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Abstract: The egg production of laying hens is crucial to breeding enterprises in the laying hen
breeding industry. However, there is currently no systematic or accurate method to identify low-
egg-production-laying hens in commercial farms, and the majority of these hens are identified by
breeders based on their experience. In order to address this issue, we propose a method that is widely
applicable and highly precise. First, breeders themselves separate low-egg-production-laying hens
and normal-laying hens. Then, under a halogen lamp, hyperspectral images of the two different
types of hens are captured via hyperspectral imaging equipment. The vertex component analysis
(VCA) algorithm is used to extract the cockscomb end member spectrum to obtain the cockscomb
spectral feature curves of low-egg-production-laying hens and normal ones. Next, fast continuous
wavelet transform (FCWT) is employed to analyze the data of the feature curves in order to obtain
the two-dimensional spectral feature image dataset. Finally, referring to the two-dimensional spectral
image dataset of the low-egg-production-laying hens and normal ones, we developed a deep learning
model based on a convolutional neural network (CNN). When we tested the model’s accuracy by
using the prepared dataset, we found that it was 0.975 percent accurate. This outcome demonstrates
our identification method, which combines hyperspectral imaging technology, an FCWT data analysis
method, and a CNN deep learning model, and is highly effective and precise in laying-hen breeding
plants. Furthermore, the attempt to use FCWT for the analysis and processing of hyperspectral data
will have a significant impact on the research and application of hyperspectral technology in other
fields due to its high efficiency and resolution characteristics for data signal analysis and processing.

Keywords: laying hens; hyperspectral; fast continuous wavelet; deep learning; vertex component
analysis

1. Introduction

The poultry industry is currently moving toward digital, intelligent, and large-scale
farms that have become increasingly automated [1]. However, farmers are facing challenges
related to identifying low-laying hens, analyzing problems in a timely manner, reducing
feed consumption, and improving breeding efficiency. Currently, these issues are mainly
resolved manually, which is inefficient and unable to satisfy the requirements of large-scale
farms. Hence, enterprises that breed laying hens urgently need intelligent technology to
identify and dispose of laying hens with low-egg production. Unfortunately, there are few
studies on the intelligent identification of laying hens with low-egg production, and the
relevant research primarily focuses on the identification of sick and dead chickens [2].

Most of the research on the automatic identification of sick and dead chickens is based
on visible light imaging, and machine vision algorithms are frequently used in image
processing [3]. Given that the differences in the external characteristics between low- and
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high-laying hens are not as great as the differences among sick, dead, and healthy hens, and
the fact that visible light imaging is susceptible to problems, such as changes in ambient
light conditions in the farm environment, color contrasting between the background and
foreground, and shading [4–6], it is difficult to distinguish between low-laying hens from
high-laying hens by using visible light-based imaging. On the other hand, it is not practical
since various processes based on machine learning systems, such as segmentation, feature
extraction, and selection, are also time-consuming and subjectively difficult tasks [7]. In
recent years, computer vision systems based on deep learning have been used more and
more frequently to identify individual sick and dead chickens [8]. Because they are able
to process images directly, they do a smaller amount of work and are often more accurate
than machine learning [4]. A two-stage deep learning-based method of identifying sick
chickens was proposed by Chen et al. [9]. First, it locates the chicken’s head and body
regions by using the modified Faster RCNN model. Then, it extracts the deep features
from the aforementioned three image blocks and a cascade of regional feature vectors. The
fusion feature classification is most effective in the comparison experiment of identifying
sick chickens, with an accuracy of 88.41% [10]. A sick chicken automatic detection system
based on the ResNet residual network was proposed by Zhang and Chen et al. [10]. An
improved ResNet-FPN sick chicken recognition model was designed to adapt to various
recognition environments after improving the network structure of ResNet. In addition
to image recognition, sensors combined with machine learning algorithms have also been
used to identify dead and sick chickens. For example, Bao and Lu proposed an artificial
intelligence-based sensor detection method [11]. The three-dimensional total variance is
intended to represent the intensity of the chicken’s activity. The maximum displacement of
the chicken’s activity is measured through the foot ring fixed on each chicken. The detection
terminal gathers the foot ring’s sensing data via the ZigBee network before using machine
learning algorithms to determine the chicken’s condition (dead or sick). This method,
however, may not be extended to distinguish laying hens with low-egg production from
ones with high-egg production because the differences between low- and high-laying hens
are not as obvious as those between dead and healthy chickens. There are also direct laying
hen monitoring methods, mainly facilitated through the data analysis of the number of
eggs produced by the chicken to infer the chicken’s condition. For instance, in a prior study,
researchers used egg production data from 24 flocks of 478,919 laying hens to identify and
forewarn early issues in the commercial egg production curve [12]. The individual chicken
in the cage cannot be precisely identified if using this analysis method; it can only be used
to identify the condition of the entire group of chickens in the cage.

