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Abstract: Access to high-quality data is an important barrier in the digital analysis of urban settings,
including applications within computer vision and urban design. Diverse forms of data collected
from sensors in areas of high activity in the urban environment, particularly at street intersections,
are valuable resources for researchers interpreting the dynamics between vehicles, pedestrians,
and the built environment. In this paper, we present a high-resolution audio, video, and LiDAR
dataset of three urban intersections in Brooklyn, New York, totaling almost 8 unique hours. The
data were collected with custom Reconfigurable Environmental Intelligence Platform (REIP) sensors
that were designed with the ability to accurately synchronize multiple video and audio inputs. The
resulting data are novel in that they are inclusively multimodal, multi-angular, high-resolution, and
synchronized. We demonstrate four ways the data could be utilized — (1) to discover and locate
occluded objects using multiple sensors and modalities, (2) to associate audio events with their
respective visual representations using both video and audio modes, (3) to track the amount of each
type of object in a scene over time, and (4) to measure pedestrian speed using multiple synchronized
camera views. In addition to these use cases, our data are available for other researchers to carry out
analyses related to applying machine learning to understanding the urban environment (in which
existing datasets may be inadequate), such as pedestrian-vehicle interaction modeling and pedestrian
attribute recognition. Such analyses can help inform decisions made in the context of urban sensing
and smart cities, including accessibility-aware urban design and Vision Zero initiatives.

Keywords: urban sensing; urban multimedia data; urban intelligence; street-level imagery; data
synchronization; computer vision

1. Introduction

Driven by continuous improvements in computational resources, bandwidth opti-
mization, and latency, activity-rich traffic intersections have been implicated as excellent
locations for smart city intelligence nodes [1]. Audio and video sensors located at intersec-
tions are, thus, capable of generating large amounts of data. Concomitantly, deep learning
and edge computation of these data allow, in real-time, the geospatial mapping and analysis
of urban intersection environments, including moving entities, such as pedestrians and
vehicles. Intersections are some of the most critical areas for both drivers and pedestrians.
They are where vehicles and pedestrian paths most frequently cross. Globally, pedestrians
represent 23% of the 1.35 million worldwide road traffic deaths every year with most
events occurring at pedestrian crossings [2,3]. Thus, predicting pedestrian trajectories
at intersections and communicating this information to drivers or assisted/autonomous
vehicles could help mitigate such accidents. Understanding an intersection scene has sig-
nificant implications for self-driving vehicles in particular. Figure 1 outlines the concept of
enhancing the safety of traffic participants by providing real-time insights into out-of-sight
events at intersections using a combination of multimodal sensing and edge and in-vehicle
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computing. In this example, pedestrians and (semi)autonomous cars are sensed by sight
(cameras) and sound (microphones) at intersections, and information is relayed to each
car’s self-driving system. In this process, edge computing and via the cloud helps extract,
in real-time, useful information from the data.

Figure 1. Illustration of the basic concept of combining multimodal sensors at critical nodes
(e.g., intersections) with on-device and in-vehicle computing capabilities to provide greater
awareness to urban traffic participants.

Within the navigation system of an autonomous vehicle, it is important that its control
system has detailed, accurate, and reliable information as it approaches such a scene to
determine, for instance, the number of road entries into an upcoming crossing or pedestrian
and vehicle trajectories to avoid collisions [4]. For such purposes, urban analytical data
should have high precision, granularity, and variation (such as multiple perspectives of the
same area) to be effectively useful.

In this study, we present 7 3
4 h of synchronized data collected at urban intersections by

specialized Reconfigurable Environmental Intelligence Platform (REIP) sensors developed
by the Visualization and Data Analytics (VIDA) Research Center at NYU [5]. REIP sensors
are capable of dual 5 MP video recording at 15 fps as well as the 12-channel audio at 48 kHz
for the recording of pedestrian and vehicle traffic at various locations. We selected three
intersections in Brooklyn, New York, with diverse demographic, urban fabric, and built
environment profiles and equipped each with four REIP sensors. The sensors were placed
at each corner of the intersection and recorded the dynamic of pedestrian and vehicle
interaction for several ≈40 min sessions, resulting in a total of ≈2 TB of raw audiovisual
data. The data were synchronized across all sensors with high accuracy for both modalities
(one video frame and one audio sample, respectively) using a custom time synchronization
solution detailed later. High-synchronization is important so that events that happen across
cameras and between video and audio can be viewed and analyzed together with reduced
effort, and with confidence, those events actually occurred at the time inscribed in the data.

The presented dataset, which we call StreetAware, is unique to other street-level
datasets such as Google Street View because of the following combination of characteristics:

• Multimodal: video, audio, LiDAR;
• Multi-angular: four perspectives;
• High-resolution video: 2592 × 1944 pixels;
• Synchronization across videos and audio streams;
• Fully anonymized: human faces blurred.
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To demonstrate these key features of the data, we present four uses for the data that are
not possible on many existing datasets — (1) to track objects using the multiple perspectives
of multiple cameras from both audio (sound-based localization) and visual modes, (2) to
associate audio events with their respective visual representations using audio and video,
(3) to track the amount of each type of object in a scene over time, i.e., occupancy, and
(4) to measure the speed of a pedestrian while crossing a street using multiple synchronized
views and the high-resolution capability of the cameras.

Our contributions include:

1. The StreetAware dataset, which contains multiple data modalities and multiple syn-
chronized high-resolution video viewpoints in a single dataset;

2. A new method to synchronize high-sample rate audio streams;
3. A demonstration of use cases that would not be possible without the combination of

features contained in the dataset;
4. A description of real-world implementation and limitations of REIP sensors.

