 0.72 0.82 0.74 0.75 0.73 0.86 0.80 0.81 0.80
Naïve Bayes 0.70 0.64 0.66 0.63 0.68 0.62 0.62 0.62 0.85 0.80 0.81 0.80

a Area under the receiver operator characteristic curve; and b harmonic mean of precision and recall.

Table 4. Confusion matrices for the logistic regression and naïve Bayes algorithms using between-
participant cross-validation.

Logistic Regression Prediction Naïve Bayes Prediction
Observed No Flow Flow No Flow Flow

No Flow 26 12 24 14
Flow 5 17 8 14

5.3.2. Study 2: Transfer to an Uncontrolled Daily Use Setting

The use of the specific coefficients in Table 2 performed poorly for the prediction of
the new participant’s report of flow during the 10 activities (AUC = 0.50), which was not
surprising given the significant individual-level variability shown in Study 1. However,
when the model was re-trained using the same features and tested using leave-one-out
cross-validation, the predictive efficacy of the flow detection sensor was similar to that
which was found within the between-participant cross-validation framework in Table 3
(AUC = 0.71, F1 = 0.70 for logistic regression; AUC = 0.71, and F1 = 0.80 for naïve Bayes)
(Table 5).

Table 5. Confusion matrices for the logistic regression and naïve Bayes algorithms using the features
derived from Study 1 for prediction of flow in a new participant.

Logistic Regression Prediction Naïve Bayes Prediction
Observed No Flow Flow No Flow Flow

No Flow 3 1 3 1
Flow 2 4 1 5

Given the satisfactory performance of the features for the prediction of flow in both
studies under rigorous cross-validation procedures, which emphasize between-user gener-
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alizability, we were able to explore and compare the relative importance of the individual
features by using the permutation method in the Python sci-kit learn package. With
this method, the data within one feature were randomly shuffled and their effect on the
predictive efficacy (a reduction in the AUC value) was found. This was performed for
1000 permutations for each feature, and the means (blue bar) and standard deviations
(black line) for the subsequent reductions in the model’s AUCs are shown (Figures 2 and 3).
This analysis shows that not only are the five features transferrable to a new participant, but
their relative importance to the prediction model bears a lot of similarity. Although there
were some differences in the order of importance between Study 2 (Figure 2) and Study 1
(Figure 3), the acceleration features (the kurtosis and skewness of the acceleration in the Y
direction and the skewness of the acceleration in the X direction) were the most important,
while the temperature features (the skewness of the temperature and the difference in the
median temperature from the baseline) were less important for the prediction of flow in
both study contexts.

Figure 2. Relative importance of the five features in terms of the average decrease in the AUC value
for the Study 2 logistic regression model associated with randomly shuffling a feature in the data.
1000 random shuffles were used for each feature. Mean (blue bar) and standard deviation (black line)
for reduction in AUC across the 1000 random shuffles is shown.
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Figure 3. Relative importance of the five features in terms of the average decrease in the AUC value
for the Study 1 logistic regression model associated with randomly shuffling a feature in the data.
1000 random shuffles were used for each feature. Mean (blue bar) and standard deviation (black line)
for reduction in AUC across the 1000 random shuffles is shown.

6. Discussion

The state of flow is described as an optimal state of productivity which occupies a
middle ground in the continuum between boredom and anxiety [7]. An optimal state of
flow requires a balance between parasympathetic and sympathetic brain activity [54]; in
this sense, it is not surprising that multiple studies have identified a relationship between
flow and sympathetic enhancement [12,55]. As the prefrontal cortex is involved in the
cognitive control of both movement and sympathetic enhancement due to the regions it
coordinates, the effects of flow, such as blood circulation (skin temperature), electrodermal
activity, acceleration, and heart rate, should be related to the prefrontal cortex’s activity.
Measuring these specific data markers can be useful in relating the stimuli and motor
activity that are needed to experience flow to how we can understand and quantitatively
pinpoint a flow state in an individual.

Our data point to a promising new methodology for using the easily obtainable physi-
ological data from wearable sensors to better understand and detect flow. While cognitive
flow is experienced by the individual as a mental process involving the prefrontal cortex,
the data indicate that flow is accompanied by certain measurable physiological manifesta-
tions. In designing a sensor to detect flow, our data indicate that the distributions of skin
temperature and acceleration are the most important features to utilize. An upward shift in
skin temperature measurements while doing a task is indicative of vasodilation due to the
arousal of the sympathetic nervous system [53], which may result from the activation of
the anterior cingulate/dorsolateral prefrontal cortices. Indeed, Csikszentmihalyi described
flow in terms of a feeling of exhilaration, noting that when a person’s body and/or mind is
stretched during a flow state, the person will experience an increased level of stress and
tend toward a display of emotion [7].

