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Abstract: Simultaneous localization and mapping (SLAM) plays a fundamental role in downstream
tasks including navigation and planning. However, monocular visual SLAM faces challenges in
robust pose estimation and map construction. This study proposes a monocular SLAM system
based on a sparse voxelized recurrent network, SVR-Net. It extracts voxel features from a pair of
frames for correlation and recursively matches them to estimate pose and dense map. The sparse
voxelized structure is designed to reduce memory occupation of voxel features. Meanwhile, gated
recurrent units are incorporated to iteratively search for optimal matches on correlation maps, thereby
enhancing the robustness of the system. Additionally, Gauss–Newton updates are embedded in
iterations to impose geometrical constraints, which ensure accurate pose estimation. After end-to-end
training on ScanNet, SVR-Net is evaluated on TUM-RGBD and successfully estimates poses on all
nine scenes, while traditional ORB-SLAM fails on most of them. Furthermore, absolute trajectory
error (ATE) results demonstrate that the tracking accuracy is comparable to that of DeepV2D. Unlike
most previous monocular SLAM systems, SVR-Net directly estimates dense TSDF maps suitable for
downstream tasks with high efficiency of data exploitation. This study contributes to the development
of robust monocular visual SLAM systems and direct TSDF mapping.

Keywords: monocular SLAM; deep learning; TSDF mapping

1. Introduction

A simultaneous localization and mapping (SLAM) system localizes the agent in the
environment and reconstructs the environment. It is fundamental to other tasks, such as
navigation and planning, etc. In visual SLAM, the agent senses the environment using a
monocular, stereo or RGBD camera, and monocular SLAM is the most challenging due
to difficulties in robust pose estimation and map construction. Moreover, the demand for
dense maps in many applications presents a new set of challenges that must be addressed
by existing monocular SLAM methods.

Typically, the pose of the camera is represented by a quantity in the special Euclidean
group SE(3), which includes components of translation and rotation. The map in SLAM is
often represented by a depth map, which contains the distance between each environmental
point corresponding to each pixel in the image and the camera. Traditional SLAM methods
are classed as either direct or indirect, according to the way they use information. Direct
methods solve for poses and depths through photometric error. Photometric error utilizes
abundant information such as lines and intensity variations, but complex patterns of images
can cause local minima when optimizing photometric error. The optimization process is
also unstable when an image is noisy. Indirect approaches exploit information from feature
points. Feature points locate sparse local regions of images and compute descriptors which
are similar from different perspectives. Reprojection error is optimized to minimize the
distance of projection and matched location of feature points. For example, ORB-SLAM [1]
uses a sparse ORB feature for tracking and mapping, which can achieve high performance
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when feature points are correctly matched. However, in regions with few or repetitive
textures, feature points are often erroneously detected or matched, which also leads to a
robustness problem.

With the rapid growth of deep learning, neural networks have been successfully
applied in image processing due to their powerful feature extraction capability [2,3]. They
have also been adopted in SLAM to tackle the robustness problem. Some work has
studied replacing submodules of SLAM with networks. In high-level feature extraction,
using networks can provide an advantage in computing feature points [4–8] or finding
good correspondences [9,10]. Learning-based outlier rejection is explored to produce
robust matches [11–13]. Other work has investigated performing end-to-end learned
SLAM [14–17]. After training on a wide variety of scenes with ground-truth poses, the
networks can utilize prior information to avoid catastrophic errors.

However, previous end-to-end SLAM networks are not trained on applicable dense
maps, which limits their availability. Networks such as TartanVo [16] and DROID-SLAM [15]
only provide pose results. Other networks including DeepV2D [14] use depth maps or
point clouds as map representation, which is not enough for downstream tasks. Post-
processing and fusion could directly use depth maps or point clouds to produce maps
suitable for downstream tasks, but additional information extracted from the networks
would be omitted.

Instead of depth maps or point clouds, denser representation of environment geometry
is considered, which is typically required to enable downstream tasks. To reconstruct a
dense scene from a set of calibrated views, traditional multi-view stereo techniques rely
on local depth map computation and global depth map fusion. The Truncated Signed
Distance Function (TSDF) is a fusion format that contains distance information useable for
navigation and planning. TSDF assigns each 3D point a signed distance from the nearest
environment surface. The sign is decided by whether the point is hidden by the surface,
and distances with absolute values greater than 1 are truncated. The result of two-stage
reconstruction is prone to being either layered or scattered due to depth inconsistency [18].
Thus, deep neural architectures regressing TSDF for direct 3D reconstruction were designed
in recent studies [18–20]. However, these methods require the camera poses as prior
information, and they cannot guarantee the quality of maps when pose estimation is not
accurate. In monocular SLAM, map construction is more challenging because there are
more uncertainties in pose estimation.