The data presented here will allow other researchers to carry out unique applications
of machine learning to urban street-level data, such as pedestrian–vehicle interaction mod-
eling and pedestrian attribute recognition. Such analysis can subsequently help inform
policy and design decisions made in the context of urban sensing and smart cities, including
accessibility-aware design and Vision Zero initiatives. Among the other possibilities we
discuss later, further analysis of our data can also shed light on the optimal configuration
needed to record and analyze street-level urban data.

Our paper is structured as follows. In Section 2, we review some of the literature
on street-view datasets and how these types of data have been analyzed with deep
learning. In Section 3, we discuss our custom sensors and detail data acquisition and
processing, with emphasis on the precise synchronization of multiple data modalities
(i.e., audio and video). We lay out the motivation for and demonstrate the potential ap-
plications of the data in Section 4 and provide a discussion and concluding remarks in
Sections 5 and 6 correspondingly.

2. Related Work

In this section, we will review some of the currently available audiovisual urban
street-level datasets, then succinctly review applications of such data related to deep
learning-based object detection and pedestrian tracking and safety.

2.1. Datasets

A handful of related datasets exist. The first is the popular Google Street View [6].
Released in 2007, at a time when a limited number of cities had their own street-level pho-
tography programs, Google Street View was revolutionary in that it combined street-level
photography with navigation technology. Publicly available but not entirely free, Google
Maps Street View includes an API and extensive street-level image coverage throughout
much of the World’s roadways. Unlike StreetAware, Google Street View is a collection
of disparate images instead of stationary video recordings of specific places. Moreover,
Google Street View often has multiple viewpoints that are in close proximity to one another,
but they do not overlap in time. Therefore, synchronization across multiple views is not
possible. Another dataset is Mapillary [7]. Mapillary street-level sequences contain more
than 1.6 million vehicle-mounted camera images from 30 major cities across six continents,
distinct cameras, and different viewpoints and capture times, spanning all seasons over a
nine-year period. All images are geolocated with GPS and compass, and feature high-level
attributes such as road type. Again, these data are not video or synchronized and do
not include audio. The next dataset is Urban Mosaic [8], which is a tool for exploring
the urban environment through a spatially and temporally dense data set of 7.7 million
street-level images of New York City captured over the period of one year. Similarly, these
data are image-only and unsynchronized across views. Another street-level urban data set
is SONYC [9]. SONYC consists of 150 million audio recording samples from the “Sounds
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of New York City” (SONYC) acoustic sensor network and is aimed at the development
and evaluation of machine listening systems for spatiotemporal urban noise monitoring.
However, SONYC does not contain visual information. Finally, there is Urban Sound &
Sight (Urbansas) [10], which consists of 12 h of unlabeled audio and video data along
with 3 h of manually annotated data, but does not contain multiple views. These and
other street-level datasets (most oriented toward self-driving vehicle research) are listed in
Table 1 with brief descriptions of each. StreetAware is unique in that it combines stationary,
multi-perspective, high-resolution video and audio in a synchronized fashion.

Table 1. Summary of available street-level datasets with their locations, sizes, descriptions, and
whether or not they contain annotations.

Dataset Location Size Description Annotations?

Google Street View [6] >100 countries >220 B Vehicle-mounted camera images;
download not free No

Mapillary Street-Level
Sequences [7]

30 cities on 6
continents >1.6 M Vehicle-mounted camera images;

condition-diverse; GPS-logged No

Urban Mosaic [8] New York 7.7 M Vehicle-mounted camera images No

SONYC [9] New York 150 M 10-s audio samples Yes

Urbansas [10] European cities
and Uruguay 15 h 10-s audio & video samples Yes

KITTI [11] Germany 1 k Vehicle-mounted camera images; laser
scans; GPS-logged Yes

NuScenes [12] Boston, MA 1.4 M Vehicle-mounted camera images; radar
& LiDAR; multi-camera Yes

Waymo Open Dataset [13] California &
Arizona 1 M Vehicle-mounted camera images;

LiDAR; condition-diverse Yes

Infrastructure to Vehicle
Multi-View Pedestrian
Detection Database
(I2V-MVPD) [14]

Tunisia 9.48 k Vehicle-mounted & stationary
synchronized images Yes

EuroCity Persons [15]
31 cities in
12 European
countries

47 k Vehicle-mounted camera images;
condition-diverse; pedestrian-oriented Yes

Pedestrian Intention
Estimation (PIE) [16] Toronto 911 k Vehicle-mounted camera images;

pedestrian & vehicle-oriented Yes

KrishnaCam [17] Pittsburgh, PA 7.6 M Images from Google Glasses on
pedestrian No

Multi-view Extended
Video with Activities
(MEVA) [18]

Facility in Indiana,
USA 9.3 kh Stationary RGBIR & UAV video Yes

Neovision2 Tower [19]
Hoover Tower at
Stanford
University

20 k Stationary camera images Yes

Cityscapes [20] 50 cities, most in
Germany 25 k Vehicle-mounted camera images Yes
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Table 1. Cont.

Dataset Location Size Description Annotations?

