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Abstract: In vehicular edge computing (VEC), some tasks can be processed either locally or on the
mobile edge computing (MEC) server at a base station (BS) or a nearby vehicle. In fact, tasks are
offloaded or not, based on the status of vehicle-to-infrastructure (V2I) and vehicle-to-vehicle (V2V)
communication. In this paper, device-to-device (D2D)-based V2V communication and multiple-input
multiple-output and nonorthogonal multiple access (MIMO-NOMA)-based V2I communication are
considered. In actual communication scenarios, the channel conditions for MIMO-NOMA-based
V2I communication are uncertain, and the task arrival is random, leading to a highly complex
environment for VEC systems. To solve this problem, we propose a power allocation scheme based
on decentralized deep reinforcement learning (DRL). Since the action space is continuous, we employ
the deep deterministic policy gradient (DDPG) algorithm to obtain the optimal policy. Extensive
experiments demonstrate that our proposed approach with DRL and DDPG outperforms existing
greedy strategies in terms of power consumption and reward.

Keywords: vehicular edge computing (VEC); power allocation; MIMO-NOMA; D2D; deep determin-
istic policy gradient (DDPG); decentralized

1. Introduction

With the development of the Internet of vehicles (IoV), autonomous vehicles are
becoming increasingly popular. At the same time, a series of smart vehicular user (SVU)
devices and applications installed on autonomous vehicles have emerged. Communication
among these SVU devices and applications is extremely popular [1–5]. Therefore, to reduce
the burden of SVUs, vehicular edge computing (VEC) has been introduced to process tasks
offloaded by SVUs, while ensuring low processing latency for these tasks [6–8]. When
SVUs have tasks to process, they can choose to process these tasks locally or offload them
to a mobile edge computing (MEC) server on a VEC vehicle or at a base station (BS) [9,10].
Such task offloading incurs multiple kinds of power consumption. To be clear, in this paper,
the power consumed for offloading to the BS is defined as vehicle-to-infrastructure (V2I)
processing power, and the power consumed for offloading to a VEC vehicle is defined as
vehicle-to-vehicle (V2V) processing power. In addition, SVUs also process tasks on their
local CPUs; the task processing power consumed by the local CPU of an SVU is defined as
local processing power in this paper.

In this paper, V2I communication is assumed to be based on the multiple-input
multiple-output and nonorthogonal multiple access (MIMO-NOMA) technology, due to
high spectrum utilization and channel capacity. However, in the MIMO-NOMA system,
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the interference of SVUs with each other and the mobility of SVUs lead to uncertain
channel conditions [11].

V2V communication is assumed to be based on device-to-device (D2D) technology,
which is a core technology for smart cities, high-quality video streaming, and disaster-relief
networks. It offers various advantages in terms of fairness, energy efficiency, and spectral
efficiency [12–15]. In the D2D communication scenario considered in this paper, each
SVU communicates only with a specific VEC vehicle, and the communication distance
remains constant. Therefore, V2V communication is working on the interference-free
channel conditions [16].

In a real scenario, task arrival will be random. In this case, the latency and power
consumption of the SVUs for processing the tasks will also be uncertain [11]. For example,
when the V2I channel conditions are relatively worse, SVUs should choose to process
their tasks either locally or through V2V communication to reduce latency and power
consumption. Considering the randomness of task arrival and the uncertainty of the V2I
channel conditions, it is necessary to design an optimal power-allocation scheme with the
aim of minimizing latency and power consumption.

This paper employs the deep reinforcement learning (DRL) framework to design such
a scheme. Since the deep deterministic policy gradient (DDPG) algorithm is suitable for
solving problems in the continuous action space, we will employ this characteristic of
the algorithm to solve the problem. In most previous work, the BS was responsible for
collecting global information, including the SVU state, and then determining the action
of each SVU; however, the centralized approach incurs higher power consumption and
larger latency [17–30]. Only a few works have adopted decentralized DRL frameworks to
design related schemes in which each SVU observes its own surrounding environment to
determine its action. In this way, it can effectively reduce the overall latency and power
consumption [31,32]. However, to the best of our knowledge, the coexistence of MIMO-
NOMA-based V2I communication and D2D-based V2V communication was not considered
in the VEC system based on the decentralized DRL.

In this paper, we propose a power-allocation model in VEC based on decentralized
DRL to improve power consumption and latency, considering the coexistence of MIMO-
NOMA-based V2I communication and D2D-based V2V communication, as well as the
randomness of task arrival, the channels interference in MIMO-NOMA and the mobility of
SVUs. (The source code has been released on https://github.com/qiongwu86/MIMO-D2D
(accessed on 19 February 2023). The main contributions of this article are summarized
as follows.

(1) We propose a power allocation model in VEC based on the decentralized DRL, defining
the action function, state function, and reward function. The DDPG algorithm is
employed to deal with the continuous action space problem and to guide the model
to learn the optimal policy.

(2) Performance testing of the trained model in a large number of experiments shows that
the proposed approach outperforms other existing ones.