In this work, we propose a monocular SLAM system with direct TSDF mapping based
on our sparse voxelized recurrent network, SVR-Net. For a sequence of monocular image
frames, SVR-Net outputs both poses and a TSDF map. The network takes an end-to-
end pipeline that extracts features for correlation and recursively matches them, which is
shown to have STOA localization performance in DROID-SLAM. Moreover, to enable TSDF
reconstruction in the SLAM pipeline, a novel matching network is designed using sparse
3D convolution on voxels, combining the recursive matching with the TSDF mapping
branch. This study makes a contribution towards the advancement of robust monocular
visual SLAM systems and direct TSDF mapping.

The main features of the proposed method are summarized as follows:

(1) Robust monocular SLAM. SVR-Net’s semantic encoder encodes information such as
the scale of scenes to guide matching, which helps monocular pose estimation. SVR-
Net utilizes correlation operations to reduce both the size of features and dependence
on a specific scene’s semantic information, which avoids overfitting. After end-to-end
training on ScanNet [21] with ground truth poses and maps, SVR-Net successfully
estimates poses for all nine scenes of the challenging TUM-RGBD [22] benchmark,
whereas ORB-SLAM fails for most of them.

(2) Accurate pose estimation. Iterative updates are carried out in a recurrent network
to search for the optimal match. Gauss–Newton updates are embedded in iterations
to impose geometrical constraints, which improves the accuracy of pose estimation.
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Experimental results using the TUM-RGBD benchmark show that the pose accuracy
of SVR-Net is comparable to that of DeepV2D.

(3) Direct TSDF mapping. SVR-Net directly regresses the TSDF values and occupancy
confidences of given voxels. Unlike previous monocular SLAM systems that produce
depth maps or sparse 3D points, SVR-Net produces dense TSDF maps suitable for
downstream tasks including navigation and planning. Compared with TSDF recon-
struction methods that take depth maps as intermediate representation, direct TSDF
mapping avoids depth inconsistency. Moreover, SVR-Net’s direct TSDF mapping is
more data-efficient because both pose and map are estimated using the same features.

2. Related Works

Monocular SLAM uses monocular visual information to locate the carrier and model
the environment. Traditional methods are classified as either direct or indirect methods
according to the way information is used [23]. Indirect approaches first detect and match
key points between two frames, then predict poses and 3D points by minimizing the
reprojection error [1,24]. Direct approaches operate directly on pixel intensities, and they
estimate poses and depths through photometric error [23,25,26]. However, both direct and
indirect methods are vulnerable to outliers.

Deep learning has been proposed to improve the robustness of SLAM systems. Some
work has investigated replacing hand-crafted with learned features [4–8], using neural 3D
representations [27–33], and combining learned energy terms with classical optimization
backends [34,35]. In other work, researchers have tried to produce end-to-end learning
for SLAM or VO systems [14–17]. Among these methods, DROID-SLAM consists of
end-to-end recurrent iterative updates of camera pose and pixel-wise depth. It achieves
large improvements in accuracy and substantially reduces catastrophic failures. Sparse
voxel-based networks have been applied for the efficient processing of point clouds and
voxels [36–38]. SVR-Net contains an iterative pipeline that is similar to DROID-SLAM,
but it estimates TSDFs, instead of depth values, with a sparse voxelized structure for
direct mapping.

The implicit representations of surface geometry through SDF are introduced in [39].
The efficacy of TSDFs in fusing high-rate, noisy depth data from consumer-grade depth
cameras, which was first demonstrated by Newcombe et al. [40], has led to a rapid rise in
their popularity. Furthermore, this representation has led to their recent adoption on robotic
platforms [41–43], where the distance field has shown additional utility for optimization-based
motion planning [44,45].