NightOwls [21] Germany,
Netherlands, & UK 279 k Vehicle-mounted camera images

at night Yes

Cerema [22] Controlled testing
environment 62 k

Stationary camera images of
pedestrians; varied
rain/fog/light conditions

Yes

StreetAware Brooklyn, NY 7.75 h Stationary audio & video;
synchronized, multi-perspective No

2.2. Deep Learning Applications

A number of recent studies have explored the use of deep learning for detecting
and analyzing objects in street-level audio and video data. A study by Zhang et al. [23]
developed an approach to automatically detect road objects and place them in their correct
geolocations from street-level images, relying on two convolutional neural networks to
segment and classify. Doiron et al. [24] showed the potential for computer vision and
street-level imagery to help researchers study patterns of active transportation and other
health-related behaviors and exposures. Using 1.15 million Google Street View (GSV)
images in seven Canadian cities, the authors applied PSPnet [25], and YOLOv3 [26] to
extract data on people, bicycles, buildings, sidewalks, open sky, and vegetation to create
associations between urban features and walk-to-work rates. Charitidis et al. released a pa-
per in 2023 [27] in which they utilized several state-of-the-art computer vision approaches,
including Cascade R-CNN [28] and RetinaFace [29] architectures for object detection, the
ByteTrack method [30] for object tracking, DNET architecture [31] for depth estimation,
and DeepLabv3+ architecture [32] for semantic segmentation to detect and geotag urban
features from visual data. Object detection systems have also been specifically developed
for the collection and analysis of street-level imagery in real-time [33]. In “Smart City Inter-
sections: Intelligence Nodes for Future Metropolises” [1], Kostec et al. detail intersections as
intelligence nodes using high-bandwidth, low-latency services for monitoring pedestrians
and cloud-connected vehicles in real-time. Other computer vision applications to urban
street view imagery include extracting visual features to create soundscape maps [34],
mapping trees along urban street networks [35], estimating pedestrian density [36] and
volume [37], associating sounds with their respective objects in video [10], and geolocating
objects from a combination of street-level and overhead imagery [38].

Pedestrian speed and trajectory prediction are some of the primary computer vision
goals in the urban data analytical community, especially in the field of advanced driver
assistance systems [3]. The performance of state-of-the-art pedestrian behavior modeling
benefits from recent advancements in sensors and the growing availability of large amounts
of data (e.g., StreetAware) [39]. A study by Kuo et al. [40] compared estimations of
pedestrian speed from a classical model and a neural network in corridor and bottleneck
experiments, with results showing that the neural network can better differentiate the two
geometries and more accurately estimate pedestrian speed. Ahmed et al. [41] sought to
use a fast region-convolutional neural network (Fast R-CNN) [42], a Faster R-CNN [43],
and a Single Shot Detector (SSD) [44] for pedestrian and cyclist detection based on the idea
that automated tracking, motion modeling, and pose estimation of pedestrians can allow
for a successful and accurate method of intent estimation for autonomous vehicles. Other
related studies in the literature include applying deep learning techniques for the prediction
of pedestrian behavior on crossings with countdown signal timers [45], mapping road
safety from street view imagery using an R-CNN [46], and identifying hazard scenarios
of non-motorized transportation users through deep learning and street view images in
Nanjing, China [47].
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3. The StreetAware Dataset

In this section, first, we will review existing audiovisual sensor options and make the
case for harnessing the REIP sensors (Figure 2) designed and constructed in our lab. Next,
we describe how the data are collected, processed, and synchronized.

3.1. REIP Sensors

A multi-view requirement of our data collection could easily be satisfied with off-
the-shelf video surveillance systems that often include a set of wireless IP cameras. These
cameras transmit their video feeds to a central data storage location (in the form of a local
hard drive) which can sometimes be synchronized with a cloud but is not required for the
system’s operation. The cameras also include a night mode which can prove beneficial
during low-light conditions. However, these cameras rarely provide audio because of
privacy concerns and rely on manually configured timing information or NTP (network
time protocol) for time-stamping of the video. The latter is a significant barrier to a multi-
view analysis of fast-moving objects such as cars. A car traveling at 40 mph covers more
than a meter of ground per frame when recorded at 15 fps. Therefore, frame-accurate video
synchronization is also a requirement for our dataset and, unfortunately, cannot be met
with off-the-shelf security cameras, which are also often operating at reduced frame rates
due to limited storage.

Figure 2. A photo of the REIP sensor in its protective metal housing ready for deployment (left)
and its internal architecture (right).

There exist commercial motion tracking systems that use high-speed cameras synchro-
nized by NTP. Although these cameras provide high temporal resolution and accuracy for
video, they would be insufficient for the synchronization of audio data (sub-millisecond
timing accuracy required). Furthermore, such cameras are typically designed for indoor
infrared light imaging, are costly, and rely on an Ethernet interface for synchronization and
data transfer which makes them impractical for larger-scale urban deployments.

Another commercial device that provides quality video with audio at a reasonable
price is the GoPro camera. However, the GoPro was designed for independent operation
so it does not feature quality synchronization across multiple cameras. Moreover, the syn-
chronization across video and audio modalities is also known to be a problem because of
audio lag offset and differences in sampling frequencies. Recently, GPS-based time-coding
has been introduced in the latest versions of GoPro cameras. This could help with syn-
chronizing the start of the recordings but does not solve the ultimate problem of long-term
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synchronization. The time drift caused by manufacturing variations of the internal crystal
oscillator’s frequency that drives digital logic (including the sampling frequency) is also
susceptible to temperature-based variations. Moreover, there is no way to know when the
GoPro is experiencing lost frames during recording, which ruins the single timestamp-based
synchronization altogether. The solution would be a continuous (re)synchronization of the
cameras from a single clock source during the entire recording process. Other potential
issues include remote control and monitoring of the camera’s status as well as weather-
proofing that may require external devices and housing depending on the camera version.