The rest of this paper is organized as follows. Section 2 reviews some related work.
Section 3 describes the system model. Section 4 presents the design of the DRL frame-
work and the related functions. Section 5 describes the DDPG algorithm used for model
training. We present some simulation results to demonstrate that our proposed approach
outperforms other existing ones in Section 6. Finally, Section 7 concludes the paper.

2. Related Work

In this section, we review some work on D2D and MIMO-NOMA technology in MEC
and VEC based on DRL.

2.1. D2D and MIMO-NOMA Technology in MEC and VEC

Many works have considered the application of MIMO-NOMA and D2D technology
in MEC and VEC systems. In [33], Ding et al. proposed a multiuser MIMO (MU-MIMO)
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MEC system with the goal of optimizing the system cost, power consumption and latency.
In [11], Zhu et al. constructed a VEC system based on MIMO-NOMA technology, in which
vehicles can choose to process tasks either locally or offload them to the BS via the MIMO-
NOMA channels. In this system, the DDPG algorithm was employed to optimize latency
and power consumption. In [34], Liu et al. designed a millimeter-wave D2D MEC model
as the basis of an optimal algorithm for task assignment. In [35], Li et al. proposed a MEC
system supporting D2D. It formulated a two-stage optimization algorithm with the goal
of improving resource utilization and network capacity. However, these works did not
consider the coexistence of MIMO-NOMA and D2D technology in MEC and VEC.

2.2. V2V and V2I Communication in VEC

Some research works have also employed V2V and V2I communication in VEC sys-
tems. In [11], Zhu et al. considered V2I communication based on MIMO-NOMA in a
VEC system. In [1], Raza et al. proposed a 5G-based VEC system in which the V2I com-
munication was based on the millimeter-wave mode. In [36], Zhang et al. constructed
a software-defined networking (SDN)-assisted VEC system with the goal of optimizing
the system overhead while considering 802.11p-based V2I communication and V2V com-
munication. In [37], Bai et al. designed a VEC system containing vehicular cloudlets and
considered D2D-based V2V communication. However, these works did not consider the co-
existence of MIMO-NOMA-based V2I communication and D2D-based V2V communication
in VEC systems.

2.3. DRL-Based Resource Allocation in VEC

There have been many studies on DRL-based resource allocation in VEC. In [38],
Ning et al. proposed a VEC system consisting of multiple roadside units (RSUs), SVUs and
a single BS. With the aims of optimizing the system cost, the DDPG algorithm was employed
to obtain the optimal resource allocation scheme. In [39], Ren et al. proposed a VEC system
consisting of multiple RSUs, BSs, and SVUs. A centralized resource allocation mechanism
based on DRL was designed to obtain an optimal network resource-allocation scheme.
In [23], Liu et al. designed a semi-Markov process-based scheme for maximizing VEC
network utility and employed the deep Q-learning network (DQN) algorithm to achieve
optimal resource allocation. However, none of the above works considered decentralized
DRL-based VEC systems.

Some works have also considered decentralized DRL-based VEC systems. In [31],
Ye et al. constructed a VEC system with both V2I communication and V2V communication,
in which SVUs used the DQN algorithm to select the transmission band for their tasks,
thus optimizing the system capacity and latency. In [11], Zhu et al. designed a VEC
system consisting of a BS and SVUs, considering the mobility of SVUs and MIMO-NOMA
technology. The SVUs employed the DDPG algorithm to allocate processing power, thus
optimizing the latency and power consumption. However, [11] did not consider the
presence of V2V communication, while [31] did not consider the mobility of SVUs, MIMO-
NOMA, and D2D technology.

As seen from the above review, no previous works have considered the coexistence
of MIMO-NOMA-based V2I communication and D2D-based V2V communication in the
power allocation problem for decentralized DRL-based VEC systems. This motivates us to
start this work. We shall show it in detail.

3. System Model

The system model is shown in Figure 1. A MEC server is placed on each VEC vehicle
and at the BS with multiple antennae. Based on the axial distance to the BS, the VEC server
coverage is divided into J lanes, where SVUs may move at different speeds in different
lanes. The time duration for which SVUs in lane j remain within the communication range
of the BS is divided into Nj,m slots, and the length of each slot is τ0. In each slot, tasks arrive
randomly in the buffers of the SVUs. At the same time, each SVU allocates local processing
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power, V2I processing power, and V2V processing power to process tasks either locally
or offload them to the MEC server. In addition, the V2I channel conditions continuously
change due to the mobility of SVUs and the channel’s interference in MIMO-NOMA. In
contrast, V2V communication is based on D2D technology, and it is assumed that each
SVU communicates only with a specific VEC vehicle in the same lane, and each VEC
vehicle processes tasks for only one specific SVU; thus, the V2V channel conditions can
be treated as time invariant. In V2I communication, each SVU first transmits tasks to
the BS; the BS processes the tasks and employs the zero-forcing (ZF) technique to detect
the signal and noise associated with each SVU from all SVU signals and then obtains the
signal-to-interference-plus-noise ratio (SINR) of each SVU for V2I communication. In the
next slot, the BS transmits the SINR of each SVU to that SVU. In contrast to the traditional
scheme of centralized DRL, in this work, each SVU can determine its own power allocation
according to its own observations of the environment. It is a decentralized mode. In the
following, we shall introduce the system’s mobility model, task-computation model, and
communication model and describe the relevant environmental information, such as the
buffer capacity of SVU k, the SINRs of V2I communication and V2V communication, and
the position of SVU k. The notations used in this article can be seen in Table 1.

