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Abstract: Structural damage detection using unsupervised learning methods has been a trending
topic in the structural health monitoring (SHM) research community during the past decades. In the
context of SHM, unsupervised learning methods rely only on data acquired from intact structures
for training the statistical models. Consequently, they are often seen as more practical than their
supervised counterpart in implementing an early-warning damage detection system in civil structures.
In this article, we review publications on data-driven structural health monitoring from the last decade
that relies on unsupervised learning methods with a focus on real-world application and practicality.
Novelty detection using vibration data is by far the most common approach for unsupervised
learning SHM and is, therefore, given more attention in this article. Following a brief introduction,
we present the state-of-the-art studies in unsupervised-learning SHM, categorized by the types of
used machine-learning methods. We then examine the benchmarks that are commonly used to
validate unsupervised-learning SHM methods. We also discuss the main challenges and limitations
in the existing literature that make it difficult to translate SHM methods from research to practical
applications. Accordingly, we outline the current knowledge gaps and provide recommendations for
future directions to assist researchers in developing more reliable SHM methods.

Keywords: machine learning; deep learning; structural health monitoring; damage detection;
unsupervised learning; novelty detection; anomaly detection; outlier analysis; vibration-based
methods; neural networks

1. Introduction
1.1. Background

The integrity of civil structures gradually decreases due to use and operational con-
ditions while also being at risk of unforeseeable hazards such as seismic events. To avoid
life and capital losses due to sudden and long-term damage, techniques and standards
for structural inspection were put forward, such as visual inspection and nondestructive
evaluation techniques. These traditional structural inspection techniques, however, can
be expensive, time-consuming, and unsafe for human workers. Structural health moni-
toring (SHM) attracted the attention of researchers in the past decades due to its ability
to provide real-time structural condition assessment and the progress made in hardware
development [1–3].

Farrar et al. [4] have put forward a statistical pattern recognition paradigm that split
the SHM framework into four processes: operational evaluation, data acquisition, feature
selection, and statistical model development for feature discrimination. While articles
discussed in this review primarily focus on the latter two processes, we find that more
studies give more attention to feature selection than model development. The statistical
models attempt to identify the existence, location, and severity of damage [5]. There
has been a steady development of SHM methods in the past decades that are vibration-
based and vision-based. Vision-based SHM benefits from the advances in computer vision
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technology and unmanned aerial systems to provide autonomous visual inspections [6–8].
Vibration-based SHM uses recorded vibration data of the structures to identify structural
damage which could be difficult to identify via visual inspections.

Two major types of vibration-based SHM are available: model-based and data-driven.
Model-based techniques involve system identification and model updating techniques [9].
They rely on expert knowledge to build accurate, physics-based models of structures that
are calibrated based on real structure measurements [10–13]. However, model updating
techniques can be expensive, time-consuming, and prone to modeling errors, especially for
complex structures [14,15].

Data-driven SHM uses either supervised or unsupervised learning methods to train a
statistical model to identify damage and faults based on engineered damage-sensitive fea-
tures. In supervised learning, the training data are labeled and include all structural states
including undamaged and damaged conditions. Examples of supervised SHM methods
include support vector machine (SVM) [16,17], decision trees [18], neural networks [19,20],
and deep neural networks [21–24].

While supervised learning can be ideal for vision-based SHM, as training data are
relatively attainable and transfer learning is feasible [25–27], the practicality of these meth-
ods are debated for vibration-based SHM [2]. The acquisition of the damage condition
data needed for supervised learning is challenging. One possible way is by relying on
a physics-based model, which can be nontrivial for complex structures. Another way is
to acquire it from laboratory or field experiments, and this also can be impractical for
most structures. Additionally, transfer learning research for SHM has not yet matured,
as structures tend to have different properties and site conditions even if the structures
themselves are similar.

Unsupervised learning can offer a more practical alternative to supervised learning for
SHM systems. The bulk of unsupervised learning methods for vibration-based SHM are
novelty detection methods. In the context of SHM, the damaged state data is not needed
for training in an unsupervised learning setting. Instead, models can be trained using data
from the normal condition only, which are often available in abundance. Additionally,
unlike supervised learning, which trains models to detect damage types that are only
considered in the dataset, unsupervised learning may detect any system change that can
be picked up by the model. However, unsupervised learning is generally less accurate in
localizing and quantifying damage compared to supervised learning [28].

A flowchart of an example unsupervised learning-based damage detection algorithm
is shown in Figure 1. After data acquisition and cleansing, the sensor signals pass through
three stages. First, the signal readings may undergo preprocessing to facilitate feature
extraction, such as data normalization. Second, damage-sensitive features are extracted
from the input data using dimensionality reduction, signal decomposition, or other tech-
niques. In some methods, multiple layers of feature extraction are proposed. For instance,
some methods transfer the signals into the frequency domain and then reduce the dimen-
sions using a machine-learning model. Third, a statistical inference process is proposed
involving the estimation of one or multiple damage indicators and a form of a statistical
test (e.g., hypothesis testing) to diagnose damages. The last decision-making part is occa-
sionally absent from the framework, and the users would need to manually inspect the
damage indicators for health assessment. Unsupervised learning-based SHM methods
require establishing a reference (e.g., thresholding) and/or training the model parameters
(machine learning models) using the undamaged structure data in order to assess structural
health during operation.
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for decision-making. The basic principle in outlier analysis, or novelty detection in gen-
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the outlier test are labeled novel or damaged. They also introduced a threshold estimation 
technique based on a Monte Carlo simulation, which takes into account the training data 
size. This damage detection framework would inspire the development of many subse-
quent novelty detection-based SHM systems. For example, Gul and Catbas [31] presented 
an MSD-based outlier analysis method for damage detection combined with features ex-
tracted from autoregressive (AR) models. 