Ultimately, the sensors used in this study are custom-built in our lab. An overview
of the sensor’s architecture is provided in Figure 2 with its specifications listed in Table 2.
The sensor includes two cameras and a microphone array. It also features a high-precision
custom synchronization solution for both video and audio data based on a 2.4 GHz radio
module receiving common global timestamps from a master radio device. Each camera
records 5 MP video at 15 fps and the microphone array records audio through 12 synchro-
nized channels. The custom acoustic front-end was designed to capture audio from the
4 × 3 digital pulse density modulated (PDM) micro-electro-mechanical systems (MEMS)
microphones. It uses the USB MCHStreamer as an audio interface which is a USB audio
class-compliant device, so it is compatible with the readily available microphone block
in the audio library of the REIP SDK [5]. Each sensor has 250 GB of internal storage and
is operated on a FlashFish portable power station. The computing core is the NVIDIA
Jetson Nano Developer Kit, which offers edge-computing capabilities. The majority of the
sensor’s hardware is enclosed within the weatherproof aluminum housing. Heat sinks are
designed to offer resistance to extreme temperatures, providing better performance. For
sensor control, a locally deployed network router and Wi-Fi connectivity are used.

Table 2. REIP sensor specifications including its two cameras, 12-channel microphone array, and
NVIDIA Jetson Nano as a computing platform.

Feature Specification

Internal Storage 250 GB

Power capacity 300 Wh

Camera resolution 5 MP

Camera field-of-view 160◦ (85◦ max per camera)

Camera frame rate 15 fps (nominal)

Audio channels 12 (4 × 3 array)

Audio sampling rate 48 kHz

NVIDIA Jetson Nano GPU and CPU cores 128 and 4

NVIDIA Jetson Nano CPU processor speed 1.43 GHz

NVIDIA Jetson Nano RAM 4 GB LPDDR4

REIP sensors provide high-resolution video and audio recording with an in-built
synchronization solution (the high-level architecture is shown in Figure 2). Both cameras
and audio interface are USB 2.0 devices. Of note is the design of the audio pipeline
where the MCHStreamer interface is receiving an additional audio-like signal from the
microcontroller unit (MCU). The purpose of this signal is to embed the global timing
information received by the radio module as additional audio channels. For video, the
individual image frames are timestamped by the NVIDIA Jetson Nano as they arrive into
the camera block of the data acquisition and processing pipeline powered by REIP SDK.
For that, the MCU is also connected to the computing platform via a USB 1.1 interface and
continuously provides the latest global timestamp transmitted to each sensor by a master
radio module (a separate device).
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3.2. Data Collection

Three intersection locations were selected to acquire the dataset with different road
configurations and pedestrian demographics as described below:

1. Commodore Barry Park. This intersection is adjacent to a public school. It has a
low-to-medium frequency of traffic making it an uncrowded intersection.

2. Chase Center. This intersection is adjacent to the Chase Bank office building within
Brooklyn’s MetroTech Center. It is also an active pedestrian intersection.

3. DUMBO. The intersection of Old Fulton Street and Front Street is under the Brooklyn
Bridge. Being a tourist destination, this intersection is the busiest of the three. Because
of smaller crosswalks and heavy traffic, it provides challenges such as occlusion and a
diverse range of pedestrian types.

Overhead map locations and the sensors’ positions for the recording sessions at
Commodore Barry Park as an example are shown in Figure 3. Each sensor is equipped with
two 5 MP USB cameras providing a combined 160◦ horizontal field of view at a recording
rate of 15 fps. The 4 × 3 microphone array of each sensor records at a sampling rate of
48 kHz. Every sensor was powered by a portable power station with a 300 Wh capacity. An
Ouster OS-1 LiDAR sensor is also included. It has a configuration of 16 vertical scanning
lines at 1◦ angular resolution and 1024 samples per revolution.

Figure 3. Illustration of the sensor positions and data types at the Commodore Barry Park intersection.
Colors denote the different recording sessions, and numbers indicate the REIP sensors. This figure
highlights all data modalities that are being captured during the collection process: audio, video, and
LiDAR scans. Green L indicates the LiDAR sensor position fixed for all recording sessions.

We used four REIP sensors at each intersection, one placed at each corner of the
intersection. We recorded several 30–45 min long sessions at each intersection—four at
Commodore Barry Park, three at Chase Center, and four at DUMBO. This results in about
200 GB of raw audiovisual data recorded by each sensor per location (limited by the sensor’s
max storage capacity of 250 GB). In total, we collected ≈2 TB of raw data.

The data acquisition pipeline of the sensors is shown in Figure 4. The pipeline is based
on the software blocks available in the REIP SDK as released in [5]. Because our sensors are
based on the budget NVIDIA Jetson Nano computing platform, a slight modification was
necessary for a camera block to be able to timestamp every frame from both cameras for
synchronization purposes. We bypass the decoding of JPEG images sent by the cameras to
free up CPU resources. Instead, we direct the raw video stream to the file using features of
GStreamer library [48] that the camera block is based upon. Still, we did experience some
lost frames when recording during the summer month of August due to the throttling of
the sensor’s NVIDIA Jetson Nano computing platform after prolonged exposure to extreme
temperature conditions.
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The output of the sensor’s data acquisition pipeline contains three types of data:
500 MB chunks of video data (approximately one minute of recording, depending on the
intersection), JSON files containing batches of timestamps for each frame in the video
data chunks, and 5-s long chunks of audio data with its timing information embedded
as extra audio channels. We spare the users from working with the sensor’s raw data
by preprocessing it, including anonymization and synchronization. We also use a space-
efficient video codec H.264 instead of the camera’s original MJPEG data stream. Table 3
summarizes the specifications of the processed dataset that we are releasing.

Figure 4. The sensor’s data acquisition pipeline is built using software blocks available in the REIP
SDK. It contains separate tasks for each camera and the microphone array. The LiDAR data acquisition
is performed on a separate machine (orchestrator laptop).