Figure 1. System model.

3.1. Mobility Model

Let Pk,j(n) denote the position of SVU k in lane j in slot n. We establish a three-
dimensional right-angle coordinate system as shown in Figure 1, where the BS is the origin
point, the x-axis direction is the travel direction of SVU k, the y-axis represents the vertical
distance to the BS, and the z-axis represents the height difference to the BS. Let dk,j(n)
and wk,j be the distances between SVU k in slot n and the BS along the x-axis and y-axis,
respectively. Therefore, Pk,j(n) can be expressed as (dk,j(n), wk,j, 0), where wk,j is equal to
the vertical distance of lane j from the BS, which can be calculated as

wk,j = (j− 1) · wd + w1, (1)

where wd is the lane width and w1 is the distance between the BS and lane 1.
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Table 1. Notations used in this article.

Notation Description Notation Description

ak,n Action of SVU k in slot n. ak(n) Number of task bits of SVU k arriving in slot n.

ak Abbreviation for ak,n. ai
k Action of the ith tuple.

a′k Abbreviation for ak,n+1. a′ ik Next action of the ith tuple.

β0 Channel power gain at the reference distance. Bk(n) Buffer capacity of SVU k in slot n.

D Diameter of the BS’s range. e(n) Error vector.

dk,L(n)
Number of task bits processed locally by SVU
k in slot n. dk,I(n)

Number of task bits processed for SVU k
performing V2I communication in slot n.

dk,j(n)
Distance between SVU k and the BS along the
x-axis in slot n. dk,V(n)

Number of task bits processed for SVU k
performing V2V communication in slot n.

fi
An exponentially distributed random variable
with unit mean. fk(n) CPU frequency of SVU k in slot n.

gs
k(n)

Small-scale fading channel gain of SVU k in
slot n. gk,I(n)

Channel vector of SVU k for V2V
communication in slot n.

gp
k (n)

Large-scale fading coefficient for V2I
communication at slot n. gr Channel power gain at 1 m.

G(n) MIMO-NOMA channel martix. hk,V
Channel gain of SVU k for V2V
communication in slot n.

J(µk) Objective function. Kmax
Maximum number of episodes in the
training stage.

L(ζk) Loss function. L Number of CPU cycles for processing one bit.

Ns(n) Noise received by the BS. Nj,m Last slot in lane j.

Nmax,j Maximum number of SVUs in lane j. Na Number of antennae.

Pk,j(n) Location of SVU k in slot n. PB Position of the BS antenna.

pk,I(n)
Processing power of SVU k for V2I
communication in slot n. pk,L(n) Local processing power of SVU k in slot n.

pk,V(n)
Processing power of SVU k for V2V
communication in slot n. Pmax,V Maximum V2I processing power.

Pmax,I Maximum V2I processing power. Pmax,L Maximum local processing power.

Qµ
θk (sk,n, ak,n) Action value function of SVU k. Qζk

(sk,n, ak,n)
Action value function output from the
critic network.

Qζk′
(sk,n, ak,n)

Action value function output from the target
critic network. rk,n Reward of SVU k in slot n.

rk Abbreviation for rk,n. ri
k Reward of the ith tuple.

Γ Experience buffer. sk,n State space of SVU k in slot n.

sk Abbreviation for sk,n. si
k State of the ith tuple.

s′k Abbreviation for sk,n+1. s′ ik Next state of the ith tuple.

T Maximum number of tuples in a minibatch. vk Velocity of SVU k.

vj Velocity of lane j. w1 Distance from lane 1 to the BS.

Wd Bandwidth. wk,j
Distance between SVU k driving in lane j and
antennas along the y-axis.

wd Lane width. yi
k Target value of the ith tuple.

y(n) Signal received by the BS. αC
k Learning rate of the critic network.
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Table 1. Cont.

Notation Description Notation Description

αA
k Learning rate of the actor network. αh Path loss exponent for V2V communication.

ρk
Normalized channel correlation coefficient of
SVU k. λk Mean rate of task arrival for SVU k.

ζk Parameter of the critic network. ζk′ Parameter of the target critic network.

κ Effective converted capacitance of SVU k. Rk
Distance between SVU k and the corresponding
VEC vehicle.

θk Parameter of the actor network. θk′ Parameter of the target actor network.

γ Discount factor. ∆n Exploration noise in slot n.

µθk Policy of SVU k approximated by the actor network. µ∗k Optimal policy of SVU k.

σ2
R Variance of the Gaussian noise in communication. τ Update degree parameter for the target networks.

τ0 Slot duration. ω1, ω2 Reward weight factors.

γk,I(n) SINR of SVU k for V2I communication in slot n. η Path loss exponent.

γk,V(n) SINR of SVU k for V2V communication in slot n.