Recent studies have shown the advantage of deep networks in TSDF mapping, com-
pared with traditional multi-view methods. NeuralRecon directly reconstructs local sur-
faces, represented as sparse TSDF volumes for each video fragment sequentially, by a neural
network [18]. VoRTX is occlusion-aware, leveraging the transformer architecture to predict
an initial, projective scene geometry estimate [20]. VolumeFusion replicates the traditional
two-stage framework with deep neural networks, improving both the interpretability and
the accuracy of the results [46]. The suggested network is closely related to TSDF mapping
networks, but does not need camera poses to be provided. Table 1 shows a comparison of
existing learning-based localization and mapping methods.
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Table 1. Comparison of existing learning-based approaches.

References Year Method Monocular Input Pose Estimation TSDF Mapping

[28] 2020 DeepFactors Yes Yes No
[35] 2020 D3VO Yes Yes No
[14] 2020 DeepV2D Yes Yes No
[32] 2021 IMAP No Yes No
[15] 2021 DROID-SLAM Yes Yes No
[18] 2021 NeuralRecon Yes No Yes
[20] 2021 VoRTX Yes No Yes
[46] 2021 VolumeFusion Yes No Yes
[33] 2022 NICE-SLAM No Yes Yes

3. Method

The SLAM system employs a coarse-to-fine strategy to achieve tracking and global
dense mapping, as shown in Figure 1. At the first stage, the raw pose and local map of
a pair of input frames are estimated using SVR-Net. The map is represented by sparse
voxels with TSDF values. Then, the map is fused with the first-stage global map. At the
second stage, the voxels are up-sampled, halving their intervals. Subsequently, the same
network is utilized to refine the pose and map. The resulting fine local map is fused with
the second-stage global map, and SVR-Net proceeds to track the next pair of frames.

Stage 2

Key frame

Reference

frame

SVR-Net

Raw pose

Raw map

Fine pose

Fine map

Global map Global map

Stage 1

Figure 1. SLAM system.

SVR-Net is an end-to-end network for monocular simultaneous tracking and mapping.
Its input consists of a pair of RGB frames with a query set of voxel coordinates. It outputs
the relative pose Tn of the frames and TSDF values dn of the voxels. For each pair of frames,
the earlier frame is designated as the keyframe, and the later frame is designated as the
reference frame. As shown in Figure 2, SVR-Net first extracts the image features into 2D
feature maps. The feature map of the key frame is then transformed into feature voxels and
correlated with the features of the reference frame. After sampling based on the current
pose estimation, a matching network iteratively matches the features and updates the
estimation of pose and map. The iterative pipeline performs a search in a correlation field
of the features to find the optimal match, thereby enhancing both accuracy and robustness.
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Figure 2. The structure of SVR-Net.

3.1. Voxel Feature Extraction and Correlation

In the feature extraction, deep features of the key frame are computed and back-
projected into 3D voxels. Then, correlation maps between features of the voxels and the
reference frame are computed to provide similarity information for matching.

3.1.1. Voxel Feature Extraction

2D feature maps are extracted from the input images using 2D convolution networks,
namely, a metric encoder and a semantic encoder. Both networks produce feature maps
at 1/8 the input image resolution. The metric encoder is a subnet of MnasNet [47] and
contains two inverted residual blocks. The metric features of both frames are used to
build correlation between voxels and images. The semantic encoder resembles the context
network in RAFT, which consists of six residual blocks. The reference frame is only fed into
the metric encoder to produce a metric map I

′
g for feature correlation, while the semantic

features of the key frame provide the initial hidden state and inputs for recurrent feature
matching.

Given voxel coordinates, both the semantic and metric feature maps of the key frame
are back-projected to produce the 3D feature volume. Assume that there are N input voxels
with their coordinates X i, 1 ≤ i ≤ N. For each voxel coordinate, let the projected coordinate
be xi.

xi = Π(TkX i) (1)

Here, Π is the projection function of the camera that maps 3D points onto the image.
Tk is the transformation matrix of the key frame. Bilinear interpolation is carried out at xi
on the feature maps of the key frame to produce voxelized features of X i. To exploit sparsity,
the coordinates and features are stored in separate matrices X, Fs and Fg with N rows.
Here, the subscript s and g represent semantic features and metric features, respectively.

3.1.2. Voxel Feature Correlation

After the voxelization of features from the key frame, the feature correlation between
the key frame and the reference frame becomes feature correlation between the feature
voxels and the reference frame’s metric feature map. The correlation maps are computed
with dot products within the metric features. For the ith voxel, its correlation map at the
first layer is C1

i .