Table 3. Dataset specifications after processing, featuring 3 data modalities (audio, video, and LiDAR)
with synchronized footage.

Feature Specification

Number of geographic locations 3

Number of recording sessions 11

Typical recording length 30–45 min

Total unique footage time 465 min (7.75 h)

Total number of image frames ≈403,000

Video resolution 2592 × 1944 pixels

Number of data modalities 3

Synchronized and anonymized True

Video synchronization tolerance 2 frames

Audio synchronization tolerance 1 sample

Total audio & video size 236 GB

Total LiDAR size 291 GB

Total size 527 GB

3.3. Data Synchronization

In this section, we detail our synchronization techniques, first for audio, then for video
data modality. The synchronization techniques are independent for each modality. Figure 5
illustrates the overall principle.

The method is fundamentally reliant on the hardware design of the sensors where the
communication delay between the master radio and each sensor’s slave radio is constant,
and the radio waves propagation delay is negligible due to the large speed of light of
299,792 km/s. Similarly, the data readout latency for the cameras is equal across sensors
because of the identical cameras used. The video modality can then be synchronized with
audio by calibrating the frame readout latency. For that, a rapid event with a loud sound,
such as a clap, is recorded in close proximity to the sensor (for negligible sound propaga-
tion delay). The true time of the event is then deducted based on sound and compared to
the latest global timestamp received by the computing platform when the video frame is
released by the driver into a REIP pipeline.
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Figure 5. Multimodal synchronization workflow. Each sensor is receiving the global timestamps from
a master radio (at 1200 Hz) and is embedding every 10th of them in a serialized form as an extra audio
track synchronous with the microphone array data. For the cameras used in REIP sensors, it is not
possible to embed the timing information directly into the video data itself. Instead, the timestamps
provided by the camera driver are converted into the global timeline using the computing platform
that is continuously updating the latest timestamp received by the microcontroller unit (MCU) via
USB. More details on video synchronization can be found in Section 3.3.2. The camera’s time axis is
compressed by about an order of magnitude for illustration purposes.

3.3.1. Audio

Audio synchronization is a challenging task because audio data are being sampled at
a very high rate, 48 kHz in the case of our sensors. Furthermore, the speed of sound wave
propagation in the air is c = 343 m/s which translates into a synchronization accuracy
requirement of less than one millisecond, across all sensors, for any meaningful audio-based
sound source locations to work. Such accuracy cannot be achieved by simply attaching
a timestamp to the chunks of audio provided by the driver because of the large ’jitter’ of
such timestamps caused by the random operating system (OS) interrupts on the computing
platform. Therefore, the synchronization information must be embedded into the audio
data itself before it even makes it to the audio driver of the OS. In this subsection, we
introduce a novel method for high-accuracy audio synchronization by means of embedding
a special signal into a dedicated audio channel of the audio interface (Figure 6).

The radio module of each sensor is receiving a global timestamp from a master radio
transmitting it at a rate of 1200 Hz. Unlike the operating system of the computing platform,
the microcontroller operating the radio module via Serial Peripheral Interface (SPI) can
be programmed to process the incoming data packets from the master radio in a very
deterministic way. Specifically, the packet arrival interrupt request (IRQ) signal from the
radio module causes the MCU to interrupt its current routine and execute a function that
decodes the latest timestamp from the data payload of the packet and phase-adjusts the
MCU’s internal timer to match the master radio’s clock. The jitter of the continuously
adjusted slave clock is less than 1 µs with the nRF24L01+ 2.4 GHz radio module. The timer
in turn generates a special synchronization signal connected to one of the inputs of the
MCHStreamer device that we use as an audio interface. The MCHStreamer device supports
up to 16 channels of synchronous Pulse Density Modulated (PDM) audio recording. An
example of how this synchronization signal appears in PCM audio format (converted to by
MCHStreamer) is shown in Figure 6.
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Figure 6. Example of a synchronization signal embedded into the last channel of audio data at a
120 Hz rate. It contains a serialized 32-bit timestamp that is shared across multiple sensors with 1 µs
accuracy using a 2.4 GHz radio module. High synchronization accuracy is required due to a high
audio sampling rate of 48 kHz.

We are using a simple UART-like serial protocol with one start bit, a 32-bit payload,
and a more than 200 audio sample-long stop bit to generate the audio synchronization
signal. The start bit and payload bits are five audio samples wide for more reliable encod-
ing. Such a signal is easy to decode during audio processing, and a single audio sample
synchronization accuracy is achieved because the start bit of the sequence is aligned with
the time of arrival of the timestamp from the master radio, and the micro-controller has a
deterministic delay when processing this information. An example of synchronized audio
data is shown in Figure 7.

3.3.2. Video

Video recording is inherently occurring at a much lower sampling rate than audio. For
instance, the cameras in REIP sensors are configured to record at 15 fps. That corresponds
to a ≈67 ms period between consecutive frames. The radio module receives a new global
timestamp every ≈0.83 ms, which is almost two orders of magnitude more frequent. There-
fore, it makes sense for video recording to timestamp each frame as it is being received by
the driver and calibrates the latency between the moment of assignment of this timestamp
and when the frame is actually exposed instead of inventing a way of embedding the timing
information directly into the image data during exposure as we did for audio. However,
this approach comes with new challenges, such as timestamp jitter and lost frames.