Similar to [40], for simplification, we shall employ the discrete approximation model
and assume that the position of SVU k is constant within each individual slot because the
time duration τ0 of each slot is small. Since the velocity vj of SVU k in lane j is constant,
dk,j(n) can be expressed as

dk,j(n) = dk,j(n− 1) + vjτ0, (2)

where dk,j(n) ∈
[
−D

2 , D
2

]
and dk,j(1) = −D

2 . SVU k can determine whether it is within
the coverage area of the BS based on its own current position dk,j(n), which reflects the
mobility of SVU k.

3.2. Communication Model
3.2.1. V2I Communication

The channel matrix between the BS and the SVUs in slot n can be expressed as
G(n) = [g1,I(n), · · · , gk,I(n), · · · , gM,I(n)] ∈ CNa×M, where Na is the number of BS anten-
nae and gk,I(n) ∈ CNa×1 is the channel vector between SVU k and the BS. In the MIMO-
NOMA channels, the signals received by the BS in slot n from all SVUs can be expressed as

y(n) = ∑
k∈M

gk,I(n)
√

pk,I(n)sk(n) + Ns(n),

pk,I(n) ∈ [0, Pmax,I ],
(3)

where Ns(n) is Gaussian white noise and sk(n) is complex data symbol with unit variance.
Here, pk,I(n) is the V2I processing power of SVU k in slot n, with Pmax,I being the maximum
V2I processing power of SVU k. In addition, gk,I(n) reflects the path loss of SVU k for V2I
communication, which can be expressed as [41]

gk,I(n) = gs
k(n)

√
gp

k (n), (4)

where gs
k(n) is the small-scale fading channel gain and gp

k (n) is the large-scale fading
coefficient. gp

k (n) reflects the mobility of SVU k and is calculated as

gp
k (n) =

gr∥∥∥Pk,j(n)− PB

∥∥∥η , (5)
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where gr is the channel gain at 1 m and η is the path loss exponent. Meanwhile,
Pk,j(n) = (dk,j(n), wk,j, 0) is the position of SVU k in slot n, and PB = (0, 0, Ha), where Ha is
the height of the BS antenna. Note that Pk,j(n) can be calculated from Equations (1) and (2).

The small-scale fading channel gain is initialized as gs
k(0) ∼ CN (0, IK), where IK is

an Na × Na identity vector.
The relationship between gs

k(n) and gs
k(n− 1) can be expressed as [42]

gs
k(n) = ρkgs

k(n− 1) +
√

1− ρ2
ke(n), (6)

where e(n) is an error vector and we can obtain ρm as described in [43]. ρk is the normalized
channel correlation coefficient and is correlated with θ, which is the angle between the
movement direction of SVU k, i.e., the x-axis, and the direction of communication, i.e.,
PB − Pk,j(n). θ is calculated as

θ = arccos(
x0 · (PB − Pk,j(n))∥∥∥PB − Pk,j(n)

∥∥∥ ), (7)

where x0 = (1, 0, 0).
By using Equations (5)–(7), SVU k can obtain the channel vector gk,I(n).
Subsequently, the BS employs the ZF technique [42] to obtain the SINR of SVU k for

V2I communication, denoted by γk,I(n), which is calculated as

γk,I(n) =
pk,I(n)∥∥gG
k (n)

∥∥2
σ2

R

, (8)

where pk,I(n) is the V2I processing power of SVU k in slot n, σ2
R is the noise power, and

gG
k (n) is the kth row of the pseudoinverse of G(n). Therefore, the relationship between

gG
k (n) and gk,I(n) is

gG
k (n)gi,I(n) =

{
1, i = k,
0, i 6= k.

(9)

Based on Equations (3)–(9), the BS can obtain γk,I(n) and transmit it to SVU k in the
next slot. Thus, SVU k is able to observe γk,I(n − 1) in the local environment in slot n,
which reflects the uncertain channel conditions of SVU k for V2I communication caused by
mobility of SVU k.

3.2.2. V2V Communication

Similar to [16], V2V communication is based on D2D technology. Since the channel
conditions between SVU k and its corresponding VEC vehicle are time invariant, the
channel gain between them can be expressed as

hk,V = β0 fi
2R−αh

k , (10)

where fi is an exponentially distributed random variable with unit mean. αh and β0 are the
path loss exponent and the channel power gain at the reference distance, respectively, for
V2V communication. Rk is the distance between the communicating vehicles. Since each
SVU communicates only with a specific VEC vehicle in the same lane, Rk is a constant.

Therefore, the SINR of SVU k for V2V communication, denoted by γk,V(n), is calcu-
lated as

γk,V(n) =
pk,V(n)hk,V

σ2
R

, (11)

where pk,V(n) ∈ [0, Pmax,V ] is the V2V processing power of SVU k in slot n.
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By using Equations (11) and (12), SVU k can obtain the SINR for V2V communication
in slot n, where γk,V(n) is related only to pk,V(n), which reflects the fact that the channel
conditions of SVU k for V2V communication are time invariant.