In conclusion, there is no relevant, intelligent identification technology to identify
laying hens with low-egg production. It is also difficult to apply the relevant technologies
that are currently applied to intelligently distinguish between sick and dead laying hens
or between laying hens with low-egg production and high-egg production. The external
characteristics and behaviors [13] of laying hens with high- and low-egg production are
distinct due to differences in the reproductive functions of laying hens during the laying
period. High-egg-production laying hens typically have bright red, elastic combs and
beards, while low-egg-production laying hens have lusterless, relatively pale combs. High-
egg-production laying hens also tend to have combs that are relatively large and primarily
inclined to one side, while those of low-laying hens are dried, shrunken, and smaller. In the
review mentioned above, some researchers have adopted image recognition and machine
vision algorithms to classify healthy chickens, dead chickens, and sick chickens based on
the color and shape differences of chicken combs in various health states. We assume that,
since the combs of these two laying hens differ visibly, the hyperspectral imaging of their
combs should also differ in accordance with the fundamentals and features of hyperspectral
imaging. This distinction can then, in return, be used to easily distinguish between laying
hens with high- and low-egg production. Based on the above assumptions, this study
is devoted to the development of a model to achieve the high-precision recognition of
laying hens with normal- and low-egg production by analyzing the spectral data collected
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by hyperspectral sensors. At the same time, we try to present a new general method for
analyzing and processing hyperspectral data, which provides important research value for
the application of hyperspectral technology in other fields.

2. Materials and Methods

This study proposes a model that combines hyperspectral detection, fast continuous
wavelet transform (FCWT), and a convolutional neural network (CNN) for hyperspectral
feature analysis. The end member spectrum of the combs of two different types of hens was
extracted by using the VCA algorithm after we first acquired the hyperspectral image data
of the comb. In order to design a deep learning model that can determine whether or not
hens are producing eggs normally through the comb spectrum, the one-dimensional end
member hyperspectral curve was converted by FCWT into a two-dimensional hyperspectral
feature matrix with more obvious features and higher resolution [14], and then it was
transformed into the convolutional neural network [15,16]. We give the experimental flow
chart in Figure 1.
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Figure 1. Flow chart of the experiment: (a) hyperspectral image; (b) spectral cube; (c) spectral curve
of combs; (d) wavelet transform feature map; (e) convolutional neural network. The spectral data
were obtained from the hyperspectral image to establish the spectral cube, and the one-dimensional
spectral characteristic curve of the comb was extracted. The two-dimensional feature map was
generated by FCWT and input into the convolutional neural network to obtain a two-classification
model that can recognize normal- and abnormal-laying hens.