C1
i ∈ Rh×w, C1

ikl =
D

∑
j=1

Fg,ij I
′
g,klj (2)

Here, h, w, and d are the height, width, and feature dimensions of the metric feature
map. Fg,ij is the jth value of the voxel’s metric feature. I

′
g,klj is the jth value of the reference
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frame’s metric feature at position (k, l). The feature correlation reduces feature dimensions
and provides scene-independent information to the downstream networks, which can
improve generalization.

To present similarity information at different scales, the C1
i is pooled with kernel size

2,4,8. All generated maps are C, C = {Cm
i , 1 ≤ i ≤ N, 1 ≤ m ≤ 4}. Cm

i has a resolution of
h

2m−1 × w
2m−1 , m = 1, 2, 3, 4. The four layers of the correlation maps form a pyramid where

the correlation field is sampled at each iteration.

3.2. Sparse Recurrent Feature Matching

Feature matching uses an iterative pipeline to estimate the correspondence between
the voxels and the reference frame. The voxels are first projected to the reference frame
using the estimated pose from the last iteration. Then, correlation values sampled from
projection coordinates are fed into the matching network, which predicts both updated
TSDF values and corrected projection coordinates.

3.2.1. Sampling

In the sampling operation, correlation vectors are generated for all voxels and their
projection coordinates on correlation maps, as demonstrated in Figure 3. For each corre-
lation map of each projection coordinates xi, a grid with radius r is applied. Every point
of the grid corresponds to an offset from the coordinate where the correlation value is
sampled with bilinear interpolation. For all four correlation maps of the voxel, the values
from four grids are concatenated to generate the correlation vector. All correlation vectors
are stacked to a matrix CT ∈ RN×4(2r+1)2

. The subscript T, which represents the pose of
the reference frame, varies during iteration and results in different correlation values.

radius

Projection
coordinate

expand

Bilinear sampling

correlation values

correlation vector

grid

Figure 3. Sampling pipeline.

3.2.2. Matching Network

The coordinates and features of voxels stored in N-row matrices are fed into the
matching network. The network produces three outputs: (1) revisions of voxels’ TSDF
values ∆d ∈ RN ; (2) corrections of projection coordinates ∆x ∈ RN×2; and (3) confidence
weights w ∈ RN×3

+ . Each row of the outputs corresponds to each input voxel. The first two
columns of confidence weights represent the confidence of the projection coordinates. The
last column is the confidence of voxel occupancy, whose value is between 0 and 1.

The matching network is implemented with sparse 3D convolution to process voxels
with varying spatial distributions and sparsity. A gated recurrent unit (GRU) is also adopted
to support iteration. The formulation of a GRU layer is as follows.

Zt = σ(SConv3([Ht−1, Gt]))
Rt = σ(SConv3([Ht−1, Gt]))

H̃t = tanh(SConv3(Rt
⊙

Gt))

Ht = (1− Zt)
⊙

Ht−1 + Zt
⊙

H̃t

(3)

Here,
⊙

is element-wise multiplication and σ is sigmoid activation. Sparse 3D con-
volution, SConv3, implicitly utilizes voxel coordinates to fuse features. The hidden state
from the last iteration is denoted by Ht−1. The semantic feature Fs is split into Fs,h and
Fs,i, to provide the initial hidden state and input feature, respectively. The input feature
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Gt of the GRU is a concatenation of these features: (1) the semantic feature for input Fs,i;
(2) a correlation feature Fc; and (3) a motion feature Fm. The correlation feature is obtained
by encoding CT with two SConv3 layers. The motion feature is obtained by encoding a
motion pattern matrix M with a similar network, which is informative for GRU to perceive
its progress. The motion pattern consists of flows and errors of projection coordinates, as
demonstrated in Section 3.3.

The remaining components of the matching network are three branches to produce
outputs at iteration t: ∆dt, ∆xt and wt. Each branch contains two SConv3 layers and takes
Ht as common input, which effectively utilizes information in features.

3.3. Iterative Tracking and Mapping

The outputs of feature matching are utilized to update the estimations of the pose
and map in each iteration of SVR-Net. A local map is obtained from the final iteration.
Then, map fusion of the SLAM pipeline integrates the local maps from all input frames to
enhance global consistency.