3.3. Task-Computation Model

The relationship between the buffer capacity Bk(n) and Bk(n− 1) of SVU k in slot n is
calculated as

Bk(n) = [Bk(n− 1)− (dk,L(n− 1) + dk,I(n− 1) + dk,V(n− 1))]+ + ak(n− 1), (12)

where [·]+ = max(0, ·) and ak(n− 1) is the number of tasks arriving in slot n. dk,L(n− 1),
dk,I(n − 1), and dk,V(n − 1) are the numbers of tasks processed in slot n − 1 for local
processing, V2I processing, and V2V processing, respectively. The descriptions of how to
calculate dk,L(n− 1), dk,I(n− 1) and dk,V(n− 1) are given below.

3.3.1. Local Processing

Let L be the computational intensity of the tasks, i.e., the number of cycles required
for the CPU to process one bit. Let fk(n− 1) be the CPU processing frequency of SVU k in
slot n− 1. Therefore, dk,L(n− 1) is calculated as

dk,L(n− 1) = τ0 fk(n− 1)/L, (13)

where fk(n− 1) is calculated as

fk(n− 1) = 3
√

pk,L(n− 1)/κ,

pk,L ∈ [0, Pmax,L],
(14)

where pk,L(n− 1) is the local processing power of SVU k in slot n− 1 and κ is a constant
that reflects the effective converted capacitance.

3.3.2. V2I and V2V Processing

Since the computational resource of a MEC server is assumed to be sufficient, the
latency of a MEC server in processing tasks is negligible. Moreover, the size of the compu-
tation result is very small, so the feedback latency is also negligible. Therefore, according to
Shannon’s theorem, dk,I(n− 1) and dk,V(n− 1) are calculated as

dk,I(n− 1) = τ0Wd log2(1 + γk,I(n− 1)), (15)

dk,V(n− 1) = τ0Wd log2(1 + γk,V(n− 1)), (16)

where Wd is the bandwidth and γk,I(n− 1) and γk,V(n− 1) are the SINRs of SVU k at slot
n− 1 for V2I communication and V2V communication, respectively.

The buffer capacity Bk(n) of SVU k can be calculated from Bk(n − 1) based on
Equations (12)–(16). Since Bk(n) depends on ak(n− 1), dk,L(n− 1), dk,I(n− 1) and dk,V(n− 1),
it reflects the randomness of task arrival and the uncertainty of the channel conditions for
V2I communication.

4. Problem Formulation

In this section, we describe the DRL-based framework, which consists of state, action,
and reward functions. The state is defined based on the environment of each SVU in slot n;
the action corresponds to the power allocation of each SVU, which is based on a policy µ
and the reward is the benefit earned as a result of the action, which is related to the power
consumption and latency.
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4.1. State

In this paper, each SVU observes its surrounding environment to determine its power
allocation. The V2I channel conditions for each SVU are uncertain because of the channel’s
interference in MIMO-NOMA and the mobility of each SVU. Moreover, the task arrival is
random. Based on joint consideration of these two issues, the state is formulated to reflect
the uncertainty of V2I channel conditions and the randomness of task arrival.

In the system model, the distance of SVU k from the BS along the x-axis dk,j(n) reflects
its mobility. In addition, according to Equations (8) and (9), the SINR γk,I(n) of SVU k for
V2I communication depends on gG

k (n), which in turn depends on gk,I(n); thus, we find that
γk,I(n) depends on gk,I(n). Therefore, γk,I(n) reflects the uncertainty of the V2I channel
conditions. Moreover, according to Equations (12)–(16), the buffer capacity Bk(n) of SVU k
in slot n is a function of ak(n− 1) and γk,I(n− 1), where ak(n− 1) reflects the randomness
of the task-arrival rate and γk,I(n− 1) reflects the uncertainty of the V2I channel conditions.
Therefore, Bk(n) reflects both the randomness of task arrival and the uncertainty of the
V2I channel conditions. Since SVU k can observe dk,j(n), γk,I(n− 1) and Bk(n) in the local
environment, the state of SVU k in slot n can be expressed as

sk,n = [Bk(n), γk,I(n− 1), dk,j(n)], (17)

where γk,I(n− 1) depends on gk,I(n) and the buffer capacity Bk(n) is related to γk,I(n− 1)
and ak(n− 1). Since gk,I(n) and ak(n− 1) are continuous values, the state space of SVU k
is continuous.

4.2. Action

SVU k allocates its local processing power pk,L(n), V2I processing power pk,L(n), and
V2V processing power pk,L(n) in accordance with the current state observed in slot n. Thus,
the action of SVU k in slot n can be expressed as

ak,n = [pk,L(n), pk,I(n), pk,V(n)]. (18)

note that similar to [44], we consider the action space of SVU k to be continuous.

4.3. Reward

The reward is an evaluation based on the previous action. In this paper, we aim
to minimize power consumption and latency. As mentioned in Section 3, the latency of
task offloading is a constant. Thus, based on Little’s theorem [45], the reward of SVU k is
defined as

rk,n = −[ω1(pk,L(n) + pk,I(n) + pk,V(n)) + ω2Bk(n)], (19)

where ω1 and ω2 are nonnegative weight factors and ω1 + ω2 = 1.
Accordingly, the cumulative discount reward of SVU k can be calculated as

J(µk) := Eµk

Nj,m

∑
n=1

γn−1rk,n

, (20)

where γ is a constant that reflects the degree of discount applied to the long-term reward.