2.1. Hyperspectral Data Acquisition

A traditional color camera can only record red, green, and blue images in three chan-
nels, and each channel has a very large bandwidth. When compared with traditional color
cameras, hyperspectral imaging uses both imaging and hyperspectral technology. Hyper-
spectral technology, which can typically produce 100–400 spectral channels, is characterized
by high resolution, a large number of wavebands, and narrow wavelengths. Hyperspectral
imaging sensors can take multiple neighboring images with narrow wavelengths within
a specific spectrum, each with more subtle details. Hyperspectral imaging analyzes the
spatial and spectral features of objects by taking pictures at various wavelengths. Therefore,
more subtle differences between objects can be found by using hyperspectral imaging
technology [17]. The spectrum of sunlight is also referred to as the full spectrum because it
contains ultraviolet, visible, and infrared spectra. The halogen lamp’s spectral distribution
closely resembles the sunlight that falls on the surface of the Earth. In this experiment, we
made the decision to collect the comb spectrum while it was illuminated by a halogen lamp
in order to obtain the complete comb spectrum. We used the HY-6010 handheld hyperspec-
tral imager from HHIT, which ranges from 400 to 1000 nm with 300 spectral channels.

In a layer farm in Lanxi, Zhejiang Province, China, breeders manually selected 300 hens
with normal-, low-, or no-egg production. Among them, the ratio of normal-egg-laying
chickens to low- or no-egg-laying chickens was 7:3. The hyperspectral imaging sensors
produced hyperspectral image data. The values measured by the hyperspectral imaging
sensor were stored in binary data files by using band sequential (BSQ), band per pixel
interleaved (BIP), or band per line interleaved (BIL) encoding formats. In this experiment,
the measured values of the hyperspectral data were sequentially stored in BIL coding
format. The values read from the data file were arranged in a three-dimensional array in
the form of X Y L for the processing of hyperspectral image data, where X and Y were the
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spatial dimensions of the collected data, and L was the spectral dimension, which specified
the number of spectral bands used in the acquisition process. The three-dimensional array
could therefore be thought of as a collection of two-dimensional monochromatic images
taken at various wavelengths. This set of data was called the hyperspectral data cube or data
cube. In our experiments, the number of bands acquired was L = 300. Our preprocessing
of hyperspectral images includes data cropping, data filtering, and reflectance correction.
The data filtering improves the accuracy of the extracted information, and the reflectivity
correction eliminates the influence of shadow and light on the reflectivity to obtain the
actual reflectivity information of the comb. We use ENVI I® to convert the chicken comb
hyperspectral image (Figure 1a) into a spectral cube with more obvious spectral information
(Figure 1b).

In the experiment, we used the spectral curves of 400 chicken combs as the training
dataset for the CNN. We then fed the dataset and labels into the CNN for learning. Ad-
ditionally, we divided the set of chicken comb spectral data in a 4:1 ratio. The specific
distribution of the dataset is provided in Table 1.

Table 1. Distribution table of comb dataset.

Total Cocks
Spectrum Data

Normal-Egg
Production Low-Egg Production Training Set Validation Set

400 203 197 320 80

2.2. Data Processing
2.2.1. Automatic and Fast Extraction of Hyperspectral End Member of Comb Based on VCA

The pixels in hyperspectral data are generally mixed pixels that contain multiple
materials, while an end member only has information about one material. To describe the
various end members that are present in each pixel, the mixed pixels can be decomposed,
and several end members that are mixed into each pixel can be identified.

VCA algorithm is proposed by Nascimento et al. [18]. Unsupervised linear decom-
position or linear spectral mixture analysis was carried out by the VCA algorithm on a
set of mixed hyperspectral vector data. The end member spectral features, also known
as pure spectral features that are present in hyperspectral data, can be extracted using
this technique.

In this paper, we used the VCA algorithm to extract the spectral features of the
chicken crown end member because of its low computational complexity, quick speed,
and high accuracy. In the following sections, we will provide a brief overview of the
algorithm’s application.

In the case of linear mixing of the given hyperspectral data, the hyperspectral vector is
given by Formula (1):

r = [r1, r2, . . . , rL] = x + n = Mγα+ n, (1)

where r = [r1, r2, . . . , rL] is a vector, and its dimension L is the number of bands of the
spectrum. M =

[
M1, M2, . . . , Mp

]
denotes a mixed matrix containing p end members,

where Mi is the characteristic of the ith end member. γ is the scaling factor caused by
changes in surface illumination. α =

[
α1,α2, . . . ,αp

]T represents the abundance vector
corresponding to each end member, and n represents the additional noise of the system.