3.3.1. Pose Estimation with Gauss–Newton Update

After each iteration of feature matching, the estimated projection coordinates from
the last iteration are corrected with ∆x. Then, under the constraints of the projection
coordinates and the confidence weights, the classical re-projection error E is optimized
using Gauss–Newton iteration to produce an updated pose estimation.

E =
N

∑
i=1

eT
i W iei (4)

Here, ei is the re-projection error from the ith voxel. W i is the corresponding weight
matrix based on the confidence weights w.

ei = xi + ∆xi −Π(TX i)
W i = diag(wi1, wi2)

(5)

The Gauss–Newton update on the pose T is performed within Lie algebra. The update
is differential with respect to ∆x, making it possible to train the entire network end-to-end.

The motion pattern of the updated pose is informative to the matching network
because the network can learn to adjust its matching strategy reactively at each iteration.
The motion pattern M contains the flows and errors of all voxels. Let the initial pose before
the first iteration be T0 and the estimated pose at iteration t be T t. Then, the flow of the ith
voxel is defined as Π(T tX i)−Π(T0X i), which informs the corresponding optical flow on
the image. The error is the re-projection error of T t.

3.3.2. Map Update and Fusion

For each pair of frames, a local map within the key frame’s view frustum is estimated.
The map is represented as a set of voxels with TSDF values and occupancy confidences. The
coordinates of the voxels are initialized, filling the view frustum with a maximum depth.
The distance between neighboring coordinates, i.e., voxel size, controls the resolution of the
map. However, when the voxel size is small, the huge number of voxels can cause a heavy
memory burden on the GPU. This problem is addressed using the coarse-to-fine strategy.

At the first stage, the TSDF values d0 in the view frustum are initialized with zero.
With iterative running of the matching network, the TSDF values are successively added
with revisions ∆d. After the final iteration of the network, the first-stage TSDF estimations
are obtained with the confidence weights w. Occupancy confidences wo are the last column
of the weights, which are used in map fusion. After the first-stage map fusion, the voxels in
the view frustum are up-sampled and fed into SVR-Net again for second-stage estimation,
producing a fine-grained map.
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As the frames are input in sequence in the SLAM pipeline, all local maps are fused
together to produce a global map. The global map is computed using a linear weighting
method similar to TSDF integration [40]. The global map is initialized with the local map of
the first key frame. For each subsequent local map, the global TSDF values of overlapped
voxels are averaged according to global and local occupancy confidences. Then, the global
occupancy confidences are updated in a cumulative manner. The data of voxels in a new
region are directly attached to the global map.

4. Experiments

SVR-Net is trained on ScanNet(V2), and the full SLAM system is evaluated using
TUM-RGBD. The ScanNet dataset includes 1613 indoor scenes with ground-truth camera
poses and depth maps. The TUM-RGBD dataset contains nine indoor scenes with ground-
truth poses. Without depth maps, the RGB images in TUM-RGBD contain heavy motion
blur, which is a challenge for monocular SLAM.

ScanNet is split into a training set and a validation set, with the training set containing
1513 scenes. In order to improve tracking accuracy with various motion patterns, each
pair of training frames is sampled using a random selection strategy from a successive
subsequence. The length of each subsequence is controlled to satisfy the condition that
there are exactly nine frames with mutual distance greater than thresholds. The distance
threshold of rotation is 15°, and the threshold of translation is 0.1 m. The ground-truth
TSDF global maps are generated by integrating depth frames of the training sequences. For
each sequence, there are two scales of ground-truth maps, corresponding to two stages.
The voxel sizes of the two scales are 16 cm and 8 cm. For training, the ground-truth map
of each image frame is set to the part of the global map within the frame’s view frustum.
Training supervision includes both pose loss and map loss. The pose loss measures the
distance between ground truth and the predicted pose, Lpose = ‖LogSE3(T−1Tgt)‖2. The
map loss is the mean difference between the TSDF values, Lmap = ‖d− dgt‖1.

The hardware used for training and evaluation includes Intel Xeon Silver 4210R
@2.4GHz, 32 GB RAM and Nvidia Quadro RTX6000. The software infrastructure includes
CUDA10.1, Python, PyTorch, LieTorch and Open3D.

4.1. Results on Matching

The quality of feature matching influences the performance of both tracking and
mapping. To validate the superiority of network-based feature matching, matching results
from SVR-Net are compared with results from the traditional method. The results are
presented in both 3D and 2D visualizations, and the quality of feature matching is quantified
using the end-point-error (EPE) metric.