5. Solution

In this section, we first introduce the training process, which is based on the DDPG
algorithm. Then, we describe how the performance of the trained model is tested in the
testing stage.

5.1. Training Stage

Since the DDPG algorithm is capable of solving problems with the continuous action
space, we employ the DDPG algorithm to obtain the optimal policy.



Sensors 2023, 23, 3449 10 of 19

The DDPG algorithm combines the deterministic policy gradient (DPG) approach
with the actor–critic framework; it is a modification of the DQN algorithm and can solve
problems with the continuous action space. The DDPG algorithm is composed of four
neural networks: an actor network, a target actor network, a critic network, and a target
network. Here, the actor network and target actor network are employed to update the
policy µθk , thus obtaining the optimal policy. The critic network and target critic network
are employed to evaluate the policy.

The flow of the training stage is summarized in Algorithm 1. Note that θk and θk′

denote the parameters of the actor network and target actor network, respectively. ζk and
ζk′ denote the parameters of the critic network and target critic network, respectively. ∆n is
the noise parameter in slot n.

Algorithm 1: Model training stage based on the DDPG algorithm

1 Initialize replay experience buffer Γ;
2 Randomly initialize the network parameters θk, ζk, ζk′ ← ζk, and θk′ ← θk;
3 for episode = 1, Kmax do
4 Input the initial model parameters;
5 Input the initial state s1;
6 for slot n = 1, Nj,m do
7 Allocate local processing power, V2I processing power, and V2V processing

power based the current policy and exploration noise,
ak = µθk (sk|θk) + ∆n;

8 Perform the action ak, and obtain the reward rk and the next state s′k from
the surrounding environment;

9 Store the transition (sk, ak, rk, s′k) in Γ;
10 if the number of tuples in Γ reaches T then
11 Randomly sample a minibatch of T transition tuples from Γ;
12 Update the parameter ζk based on Equations (21)–(23);
13 Update the parameter θk based on Equation (24);
14 Update the parameters ζk′ and θk′ based on Equations (25) and (26).

In the training stage, we randomly initialize θk and ζk, while θk′ and ζk′ have the
same initial values as θk and ζk, respectively. Then, we define an experience buffer Γ with
sufficient space to store the transitions for each slot (lines 1–2).

Without loss of generality, let us consider that model training starts for SVU k. In the
first episode, the position of SVU k is first reset to within the range of the BS antennae.
dk,j(1) is initialized as −D

2 , and Bk(1) is initialized as half of the buffer capacity. Then,
gk

s(0) is randomly initialized and gG
k (0) is calculated by using Equation (9). Meanwhile,

the SINR γk,I(0) of SVU k for V2I communication is calculated by using Equation (8). Thus,
the state of SVU k in slot 1 is obtained, i.e., sk,1 = [Bk(1), γk,I(0), dk,j(1)] (lines 3–5).

Subsequently, given the initial input sk,1 to the actor network in slot 1, the correspond-
ing policy µθk (sk,1|θk) is obtained. The noise ∆1 is randomly initialized and then SVU k
performs an action ak,1 based on the current policy and the noise, µθk (sk,1|θk) + ∆1. With
the performed action, the local processing power pk,L(1), the V2I processing power pk,I(1),
and the V2V processing power pk,V(1) are determined. Then, SVU k obtains a reward rk(1)
in accordance with Equation (19). The SINR γk,I(0) for V2I communication is obtained in
accordance with Equations (3)–(9), and Bk(2) is obtained from Equations (12)–(16), where
dk,L(1), dk,I(1), and dk,V(1) are obtained from Equation (13), (15) and (16), respectively.
Additionally, dk,j(2) is obtained from Equation (2). Thus, the state of SVU k in slot 2 is
obtained, i.e., sk,2 = [Bk(2), γk,I(1), dk,j(2)]. Then, the tuple (sk,1, ak,1, rk,1, sk,2) is stored in
the experience buffer Γ. If the number of tuples in Γ does not exceed T, SVU k proceeds to
the next slot and repeats the above process (lines 6–10).
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Once the number of tuples reaches T, the parameters θk, ζk, θk′ , and ζk′ are updated
toward maximizing J(µθk ). The parameter θk is updated in accordance with the gradient
of the policy, i.e., the gradient in the direction of J(µθk ), which is denoted by ∇θk J(µθk ).
Let Qζk

(sk,n, ak,n) be the action value function of SVU k, which is the output of the critic
network. According to [46], the task of solving for∇θk J(µθk ) can be replaced by solving for
the gradient of Qζk