Assuming there is no noise, r represents the vector in the dimension p subspace Ep of
the convex cone Cp. The VCA algorithm first uses singular value decomposition (SVD) to
identify the subspace Ep and then uses the formula:

y = r/
(

rTu
)

(2)



Sensors 2023, 23, 3645 5 of 13

to project the points in the convex cone Cp onto the simplex SP. The affine transformation
set with dimension p − 1 contains the simplex SP. Additionally, the simplex with the same
vertex, resulting from the projection of the convex cone Cp in the subspace Ed of any
dimension contained in Ep, serves as the end member that needs to be extracted.

We can quickly extract the chicken comb end member spectra of two kinds of chickens
from hyperspectral data using the VCA algorithm. The end member spectral curve of hen’s
comb is shown in Figure 2. We compared the two cockscomb end member spectra, plotting
them into curves (Figure 3). As can be seen in the 400–600 band, the reflectance of the comb
end member spectral curve with low egg production is higher than that of the cockscomb
end member spectral curve with normal egg production.
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Figure 3. Comparison of end member spectral curves of normal- and low-egg production hens’ comb:
Although the overall shape of the hens’ comb spectral curve tends to be consistent, there are still
small differences between the curves of normal hens and abnormal hens. The slope of the spectral
reflectance of abnormal chickens in the 450–600 band is greater than that of normal chickens.

2.2.2. The Fast Continuous Wavelet Transformation

Although the Fourier transform is a powerful tool for data analysis, it has certain
limitations. One of these limitations is that, since the data are represented as the sum of
sine waves, it cannot accurately represent mutations. The sine wave is not stationary in
time or space, and it constantly oscillates. Therefore, a new function with good localization
properties in the time-frequency domain is required. This is where the wavelet comes
in, which is a wave-like oscillation with zero mean value and rapid attenuation. Unlike
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sine waves, wavelets only last for a finite amount of time and come in various sizes and
shapes. This makes wavelet analysis an excellent tool for a broad range of applications. By
using the wavelet transform, a signal can be analyzed at different scales, allowing for a
more precise analysis of the data. The wavelet transform can be used to perform a multi-
scale localization analysis of the signal, and the signal can be gradually refined through
scaling and translation operations. This approach can focus on any signal details, solve the
challenging Fourier transform problem, and fully emphasize the signal’s features. In this
paper, the wavelet transform is primarily used to refine the features of spectral signals to
improve the resolution and differences of the two comb spectral signal analysis results.

In wavelet analysis, the mother wavelet expression is obtained by performing a Fourier
transform on the determined Morlet wavelet expression [19]:

ψ(t) = e(iω0t)e(−
t2
2 ) (3)

ψ̂(ω) =
√

2πe(−
(ω−ω0)

2

2 ) (4)

According to the mother wavelet expression, we can obtain its frequency window width:

4ω
ψ̂(ω)

=
1[∫ +∞

−∞

∣∣∣ψ̂(ω)
∣∣∣2dω

]1/2

[∫ +∞

−∞
(ω−ω0)

2
∣∣∣ψ̂(ω)

∣∣∣2dω
]1/2

(5)

Through the wavelet expression, we carry out Fourier transform to obtain the expres-
sion of the wavelet in the frequency domain:

ψj,k(t) = 2
−j
2 ψ
(

2jt− k
)

(6)

ψ̂α(k)
(ω) = ψ̂

(
α(k)ω

)
(7)

After the Fourier transform of the hyperspectral signal:

X̂(ξ) = FFT[X(k)] (8)

Generate a sequence α(k) of n scales in the
[
2a, 2b] range. The subwavelet center

frequency corresponding to each scale isωα(k) =
1
α(k)

ω0. The nonzero frequency window

is4ωα(k) =
1
α(k)
4ω ˆψ(ω)

. In the nonzero frequency window4ωα(k) , The intermediate

value H obtained by multiplying X̂(ξ) with ψ̂α(k)
(ω) signal after subwavelet Fourier

transform is transformed into wavelet coefficient W by inverse Fourier transform.