The visualization of feature matching in 3D form is shown in Figures 4 and 5. The
feature matching is performed in a test scene of ScanNet. The blue-colored point clouds
represent the central coordinates of voxels. Each voxel is implicitly attached with a feature
vector obtained through voxel feature extraction. The black lines are match lines connecting
voxels with their matched estimations of projection coordinates on the reference frame.
Each pair of panels represents the same match from different perspectives. The left panel
shows the pose of the reference frame and the RGB image represented by a point lattice.
The right panel shows the result observed from the back of the reference frame, where the
voxels in the environment almost overlap with their projection on the image.
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Figure 4. Matching result from SVR-Net(3D).

As illustrated in Figure 4, the match lines of SVR-Net are consistent and conform to the
projection rule, where voxels representing an object (such as the wardrobe) are projected
onto the corresponding object in the image. The match lines in the right panel have short
projection lengths, indicating low end-point-error. This is attributed to the integration
capability of the matching network for the features of adjacent voxels.

Figure 5 illustrates match lines obtained through brute-force search, which contain
inconsistent parts that indicate outliers. Some of the match lines in the right figure exhibit
significant projection length with high end-point-error. The result indicates that estimation
from SVR-Net conforms to projection rules, while the estimation of a feature’s L2 distance
in brute-force search has no constraints from adjacent voxels, and this method is prone to
producing outliers. A conventional ratio test can remove outliers, but reduces the available
matches at the same time, as shown in the following Figures 6 and 7. All frames in the
Figures are included in ScanNet test scenes.

As illustrated in Figure 6, SVR-Net produces dense matches between 2D image frames.
To ensure clarity, only the top 200 matches from SVR-Net, possessing the highest confidence
weights, are represented. There are no outliers in the matches, and correct matches can
be obtained even in low-texture regions. It can be observed that SVR-Net identified the
lines in the scene through high-confidence matches. In the matching network, the position
information of the lines is propagated to adjacent low-texture regions, enabling the network
to match correctly in these areas and improving its robustness.

Figure 5. Matching result from brute-force search(3D).

Figure 6. Matching result from SVR-Net(2D).
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Figure 7. Matching result from SIFT(2D).

For comparison, Figure 7 illustrates the classical approach, which involves the ex-
traction of SIFT feature points and their matches through brute-force search. To eliminate
outliers, only matches with a test ratio greater than 0.9 from the classical approach are
retained. However, some outliers still remain, due to repetitive features in the low-texture
regions, which interfere with pose estimation and reduce robustness. Furthermore, the
sparse matches preclude the generation of a dense map.

EPE is computed to evaluate the quality of feature matching. For a set of k feature
points in a key frame, we denote their estimated matching coordinates at the corresponding
reference frame as x1, x2, . . . , xk, and their true matching coordinates as x̂1, x̂2, . . . , x̂k. Then,
the end-point-error is

1
k

k

∑
i=1
‖xi − x̂i‖2. (6)

The EPE of a varying number of feature points is plotted in Figure 8. The evaluation
involves 304 pairs of frames in two test scenes from the ScanNet dataset. In order to provide
a given number of matched features, only matches with the highest confidence weights or
test ratios are selected. As the number of matches increases, traditional SIFT-based methods
become less effective in distinguishing repeated features, resulting in an increase in EPE. In
contrast, SVR-Net experiences a decrease in EPE as the measurement quantity increases.
When there are numerous matches, the EPE of SVR-Net is significantly lower than that of
traditional methods, indicating that it is more robust for dense matching.

Figure 8. EPE at different numbers of feature points.

4.2. Results On Full System

SVR-Net estimates both raw and fine partial maps for every pair of adjacent frames.
The partial dense TSDF maps of a test scene in ScanNet are shown in Figure 9. The maps in
(a) and (b) are estimated maps with voxel sizes of 16 cm and 8 cm, and the map in (c) is the
ground-truth map with a voxel size of 4 cm. The RGB image in (d) is the corresponding
key frame.
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Figure 9. Partial dense TSDF maps and corresponding image. Estimated maps with voxel sizes of
16 cm and 8 cm are shown in (a,b) respectively. The ground-truth map with a voxel size of 4 cm is
shown in (c). The RGB image from the corresponding key frame is in (d).