The importance of skin temperature makes a case that vasodilation may indicate an
immersion in flow, whereas vasoconstriction may indicate being out of flow. It is difficult,
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however, to explain systematically where acceleration, and in particular acceleration along
certain axes, fits into flow. We believe that there is a connection between movement and
the state of flow [38]. Physical activities, specifically those of moderate to high intensities,
have been known to correlate positively with mental engagement [56]. However, why
would flow be associated with a positive shift in the skewness for the acceleration in the x
direction but a negative shift in that for the acceleration in the y direction? Additionally,
why is flow associated with a lower kurtosis of the distribution for the acceleration in the y
direction? Based on the previous work conceptualizing flow [7], it is reasonable to state
that the flow experience necessitates engagement in a single repetitive activity for some
duration of time, and so it follows that movement will be associated with flow in many
cases [38,56]. However, it is currently unclear whether movement has a causal connection
to flow—for example, a change in movement behavior is associated with the increased
state of stress [57] that is associated with flow—or whether it is connected to flow through
the actual performance of a particular task [56]. In summary, we do not believe that a
lack of movement necessarily indicates a lack of mental engagement. However, it is no
surprise that movement is an effective measure of the mental flow state when used in
conjunction with the other physiological measures within a machine learning framework.
To this end, our use of a between-participant cross-validation framework takes into account
the systematic differences in the movement between the participants and the unique tasks
in which they were engaging—acceleration artifacts that are not related to the state of flow
would be expected to hinder the classification performance within this framework. Our
strong classification performance suggests that movement was useful for predicting the
flow of a new participant, outside of the participants that were used to train the model,
which is the type of generalizability we want to see in a wearable device designed to detect
the flow in a new user. Although teasing out the causal connection between movement
and flow may not be immediately essential for the development of an effective wrist-worn
sensor, it may help to make acceleration a more useful feature for the detection of flow in
future developments.

Our discussion so far has focused on the five significant features. However, we found
it surprising that the features related to the heart rate and EDA were non-significant, given
that these are also associated with the sympathetic responses in the brain. For example,
given the established relationship between heart rate variability and the activation of the
prefrontal cortex [25], we expected to find a significant increase in both the magnitudes
and standard deviations of the participants’ heart rates with respect to the baseline when
they entered a flow state. Furthermore, increases in EDA are associated with sympathetic
nervous system arousal [58] and the activation of the anterior cingulate/dorsolateral
prefrontal cortices [36], and so we were surprised that a change in the EDA from the
baseline was not a significant predictor for flow. Although changes in the distributions
of the heart rate and EDA are associated with prefrontal cortex activity and sympathetic
neurological processes in general, we believe these were more difficult to detect within our
study design, which focused on generalization across multiple participants. Specifically,
both heart rate and EDA varied greatly from one individual to another, which made
their use across participants challenging. By comparison, body temperature is relatively
constant from one individual to the next, which may make a change in skin temperature a
phenomenon that is more repeatable across multiple participants, making it easier to detect
vasodilation due to the sympathetic neurological activation that is associated with flow.

7. Limitations and Future Research

Based on our results, we were able to establish connections between the physiological
responses that are indicative of the current state of flow. Given that the models created were
imperfect, there are certain measures that can be taken in order to improve these models
for future research. Our findings provide evidence for both internal and external validity;
however, a larger sample of tasks from a single participant or multiple participants is a
logical next step. Our research focused on a sample of college students pursuing studies in
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science, technology, engineering, or mathematics (STEM), which delivers generalizability
to that specific context. In future studies, generalizability outside of the context of collegiate
studies would require a more diverse sample. The goal is for the results found in studies
such as this to be applicable to the general public. Hopefully, as flow research continues
into using broader and more extensive samples, our ability to discover and utilize smaller
effects will be improved. Indeed, more data would also allow for inferential models such as
logistic regression to learn the data trends with a higher confidence, which would reduce
the Type 2 error rates and allow for the detection of relationships with smaller effect sizes.
More diverse data which stem from a larger pool of participants and a larger variance in
activities would decrease the context-dependency of the models, but may also lessen the
context-specific interpretability due to the larger variance in the activities [59].