H = ψ̂α(k)
(ω) · X̂(ξ) (9)

W = IFFT
[
ψ̂α(k)

(ω) · X̂(ξ)
]

(10)

The feature matrix is obtained after using the wavelet transform by sequentially
stacking the wavelet coefficient W obtained by each scale on n scales. FCWT converts the
spectral curve from a one-dimensional version to a two-dimensional hyperspectral feature
map. A 200 × 300 matrix makes up each two-dimensional hyperspectral feature map. It is
a two-dimensional spectral feature map of combs from chickens with low-egg production
and a two-dimensional spectral feature map of combs from chickens with normal-egg
production, as shown in Figures 4 and 5 below.
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H = ψ̂α(k)
(ω) ∙ X̂(ξ) (9) 

W = IFFT [ψ̂α(k)
(ω) ∙ X̂(ξ)] (10) 
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Figure 4. Two-dimensional hyperspectral feature map of low egg production; It can be observed 
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Figure 5. Two-dimensional hyperspectral feature map of normal-egg production: It can be observed
that the yellow part has a large area, and the color is orange in the range of the ordinate 140–180.

2.2.3. Convolutional Neural Network

A type of feedforward neural network with a deep structure and convolution calcula-
tion is known as a convolutional neural network (CNN). It can perform representational
learning and possesses the qualities of local connection and weight sharing. The convolu-
tional neural network is one of the most widely used models and one of the representative
deep learning algorithms.

The hyperspectral feature map of chicken comb after a wavelet transform is used in
this study to tackle the binary classification problem of normal and low egg production by
using convolutional neural networks. An input layer, a convolution layer, an activation
function, a pooling layer, a fully connected layer, an output layer, etc., are typically present
in convolutional neural networks. The most crucial layer in a convolutional neural network
is the convolutional layer, which is also where the convolutional neural network gets its
name. Convolution operations are used to extract various features from input data. The
convolution layer’s job is to convolve the input data, which is another way of saying that it
performs the filtering. A window filter is a convolution kernel. A custom-sized convolution
kernel is used as a sliding window to convolve the input data during the network training
process. The most widely used activation functions at the moment are Relu, Tanh, Sigmoid,
etc. The Relu function, which has a quick convergence and a straightforward gradient,
was used in this study. The pooling layer’s primary duties are to facilitate optimization
and avoid over-fitting. Usually, a feature with a lot of dimensions is obtained after the
convolution layer. To create a new feature with a smaller dimension, the feature is divided
into regions, and the maximum value is taken from each region. The pooling procedure
also involves a sliding window that moves across the input matrix. The maximum value of
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the data matrix in the window is used as the output in the sliding process. The pooling
layer is 2 × 2 in size, and each step is 1 in height. The fully connected layer’s function
is to combine all local features, extract their correlation through nonlinear changes, and
then transform them into global features. The fully connected layer is typically used as the
convolutional neural network’s top layer.

We converted the collected end member spectral dataset into a new dataset of two-
dimensional spectral feature images using wavelet transformation. The training set and
verification set were then fed into the convolutional neural network for training, divided
into a 4:1 ratio. The convolutional neural network in this study contained two convolutional
layers and a fully connected layer that contained the parameters. The data is flattened by
the Flatten layer and then fed into the fully connected layer after two layers of convolution
and pooling. The convolutional neural network’s composition diagram is shown in Figure 6,
and the specifics of parameter selection for each layer are provided in Table 2.
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Table 2. Specification of CNN Net.