There are three timestamps assigned to each video frame: (1) the GStreamer timestamp,
which starts from zero and is defined by the camera driver upon arrival of the frame into
the queue from the USB, (2) the Python timestamp representing the current system time
which is added using the time.time() function when the frame is released by GStreamer into
the data acquisition and processing pipeline powered by REIP SDK (Figure 4), and (3) the
Global timestamp added to the frame metadata at the same time as the Python timestamp
which is the latest global timestamp communicated to the global time block from the MCU
via USB 1.1 interface, introducing extra jitter. Figure 8 depicts the jitter progression as it
propagates farther down the data acquisition pipeline.
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Figure 7. A sample of audio data (channel 0) synchronized across multiple sensors. Every 400 audio
samples long audio data chunk can be placed in the right place on a global timeline by decoding the
serialized timestamps embedded in the dedicated channel at a rate of 120 Hz.

Figure 8. Each frame acquired by the cameras is timestamped three times: (a) by the camera driver
(GStreamer), (b) by the REIP framework (Python), and (c) by the microcontroller receiving global
timestamps from the master radio (Global). This figure illustrates a progressive degradation of
timestamp quality, in terms of jitter, accumulated throughout the data acquisition pipeline.

We developed a method for reducing the jitter of global timestamps to virtually
zero before rendering the synchronized video streams (Figure 9). The main source of
timestamp jitter is operating system interrupts that happen when the computing platform,
for example, needs to process various I/O events or perform memory management. That
is why GStreamer timestamps have the least amount of jitter because they are defined
when the OS handles USB 2.0 data transfers from the camera. That is also why we are
starting with GStreamer timestamps to reliably detect if and when there are any frames
lost by looking for gaps larger than the expected period of the camera’s frame rate. After
correcting for lost frames, we then convert these timestamps into a global timeline through
a couple of regressions incorporating the information from other types of timestamps
without adding jitter.

In addition to correcting for lost frames and eliminating jitter, our method is also fixing
any queue overflow issues that often result in the jamming of multiple frames one after
another with very similar Python and Global timestamps. This happens when the queue is
emptied out quickly after a prolonged operating system interrupt. Another less common
issue is when the frames saved to the disk get corrupted due to high data flow or during the
copying of the data from the sensors to a server. The solution requires the corresponding
timestamps to be deleted from the metadata, and the associated non-decodable frames are
considered lost.
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Figure 9. Diagram illustrating timestamp processing. We start with the least jittery GStreamer
timestamps and identify any lost frames so that we can reconstruct the original timeline and average
period for the saved frames. We then convert these reference timestamps into a global timeline
through a series of regression steps that incorporate the information from other kinds of timestamps
without adding jitter.

To further validate the video synchronization, we render a surveillance-style mosaic
video using processed frames from all eight cameras at a given intersection and a global
timeline produced by the synchronization of timestamps. Figure 10 shows a mosaic of
the frames at the moment at the Chase Center intersection. Essential for many analysis
applications, at any given moment, the recording of all traffic remains in sync from multiple
viewpoints. Frames for which a camera did not successfully record data are temporarily
made black in the camera’s associated block in the mosaic.

Figure 10. Mosaic rendering of the synchronized frames from recording session one at the Chase
Center intersection that can be played as a video. Four sensors with two cameras each (numbered in
the corners) provide eight different views for comprehensive analysis of the intersection. If a camera
did not successfully record during a particular frame, its block is turned black, such as the left camera
of sensor 4 in this example.

4. Use Cases

In this section, we will demonstrate four use cases highlighting the potential appli-
cations of StreetAware. First, we present two examples of how such data can enhance
pedestrians’ safety in large urban areas by (1) informing pedestrians and incoming traffic
of occluded events using multiple sensors and sound-based localization, and (2) associ-
ating audio events (such as the presence of loud engines) with their respective visuals.
Second, we present easily quantifiable metrics that can be extracted from the data using the
StreetAware infrastructure framework: (3) calculating object counts (occupancy) over time,
and (4) measuring pedestrian speed during crosswalk traversal.

4.1. Audio Source Localization

As the number of sensors deployed in urban environments increases, cities have the
potential to become more human-centered by prioritizing pedestrians over cars. Adaptive
traffic and pedestrian signal timing is one example of how an intelligent sensing platform
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can be used to provide a safer environment for pedestrians. By making the signal timing
adjustable to the volume of foot traffic as well as the needs of different groups of people, we
can allocate longer signal timing to, for example, crowded intersections or pedestrians with
special needs such as the elderly, pregnant, or those with vision impairments [45]. Most
traffic monitoring systems use one or two fixed cameras for each intersection. However,
the complex configuration of intersections in large cities makes it challenging for one or
two cameras to count and detect every traffic participant at a busy intersection. They have
inherent limitations of fixed field of view and susceptibility to occlusions.

In this first use case, we demonstrate how a synchronized multisensor setting can
leverage a data modality, such as audio, to localize sound-emitting traffic participants and
reduce the chance an object is completely obstructed by another. The ability of the sensors
to “listen” as well as “see” allows the sensor network to remain resilient against occlusions
and dead zones. Figure 11 shows an example of detecting the position of a bicyclist using
sound, regardless of whether or not the bicyclist is in any of the cameras’ field of view
thanks to the diffraction property of the sound waves. In order to reconstruct the position
of the bicyclist ringing the bell, we first annotate the high amplitude peaks, ti, in the audio
data, synchronized using the common time scale as reconstructed from the dedicated audio
channel with the serialized timestamps (see Section 3.3.1). With the known sensor positions,
pi, one can find the sound source position, p, at time, t, by minimizing the errors:

p, t = arg min
p,t

4

∑
i=1

(||p− pi|| − c · |t− ti|)2, (1)

where c = 343 m/s is the speed of sound in air. All four sensors must hear the sound for this
to be a well-posed problem. The results are shown in Figure 11 and are in good agreement
with the video footage from the same sensors. There are examples of when audio-based
localization was not possible because of noise pollution by a bus and vice versa when the
object was out of the field of view of the cameras but could still be heard which illustrates
the benefits of such a complementary multimodal approach. This audio-based sound
source localization would not be possible without the synchronization technique presented
in this paper.