The full SLAM results on scene 360 of the TUM-RGBD dataset are shown in Figure 10.
Camera trajectory and global maps are processed incrementally in the SLAM system. The
estimated trajectory is displayed in blue, while the ground truth is in black. The dense
global map is showcased by both the TSDF map and the point cloud of voxel coordinates
at a voxel size of 8 cm. It can be observed that the pose estimated by the network almost
coincides with the ground truth pose. The TSDF map in the left panel illustrates the floor
and wall of the environment. The right panel presents the distribution of environment
points through a dense point cloud.

The monocular SLAM system is evaluated on nine indoor scenes from the TUM-RGBD
dataset. For each scene, the system runs on sequential RGB frames and outputs the result
of tracking and dense mapping. The tracking performance is compared with those of ORB-
SLAM and DeepV2D. All trajectories are evaluated up to scale using absolute trajectory
error (ATE), which computes the rooted mean square translation error between estimated
and ground truth poses. The result is shown in Table 2. All methods are provided mono.
In challenging scenarios, the conventional ORB SLAMs fail, whereas deep approaches
exhibit greater robustness, effectively computing poses in all scenes. Furthermore, the
SVR-Net model outperforms DeepV2D with respect to average ATE. It is noteworthy that,
in situations where ORB SLAMs achieve success, learning-based methods are less accurate
due to the generalization error of networks. However, in the context of learning-based
approaches, SVR-Net, which only estimates the relative pose between adjacent frames,
achieves a similar ATE to that of DeepV2D, which utilizes multi-frame joint optimization.
This suggests that SVR-Net demonstrates lower generalization error.
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Figure 10. Full SLAM result.

Table 2. ATE on the TUM-RGBD benchmark. Failures are recorded as X.

Methods 360 Desk Desk2 Floor Plant Room rpy Teddy xyz Average

ORB-SLAM2 X 0.071 X 0.023 X X X X 0.01 -
ORB-SLAM3 X 0.017 0.21 X 0.034 X X X 0.009 -

DeepV2D 0.243 0.166 0.379 1.653 0.203 0.246 0.105 0.316 0.064 0.375
Ours 0.205 0.266 0.255 0.433 0.383 0.564 0.521 0.541 0.13 0.366

5. Discussion

Deep learning methods have been applied to the processes of monocular SLAM or
dense TSDF mapping in various systems. However, there have been a limited number of
studies integrating both of these aspects in a unified network. The suggested system, which
is capable of simultaneously estimating pose and TSDF map using an end-to-end network,
is more suitable for applications that require both aspects. The same features are exploited
to produce two modalities of outputs with accuracy comparable to that of DeepV2D, which
indicates highly efficient data utilization.

Real-time performance is an important metric for SLAM. SVR-Net runs at a frame
rate of 4Hz on a desktop RTX2080. However, its performance on embedded devices or
decentralized systems has not been tested, and this requires further research in the future.

SVR-Net only uses information from adjacent frames, which constrains the accuracy
of localization and propagates errors to the map, thereby reducing its precision. A pose
graph can significantly reduce pose error using multi-frame joint optimization. Additional
research is necessary in the future to incorporate this into the proposed network.

6. Conclusions

This paper proposes SVR-Net, an end-to-end network for monocular TSDF SLAM.
SVR-Net produces both poses and global TSDF maps from a sequence of monocular images.
A metric encoder is constructed for the purpose of measuring image similarities, while
a semantic encoder is devised to encode information, including the scale of scenes, to
facilitate matching. In the matching network, sparse 3D convolution is adopted for dense
TSDF mapping. A GRU is also employed to enable iterative updates for rectifying matches.
Matching results presented in both 3D and 2D visualizations demonstrate that this approach
effectively eliminates outliers, producing matches which are dense and more consistent
than those produced by the traditional SIFT-based matching method. An experiment using
the TUM-RGBD dataset further validates the conclusion that SVR-Net exhibits greater
robustness compared with traditional ORB SLAMs. SVR-Net integrates Gauss–Newton
updates for accurate pose estimation. Our experiments demonstrate that SVR-Net achieves
a level of localization accuracy comparable to that of DeepV2D. Unlike previous monocular
SLAM methods, the network directly yields a dense TSDF map during localization, which
avoids inconsistency from depth map fusion and is more feasible for downstream tasks that
are highly dependent on dense maps. Compared with existing TSDF mapping methods,
SVR-Net does not require pre-calibrated poses and can meet real-time requirements.
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