Configuration of the Best Performing Model

Layers Specification

Conv2D Filters = 8, kernel_size = (3, 1), stride = (3, 1), activation = Relu
Maxpool-2D pool_size = (2, 2), strides = (2, 2)
Conv2D Filters = 32, kernel_size = (1, 1), stride = (1, 1), activation = Relu
Maxpool-2D pool_size = (3, 3), strides = (2, 2)

3. Results

The ability of a wavelet to mine signal details is different in different scale ranges and
different Morlet wavelet ω0. When performing FCWT, we usually choose Morlet wavelets
with different ω0 for different signals. When the signal changes gently or the frequency is
low, we should choose a smaller ω0. When the signal is steep or the oscillation frequency
is high, ω0 should be appropriately increased. In different scale ranges, the feature maps
generated by the FCWT results also correspond to the characteristics in different frequency
ranges. When a small-scale range is selected, the characteristics of the feature map in a
specific scale range that corresponds to the frequency range can be amplified. When a
large-scale range is selected, a more comprehensive feature map of the frequency range
is obtained. Figure 7 is the result of the same spectral curve generated at different ω0 and
different scales. Through the experiments, we found that when the scale range was

[
25, 26]

and ω0 = 8, we obtained the most suitable result feature.
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Figure 7. Wavelet transform images under different scales and ω0 have different graphic results;
choosing the appropriate scale is helpful to the mining of signal details: (a) image at scale

[
2, 26],

ω0 = 12; (b) image at scale
[
23, 26], ω0 = 8; (c) image at scale

[
25, 26], ω0 = 10.

The loss function is an operation function used to calculate the difference between the
model’s predicted value, f(x), and the actual value, Y, during the model’s training phase.
The smaller the loss function is, the better the robustness of the model is. The predicted
value is output through forward propagation after each batch of training data has been fed
into the model, and the loss function then works out the difference between the predicted
value and the true value, which is the loss value. In order to achieve the goal of learning,
the model updates each and every parameter by using back propagation after obtaining
the loss value. This reduces the differences between the real value and the predicted value
so that the predicted value it produces can be close to the real value. According to the loss
function curve and acc accuracy curve in Figures 8 and 9, the model developed performs
well by using the dataset. The issue of over-fitting is resolved after parameter selection,
and the loss curve is smooth and convergent. The acc curve showed a good learning state
for the neural network because it increased quickly in the prior epochs. The loss curve and
the accuracy curve tend to level off once the accuracy is close to 1, which shows that the
model converges.
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Figure 8. Loss function curve diagram. The x-axis is the epoch, and the y-axis is the loss. We save the
loss value during the training process to draw the curve. According to the shape of the loss curve, we
can analyze the quality of model training and adjust the parameters of the CNN. At the beginning of
training, the loss function decreases rapidly and finally approaches 0 and converges.
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Figure 9. Accuracy curve diagram. The x-axis is the epoch, and the y-axis is the accuracy. The
loss curve alone can provide little information, and the accuracy curve is generally used to deter-
mine whether it is over-fitting. At the beginning of training, the accuracy rises rapidly and finally
approaches 1 and tends to converge.

The precision, recall, and F1-score are typically used to evaluate a classification system
model during testing. The percentage of relevant instances among all retrieved instances is
what is referred to as precision. The percentage of retrieved instances among all pertinent
instances is known as recall. The weighted average of precision and recall is known as the
F1-score, and its calculation is as follows:

F1 = (
2

recall−1 + precision−1 ) = 2 · precision · recall
precision + recall

(11)

After the training was complete, we used the prepared test set to assess the model we
trained. The test accuracy score for the entire model evaluation was 0.975. In the test, the
model’s correct prediction ratio for the samples of chickens classified as abnormal was 0.96,
and its correct prediction ratio for samples of chickens classified as normal was 0.99. The
proportion that the model can correctly predict in all abnormal samples is 0.99, while it can
correctly predict 0.96 in all normal samples. We also determined the model’s macro-avg
and weighted-avg in order to assess it in additional ways. A thorough evaluation report of
the model can be found in Table 3.
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Table 3. Model evaluation data sheet.