(sk,n, ak,n).
Now, we further describe how the parameters are updated, as follows. Figure 2

illustrates the parameter update process of the DDPG algorithm. First, SVU k randomly
selects T tuples from the experience buffer to form a minibatch. For convenience, we
use rk, sk, ak, s′k, and a′k to denote rk,n, sk,n, ak,n, sk,n+1, and ak,n+1, respectively. Then, let
(si

k, ai
k, ri

k, s′ ik) denote the ith tuple in the minibatch. For the ith tuple, SVU k inputs s′ ik into
the target actor network, which outputs a′ ik based on s′ ik. Then SVU k inputs s′ ik and a′ ik into

the target critic network, which outputs the action value function Qζk′
(s′ ik, a′ ik). Thus, the

target value of tuple i can be calculated as (line 11)

yi
k = ri

k + γQζk′
(s′ ik, a′ ik)|a′ ik=µ

θk′ (s
′ i
k |θk′ ). (21)

then, si
k and ai

k are used as inputs to the critic network, which outputs the action value

function Qζk
(si

k, ai
k). Thus, the loss function for tuple i can be expressed as

Li =
[
yi

k −Qζk
(si

k, ai
k)
]2

. (22)

accordingly, the loss function for all tuples can be expressed as

L(ζk) =
1
T

T

∑
i=1

Li. (23)

Then, SVU k updates ζk based on Equations (21)–(23) [47] (line 12). Afterward,
∇θk J(µθk ) can be obtained from Qζk

(si
k, aµ

k ), which is the output of the critic network.
We have

∇θk J(µθk )

≈ 1
T

T

∑
i=1
∇θk Qζk

(si
k, aµ

k )|aµ
k =µ

θk (si
k |θk)

=
1
T

I

∑
i=1
∇aµ

k
Qζk

(si
k, aµ

k )|aµ
k =µ

θk (si
k |θk)

· ∇θk µθk (si
k|θ

k).

(24)

note that the chain rule is utilized here, since aµ
k = µθk (si

k|θ
k) is an input for Qζk

(si
k, aµ

k ).
Similarly, SVU k updates the parameter of the actor network in accordance with

Equation (24) [47] (line 13).
In slot Nj,m, SVU k updates ζk′ and θk′ , i.e., (line 14)

ζk′ ← τζk + (1− τ)ζk′ , (25)

θk′ ← τθk + (1− τ)θk′ , (26)

where τ � 1 is a constant.
Finally, SVU k proceeds to the next slot and uses s′k as the input to the actor network.

This current episode continues until slot Nj,m is reached. When the number of episodes
reaches Kmax, training of the system model is complete.
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Figure 2. Flow chart of the DDPG algorithm.

5.2. Testing Stage

In the testing stage, we test the performance of the trained system model. Algorithm 2
shows the flow of the testing process.

Algorithm 2: Testing stage for the trained model

1 for episode = 1, K′max do
2 Input the initial state s1;
3 for slot n = 1, Nj,m do
4 Allocate local processing power, V2I processing power, and V2V processing

power in accordance with the optimal policy, ak = µθk (sk|θk∗);
5 Perform the action ak, and obtain the reward rk and the next state s′k from

the surrounding environment.

6. Simulation Results and Analysis

In this section, we demonstrate through simulation experiments that our proposed
DDPG algorithm can obtain the optimal policy. The simulation experiments are divided
into a training stage and a testing stage. The simulation tool is Python 3.7.

The key parameters of the experiments are listed in Table 2. The learning rates for
the actor network and critic network are 10−3 and 10−4, respectively [47]. The size of the
experience replay buffer is |Γ|. Task arrival follows a Poisson process, where the mean
arrival rate is λk. SVU k is driving in lane 2, and its V2I communication will be interfered
with three other vehicles when dk,j(n) = 0.
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Table 2. Key parameters in simulations.

Parameters of the System Model

Parameter Value Parameter Value

σ2
R 10−9 W hr −30 dB

β0 −30 dB Wd 1 MHZ
τ0 20 ms κ 10−28

v1 20 m/s v2 25 m/s
v3 30 m/s wd 10 m
L 500 cycles/bit λk 3 Mbps
H 10 m Na 4
D 500 m Pmax,V 1 W

Pmax,I 1 W Pmax,L 1 W
Rk 65 m w1 10 m
αh 2

Parameters of the Training Process

Parameter Value Parameter Value

αC
k 0.001 αA

k 0.0001
ω1 0.9 ω2 0.1
γ 0.99 τ 0.001

Kmax 1000 T 64
K′max 10 |Γ| 2.5× 105

6.1. Training Stage

Figure 3 shows the learning curve in the training stage, where the reward is the average
value in each episode. One can see that the average reward rises quickly from episode 0 to
episode 12. Then, the curve declines from episode 12 to episode 400. This reflects that SVU
k is adjusting its policy toward the optimal reward. From episode 400 to episode 1000, the
rewards become stable with little jitter. The reason for the existence of jitter is the presence
of exploration noise, which prevents SVU k from falling into a local optimum.

0 200 400 600 800 1000
Episode Index

−175

−150

−125

−100

−75

−50

−25

0

Re
wa

rd

Figure 3. Learning curve in the training stage.

6.2. Testing Stage

We present performance tests performed on the trained model in the testing stage.
Figures 4 and 5 show the test performance under the DDPG algorithm and three other
greedy (GD) policies in terms of the power consumption, buffer capacity, and reward,
where the performance is recorded as the average value over 10 episodes. In the following,
we introduce the three policies.
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• GD-Local policy: SVU k first maximally allocates the local processing in each slot. The
remaining tasks are equally allocated to V2I processing and V2V processing.