In addition, measures from other wearable sensors may be useful in collecting and
identifying flow. The current analysis establishes the importance of changes in the distribu-
tions of acceleration and skin temperature in the detection of flow. However, one notable
weakness of the current study is that we were not able to detect meaningful relationships
between the distributions of heart rate, EDA, and flow, despite the literature linking the
activity in the prefrontal cortex with changes in both the heart rate variability [25] and
EDA [36]. It is possible that these indicators vary based on the activity being performed for
other reasons. For example, if a participant is in a flow state in a first-person simulation
video game, their heart rate might be accelerated and speed up or slow down depending
on the specific situation in the game. Both heart rate and EDA would also be increased by
repetitive exercise through increased oxygen demand and sweating. On the other hand,
if that participant is working through a more homogeneous activity such as a Sudoku
puzzle, their heart rate may not vary as much, even if they are fully in a flow state. It
makes sense then that the features related to heart rate and EDA may vary considerably
across both activities and individuals. To the end of addressing hypotheses like these in
future research, it is useful to note that some wearable sensors, such as the Hexoskin vest,
have been specifically designed for the collection of cardiorespiratory data such as heart
rate, heart rate variability, breathing rate, and minute ventilation, in addition to data on
activity and movement [60]. Since breathing rate and volume are also associated with the
sympathetic response [61] and may be more repeatable from one participant to the next
than heart rate and EDA, adding a sensor for respiratory monitoring may improve our
ability to predict flow, even if the sample sizes remain relatively small. Furthermore, since
breathing rate and heart rate are correlated, data on breathing rates might help researchers
to better parametrize the variability of heart rate across individuals.

Finally, we were surprised that HRV did not come up as a significant predictor of flow
in our models, given that HRV is correlated with pre-frontal cortex activity [25], which
is related to flow [23]. The measure of HRV that was used in this study (the standard
deviation of the heart rate during the activity) is a time domain measure which bears a
strong mathematical similarity to the HRV measures reported in other neurology research,
such as the standard deviation of the RR interval (which is used to calculate the heart
rate in bpm) and NN interval [25]. Time domain measures such as this are suitable for
time durations between 1 min and 24 h, which encompass the activity durations in this
study; however, researchers have also acknowledged that differences in the activity length
can affect the accuracy of the HRV measures [62]. Although an exhaustive analysis of
these HRV features is beyond the scope of the current study, we acknowledge that the
use of a single HRV measure is a limitation of this study, as there are many features we
could have used from the time domain, frequency domain, and non-linear measures [62].
More research is needed to understand the uniqueness and redundancy of these different
features, in terms of the information they provide and the effect of the activity length on
the accuracy of these measures. Given the relationship between the HRV and pre-frontal
cortex activity [25], which is also related to flow [23], we recommend an empirical study
which explores, in detail, how the different HRV measures relate to each other, as well as
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the unique information they can provide that may help us to understand more holistically
the usefulness of HRV in the prediction of flow.

In summary, the E4 data in the context of our study design is sufficient for obtaining
useful predictions for flow. However, we are optimistic that our ability to detect flow
will only improve as the number of training data increase and sensors that focus on
the measurements of cardiorespiratory features are incorporated. With this in mind, we
propose the creation of a wearable system or device that detects flow and gives the user
feedback in near real-time. This would first involve the collection of data using a device
such as the E4 or Hexoskin sensor. Using a simple machine learning algorithm, such as
a logistic regression or naïve Bayes, a prediction could be made within the smartphone
app itself, without requiring an export to a cloud service. Once a prediction is made, the
device could either silently record or send an alert that the user has achieved flow, and the
user’s flow record could be stored for future reference. Our data indicate that reasonable
predictions can be achieved using models developed on the data from other individuals.
However, the app could also invite the user to respond to the Flow State Scale periodically,
in order to better train the model for the individual.

8. Conclusions

In this preliminary study that draws on data from a small sample of participants,
we identify physiological measures which are useful for predicting flow and evaluate the
efficacy of a wrist-worn wearable system for measuring flow. Our data indicate that an
upward shift in skin temperature and changes in acceleration are the strongest indicators
for flow, which is likely due to the relative constancy of the baselines of these indicators
across individuals. Additional data, and perhaps additional sensors, are needed in order to
better understand the role and efficacy of heart rate and EDA for predicting flow. In any
case, both the logistic regression and the naïve Bayes algorithm illustrate promise for the
efficacy of predicting flow in near real-time by using physiological data, which sets the
stage for a wearable flow detection device which provides the user with feedback through
a smartphone app. To this end, it is useful to consider that it is preferable to have a system
that is specific as opposed to sensitive. In other words, a system that misses some existing
flow states is preferable to a system that gives false alarms. For example, a ROC analysis
of the between-person cross-validation indicated that, if the probability threshold for the
logistic regression algorithm was set to 0.304, then a true positive rate of 55% and a true
negative rate of 82% could be achieved, meaning that this system would detect over half of
the flow experiences, but would correctly identify four out of the five non-flow experiences.
For now, we advocate for a device that focuses on a high specificity and are hopeful that its
sensitivity will continue to improve as more and different types of data become available.
As these conclusions were derived from a small sample of university students, we would
like to see our models tested on additional samples and further validated with data from
other sensor systems. In addition, it would be interesting to evaluate the efficacy of our
findings for predicting flow in other levels of students, as well as in working participants
engaging in activities related to their careers or hobbies. We hope that the creation of a
novel wrist-worn wearable for detecting flow will not only move research on engagement
forward, but will also inspire the lay public to improve their ability to focus on and fully
engage in tasks that enrich their lives.
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