Parameters for Evaluation Abnormal Normal Macro Avg Weighted Avg

Precision 0.96 0.99 0.98 0.98
Recall 0.99 0.96 0.98 0.97

F1-score 0.98 0.97 0.97 0.97

4. Discussion

Few studies have been carried out on the analysis and evaluation of livestock growth
and production status by using hyperspectral technology in the early research of the
livestock breeding industry. The majority of studies are based on the evaluation of livestock
activity, behavior, and visual data. By securing the foot ring on each chicken, Bao and
colleagues measured the three-dimensional displacement of the animal. They then designed
and computed three-dimensional total variance to represent the animal’s level of activity.
Finally, by taking a machine learning classification method, activity intensity is used to
determine the condition of the chicken, enabling the determination of whether it is alive or
dead [11]. In this technique, the chicken’s activity data are vulnerable to interference from
the factory environment, human intervention, immune operation, and feeding restriction,
which causes the system to misjudge and lowers judgment accuracy. A deep learning-based
method for identifying sick chickens was proposed by Chen et al. They developed a model
with a recall of 91.95%, an accuracy of 88.41%, and an F1-score of 89.93% by learning
the fusion features of the posture features, body texture features, and head composite
features of chicken images [9]. With this technique, sick chickens can be identified with
high accuracy. Visual image recognition cannot reliably distinguish low-egg production
laying hens from regular-laying hens due to the slight differences in their characteristics.
Therefore, more research is needed to determine how to identify laying hens with low-
egg production. The paper presents a general technique for identifying abnormal-laying
hens using hyperspectral imaging technology and hyperspectral analysis. The comb’s
hyperspectral data is acquired, and the VCA algorithm extracts the end members of the
comb. FCWT is used to analyze the spectral curve, which is then transformed into a
spectral feature image that is input into a straightforward convolutional neural network.
The binary classification model developed during the experiment can successfully spot
abnormal-laying hens with an accuracy of 0.975, an abnormal-laying hen identification
precision of 0.96, a recall of 0.99, and an F1-score of 0.98. The FCWT wavelet transform’s
high speed and high precision contribute to the proposed method’s accuracy and efficiency.
This demonstrates the importance of the experiment’s analysis procedure for the use of
hyperspectral imaging in other fields.

The analysis technique, which combines FCWT, deep learning, and hyperspectral
technology, is also very important for determining the health status of chickens. The
chicken’s comb is typically large, smooth, and bright red in color. A chicken with a disease
has a comb that is abnormally colored, atrophic, or swollen and occasionally contains
foreign objects. As a result, this method’s use in the analysis of chicken health and welfare
can be further explored, and it also has some research and development value for other
breeding industries, including pig, cattle, and sheep.

However, it should be noted that we used manual handheld devices to collect the
hyperspectral data for the experiment detailed in this paper. This acquisition method’s flaw
is that it requires a lengthy acquisition process, expensive labor, and a lot of acquisition
time. It is possible to develop an integrated system that supports long-term continuous
data collection while taking equipment costs into account in further research. It can reduce
labor and time costs by automatically gathering data and identifying abnormal-laying hens
on the farm throughout the entire period. It can also improve the efficiency of identifying
abnormal-laying hens in laying hen breeding enterprises.
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5. Conclusions

In this paper, we investigate a method for identifying abnormal-laying hens on farms
using hyperspectral images, FCWT, and a convolutional neural network. We develop
a deep learning binary classification model with a recognition accuracy of 0.975. Our
results demonstrate that analyzing and extracting features from hyperspectral images
can help create an accurate model for identifying laying hens with low-egg production
in laying hen farms, which can improve animal welfare by identifying chicken health
following adjustment. Furthermore, the method for analyzing hyperspectral image data
based on FCWT proposed in this paper can inspire and inform further research on the use
of hyperspectral technology in other fields.

Our data were gathered manually with the aid of portable devices during the experi-
ment. In order to adapt to practical applications in the aquaculture industry, future research
should focus on creating a large-scale integrated system that integrates automated data
collection, analysis, and judgment functions.
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chicken farm.
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