• GD-V2I policy: SVU k first maximally allocates the V2I processing power in each slot.
The remaining tasks are equally allocated to local processing and V2V processing.

• GD-V2V policy: SVU k first maximally allocates the V2V processing power in each
slot. The remaining tasks are equally allocated to local processing and V2I processing.
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Figure 4. Power. (a) DDPG power allocation. (b) Total power consumption.
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Figure 5. Performance. (a) Buffer capacity. (b) Reward.

Figure 4a shows the power allocation under the DDPG algorithm at different distances,
and Figure 4b compares the power consumption under all four policies at different distances.
Figure 4a shows the local-and-V2V processing power and the V2I processing power at
different distances under the DDPG algorithm. When dk,j(n) < 0, the V2I processing power
increases, and the local-and-V2V processing power decreases significantly. This is because
the path loss decreases; thus, the channel conditions for V2I communication improve
as SVU k approaches the BS. Therefore, as SVU k approaches the BS, SVU k allocates
more power to V2I processing. When SVU k moves away from the BS, SVU k allocates
more power to local-and-V2V processing. When dk,j(n) > 0, local-and-V2V processing
power increases rapidly, while the V2I processing power decreases. This is because when
dk,j(n) = 0, the other three vehicles impose interference on SVU k, causing the V2I channel
conditions to deteriorate. As the V2I channel conditions become worse, more power needs
to be allocated to local-and-V2V processing. From Figure 4b, it can be seen that the power
consumption under the GD-V2I policy gradually decreases when dk,j(n) < 0 and rapidly
increases when dk,j(n) > 0, which clearly matches the changing V2I channel conditions.
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Figure 5a,b compares the buffer capacity and reward under the four policies at different
distances. From Figure 5a, it can be seen that the buffer capacity increases when dk,j(n) = 0
under the GD-V2I policy. This is because the V2I communication is interfered with by the
other three vehicles when dk,j(n) = 0. In contrast, the buffer capacity under the DDPG
algorithm remains stable. This means that SVU k is able to process tasks in a timely manner
even though the channel conditions are degraded. As shown in Figure 5a, the reward
under the DDPG algorithm is better than the rewards under the other three policies most
of the time.

Figure 6a compares the average buffer capacity under the four policies. There is no
significant difference in buffer capacity among the four policies. Nevertheless, the GD-
V2I policy has the largest buffer capacity because of variation of V2I channel conditions.
Meanwhile, as seen from Figure 6b, the average power consumption under the DDPG
algorithm is significantly superior to the other three policies. Compared to that under the
GD-Local policy, the average power consumption under the DDPG algorithm is reduced
by 24.4%. Similarly, the average power reduction under the DDPG algorithm is 51.3%
compared to the GD-V2I policy and 23.1% compared to the GD-V2V policy.
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Figure 6. Performance. (a) Average buffer capacity. (b) Average power consumption. (c) Cumulative
discount reward.

Figure 6c shows the cumulative discount reward under the four policies. We can see
that the cumulative discount reward under the DDPG algorithm is better than those under
the other three policies. This is because of the adaptability of the DDPG algorithm, which
allows the model to rapidly adjust the power allocation.

Figure 7a,c shows the cumulative discount reward, power consumption, and buffer
capacity under the four policies at different task-arrival rates. As the task-arrival rate
increases, the cumulative discount reward decreases, the power consumption increases, and
the buffer capacity becomes larger for all four policies. It can also be seen that although the
DDPG algorithm is superior to the other three policies in terms of the power consumption
and cumulative discount reward, its buffer capacity is slightly higher than those under



Sensors 2023, 23, 3449 16 of 19

the GD-Local and GD-V2V policies. This is because the DDPG algorithm aims to obtain
the maximum cumulative discount reward. Due to its focus on power consumption, and
the fact that its buffer capacity performance was not given more attention, the result is
slightly worse.
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Figure 7. Performance at different task-arrival rates. (a) Cumulative discount reward. (b) Power
consumption. (c) Buffer capacity.

Table 3 compares the performance in terms of average power consumption, average
buffer capacity and cumulative discount reward under the four policies, where A, B, C, and
D stand for different performance levels in a descending order.

Table 3. Performance comparison under the four policies.

Policies Average Power Consumption Average Buffer Capacity Cumulative Discount Reward

DDPG A B A
GD-Local B B B
GD-V2I D C D
GD-V2V B B B

7. Conclusions

In this paper, we have proposed a decentralized DRL-based VEC power allocation
model that considers not only the coexistence of D2D-based V2V communication and
MIMO-NOMA-based V2I communication, but also the mobility of SVUs, the randomness
of task arrival, and the channels’ interference in MIMO-NOMA. Extensive simulations
demonstrate that the average power consumption and reward under the DDPG algorithm is
superior to those of other policies. Meanwhile, since the proposed DDPG algorithm focuses
on power consumption, it may incur a compromise for buffer capacity. For future work,
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we will consider the coexistence of many-to-many D2D and MIMO-NOMA technology in
VEC systems.
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