4.2. Audiovisual Association

Automatic audiovisual urban traffic understanding is a growing area of research with
many potential applications of value to the industry, academia, and the public sector [10].
Deep learning algorithms can leverage video recordings to detect and count a variety of
objects in a given scene and calculate specific metrics, such as the distance from one source
to another. Although very useful, these algorithms can be improved through augmentation
with non-visual data, such as audio. For example, scene understanding can be improved
by determining the proximity of out-of-view objects emitting sounds or by detecting loud
noises. In addition, local governments may care about noise levels. In New York, for
example, city agencies have created laws to automatically monitor and mitigate noise
pollution, such as the noise emitted by loud mufflers installed on cars [49]. Thus, sensor
networks that include audio, such as the one outlined in this paper, can provide the audio
resources necessary to improve urban scene understanding and to monitor city noise.

With StreetAware, in Figure 12, we show how audio can inform the presence of large
engines (trucks and buses) at an intersection. Above the video frames, we highlight the
corresponding point in time on the acoustic time series (in decibels) extracted from the
audio files. With this method, we can easily relate noise peaks to events captured on video.
This example shows how StreetAware can advance the state-of-the-art development of
audiovisual urban research by providing multiple camera views linked with audio signals
to enhance audiovisual recognition algorithms (which are usually trained on single-view
video datasets).
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Figure 11. Audio-based localization of a bicyclist crossing the street at Chase Center and ringing the
bell repeatedly (magenta points). In chronological order: Sensor 2 can see the bicyclist approaching
the intersection, but localization of the bell ring is not possible because two sensors were occluded by
a noisy bus; Sensor 1 view confirms the position of the bicyclist taking a right turn; Sensor 4 footage
reveals the reason for the bicyclist’s curved trajectory—the black car did not stop to yield the right of
way; Eventually, the bicyclist is no longer in the field of view of Sensor 3, but can still be localized
thanks to the diffraction of the bell’s sound waves.

Figure 12. Sensor positions during data acquisition at DUMBO, Brooklyn. Colors indicate recording
sessions and numbers denote the sensor. Above each synchronized video frame, we highlight the
relative data point in the audio time series (in decibels). It can be shown that events that can be seen
in the video, such as the passing of a bus, have a corresponding peak in the audio data.
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4.3. Occupancy Tracking & Pedestrian Speed

Stakeholders interested in monitoring the level of activity and quantity of pedestrians
and traffic in an area could make use of StreetAware. Here, we present an example in
which we evaluate the occupancy of one of the intersections during a recording session.
First, the dataset is evaluated with HRNet, an object detection, human pose estimation,
and segmentation algorithm. Adapted from the Faster R-CNN network, HRNet is ca-
pable of performing state-of-the-art bottom-up segmentation via high-resolution feature
pyramids [50]. The network is trained on the COCO dataset [51]. We detect six classes:
person, car, bicycle, truck, motorcycle, and bus (Figure 13). Figure 14, in turn, shows
example visualizations containing detected objects and human pose outlines. For pose
estimation, the model is executed for each “person” detection independently with a focus
on that particular bounding box. Such an approach results in temporally consistent pose
estimation as the person is walking towards or away from the camera despite significant
lens vignetting and brightness variation across the image.

Figure 13. Chase Center intersection occupancy by object type during a recording session in the
afternoon, with purple lines representing people and green lines representing cars on the top chart.
In the figure, the four sensors collecting data during this session are represented by circles. There
is a significant (≈3×) increase in the pedestrian count (blue) around 5 p.m. as people leave work.
Moreover, it is possible to detect traffic light cycles based on the ratio of the number of pedestrians
versus vehicle counts.

Using this detection framework, Figure 13 shows the total count of the various urban
scene entities throughout an entire recording session at the Chase Center intersection. We
intentionally choose this particular recording session because it was conducted around
5 p.m. when people are finishing their workday and traveling home. This activity results
in a spike in pedestrian and car traffic. There are roughly three times as many pedestrians
counted (most crossing a street) toward the end of the recording than at the beginning.
This trend also inversely correlates with car count, presumably due to cars yielding the
right-of-way to pedestrians. We do not observe as much change in the number of cars
or other motorized vehicles because this intersection is typically more consistently busy
throughout the day and there is limited space along the street curbs to park cars compared
to pedestrians on sidewalks. Parked cars present a certain level of static background count
for the car object class.
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As outlined in Section 2.2, measuring and predicting pedestrian behavior such as
their speed and trajectory are of interest to the computer vision and urban design research
communities. Figure 14 presents a simple example of capturing the same pedestrian across
two different sensors, highlighting the utility of multiple camera views. The speed of the
pedestrian in Figure 14 is manually calculated at 1.1 m/s, derived from traveling ≈11 m
(as measured from Google Maps) in 10 s (12,000 global timestamps difference at 1200 Hz
update rate). Therefore, one could use a deep learning algorithm and the data’s internal
timing to accurately and automatically measure pedestrian speed.

Figure 14. Two camera views from the session 2 recording at DUMBO. Camera A points northwest
and Camera B points southwest. At the time T pedestrians (surrounded by an orange box) are visible
in camera A but not in camera B. At the time T + 6500, as the pedestrians cross the street, they are
observable by both cameras. By T + 12,000, the pedestrians are no longer observable in camera A
but are still visible in Camera B as they continue to walk down the sidewalk. Time T represents the
global timestamp at the moment the pedestrians begin crossing the street. By extension, T + 12,000
is the time 10 s later because the global timestamps are updated at a rate of 1200 Hz. This figure also
highlights the advantage of high-resolution video. With objects at a farther distance from the camera,
it becomes more challenging to detect them and estimate their poses. Higher resolutions help mitigate
the information loss associated with more distant objects occupying a smaller portion of an image.

5. Discussion

In this study, we collected unique data about traffic and pedestrians from three ur-
ban intersections using customized high-resolution audio-video sensors. The novel data
includes multiple modalities (audio, video, and LiDAR) with highly accurate temporal
information and synchronization. Since the data were recorded in New York City, many
demographics are captured. This is particularly important since some of these groups, such
as wheelchair users and people with varying levels and types of disabilities, are absent from
large-scale datasets in computer vision and robotics, creating a steep barrier to developing
accessibility-aware autonomous systems [52]. Identifying pedestrians with disabilities, the
qualities of their behavior, and ease at traversing the sensed urban environment is an area
of possible exploration with datasets such as this one.

With high-resolution video data, such as in StreetAware dataset, it is important to
protect people’s privacy. For that, we leveraged human pose detections to identify where
pedestrians are and applied Gaussian blur over the elliptical areas covering their faces.
Because automatic methods are not perfect and complete pose detection is particularly
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susceptible to misdetection in highly crowded areas due to occlusions, we also employ a
second model that does direct face detection [53]. Combined with aggressive detection
thresholds that result in a high likelihood of producing false positives, we were able to
achieve robust video anonymization across the entire dataset.

In Section 4, we demonstrated four uses of the data which are not possible with many
other datasets. Section 4.1 provided an example of how the multiple perspectives and
audio data can be leveraged for localization of the sound-emitting objects to help overcome
visual occlusion by other objects such as large vehicles. Section 4.2 showed that there
exist qualitative associations between objects captured by the sensors’ cameras and sounds
captured by the sensors’ microphones. More quantitatively, in Section 4.3, we showed that
a computer vision model can track the amount and type of objects in our data, confirmed
by checking the video and count numbers at specified times. With closer inspection of
the occupancy data, one can notice a regular pattern in bus occupancy. Indeed, a bus
route does pass through the intersection. This further highlights the importance of our
synchronization technique with diligent temporal accounting to correct for any lost frames
that might accumulate into a significant time gap in the video footage. Otherwise, attempts
at temporal analysis such as, for example, reconstruction of the bus schedule, would suffer
from a systematic error.

Finally, in Section 4.3, we presented a simple example of how a coordinated arrange-
ment of multiple synchronized cameras can provide a foundation for pedestrian tracking
applications, i.e., unique detection of pedestrians consistent across frames and views.
Some currently available software such as NVIDIA’s DeepStream SDK [54] contain built-in
C/C++ and Python pipelines for pedestrian tracking. Such tracking technologies could be
combined with geo-referenced locations for pedestrians and vehicles to create a map. This
digital reconstruction (or “twin”) of an intersection, complete with object locations, can
be used for high-level analysis such as determining pedestrian and vehicle counts, travel
distances, speeds, and trajectories as they navigate their way through the sensed space.

Limitations

Overall, the REIP sensors have demonstrated great versatility in data acquisition
pipelines and operating conditions. They even withstood, without damage, a sudden rain
incident during one of the recording sessions at Commodore Barry Park. The majority
of the sensor’s hardware is enclosed within an aluminum weatherproof housing with
heat sinks, however, we still experienced occasional periods of lost frames, even during
operation in shadows, due to the random operating system interrupts and throttling of the
CPUs. Therefore, any long-term deployments would need to account for these issues in a
comprehensive way.

The data presented in this study are limited in a few ways. First, the geographic
coverage is narrow. Though the activity at each site is somewhat varied, ultimately, data
were only collected at three intersections in a single borough in a single highly-developed
city in the United States. Second, compared to some other available datasets, StreetAware
lacks diverse environmental conditions such as nighttime, precipitation, and fog. However,
we did preserve some of the more challenging recording sessions where select sensors
experienced an increased amount of occlusion from vegetation during windy conditions.
Moreover, third, the data are quite raw—the audio and video recordings are not labeled
(e.g., objects, actions, sound sources, etc.) and the LiDAR files provided are unprocessed.
In its current form, a user would not be able to query the data for information or have an
idea of what is happening over time in a scene without manually inspecting the data or
performing further processing and analysis.

6. Conclusions

In this paper, we presented the StreetAware dataset, which contains synchronized
multi-perspective street-level audio and video in a single dataset. We also presented a new
method to synchronize high-sample rate audio streams and demonstrated unique use cases
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for the data; in the process, we describe the limitations and real-world implementation of
REIP sensors.

Moving forward, further applications can be developed to make use of a digital map,
such as calculating the distance between vehicles and pedestrians and other vehicles and,
thus, the detection of near-collision situations. Aspects unique to StreetAware, such as
audio, LiDAR, and multiple in-sync views could be used to augment the performance of
such applications (e.g., incorporating the sound of car horns into near-accident detection).
Other future areas of investigation include determining the optimal number of cameras to
capture the same information captured in this dataset, and the viability of processing the
data in real-time on-site (edge computing). Building off the pedestrian detection and speed
measurement established here, looking ahead, we intend to evaluate pedestrian and vehicle
movement per traffic light cycle. We will leverage the multi-view and synchronization
features of the dataset to reconstruct the timing of traffic lights as seen from different
camera locations. This will enable us to measure pedestrian and motorist adherence to
traffic laws. Other researchers exploring urban street sensing applications that benefit from
high-resolution, multimodal, and precisely synchronized data should find this dataset
especially useful.
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