Artificial neural networks were also used for unsupervised-learning SHM. Sohn et 
al. [32] presented an auto-associative neural network (AANN) for damage detection using 
features extracted from time series models showing good results under environmental 
variations. In later studies, damage detection methods based on self-organizing neural 
networks [33] and wavelet neural networks [34] were also introduced. While some nov-
elty detection methods can be considered as one-class classifiers, cluster analysis tech-
niques, such as k-means clustering [35] and fuzzy c-means [36], grouped the data in mul-
tiple clusters. 

1.2. Related Work 
Multiple studies have reviewed vibration-based SHM methods in the past, both su-

pervised and unsupervised learning. Doebling et al. [37] and Sohn et al. [38] jointly re-
viewed methods that were developed before 2001. Carden et al. reviewed vibration-based 
SHM research from 1996 to 2003 [39]. Fan and Qiao [40] provided a comprehensive review 
on damage detection methods using modal parameters. Many others have focused on re-
viewing signal processing techniques for SHM [41–45]. 

More recently, some studies have conducted updated literature surveys on SHM re-
search. Hou and Xia [46] reviewed vibration-based damage identification techniques 
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A clear example of this process can be seen in the unsupervised learning damage
detection methods introduced by Worden et al. [29,30]. Their feature extraction process in-
volves signal processing methods (e.g., transmissibility), while multivariate outlier analysis
and the Mahalanobis squared distance (MSD), as a discordancy measure, were used for
decision-making. The basic principle in outlier analysis, or novelty detection in general,
is that after fitting a distribution to the normal condition data, observations that fail the
outlier test are labeled novel or damaged. They also introduced a threshold estimation tech-
nique based on a Monte Carlo simulation, which takes into account the training data size.
This damage detection framework would inspire the development of many subsequent
novelty detection-based SHM systems. For example, Gul and Catbas [31] presented an
MSD-based outlier analysis method for damage detection combined with features extracted
from autoregressive (AR) models.

Artificial neural networks were also used for unsupervised-learning SHM. Sohn et al. [32]
presented an auto-associative neural network (AANN) for damage detection using features
extracted from time series models showing good results under environmental variations.
In later studies, damage detection methods based on self-organizing neural networks [33]
and wavelet neural networks [34] were also introduced. While some novelty detection
methods can be considered as one-class classifiers, cluster analysis techniques, such as
k-means clustering [35] and fuzzy c-means [36], grouped the data in multiple clusters.

1.2. Related Work

Multiple studies have reviewed vibration-based SHM methods in the past, both
supervised and unsupervised learning. Doebling et al. [37] and Sohn et al. [38] jointly
reviewed methods that were developed before 2001. Carden et al. reviewed vibration-based
SHM research from 1996 to 2003 [39]. Fan and Qiao [40] provided a comprehensive review
on damage detection methods using modal parameters. Many others have focused on
reviewing signal processing techniques for SHM [41–45].

More recently, some studies have conducted updated literature surveys on SHM
research. Hou and Xia [46] reviewed vibration-based damage identification techniques
introduced from 2010 to 2019, including methods that are based on Bayesian learning.
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Sun et al. [47] and Zinno et al. [48] have reviewed SHM methods for bridges. Ghare-
hbaghi et al. [49] performed a critical review on different types of SHM methods and
also highlighted some commonly-used SHM benchmarks. Gordan et al. [50] provided a
comprehensive review on data mining techniques in SHM from classical to state-of-the-art
methods. Cawley [51] discussed the potential reasons for delaying the application of SHM
in the industry in contrast with machine condition monitoring.

The rapidly advancing research in sensor technology and machine learning (ML) has
positively impacted civil engineering research in multiple fields [52]. SHM research was
no exception, as studies in recent years show an increasing number of SHM methods that
rely on deep learning (DL) architectures (Figure 2) [53,54]. Flah et al. [55] summarized ML-
based SHM methods including DL and reinforcement learning applications. Avci et al. [56]
also reviewed ML and DL damage detection methods but only focused on vibration-
based applications. Sony et al. have conducted a systematic review of SHM methods
that are based on convolutional neural networks (CNNs) [57]. While some of these works
briefly discuss unsupervised learning techniques as part of the SHM literature survey,
there is a lack of review studies dedicated to unsupervised learning SHM methods as the
primary focus.
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Figure 2. The number of reviewed unsupervised learning-based SHM studies using deep learning
and the total reviewed articles over the years since 2012.

1.3. Aim and Methodology

This work aims to review the latest unsupervised learning vibration-based structural
health monitoring techniques. We provide a review of 83 unsupervised learning SHM pub-
lished between 2012 and 2023, which are summarized in Table 1. It should be emphasized
that this is not an exhaustive list of all unsupervised learning-based SHM methods in this
period, but rather a curated list of peer-reviewed articles that provide an overview of the
state-of-the-art. The selection method of these articles can be summarized as follows:

• Peer-reviewed articles from 2012 to 2023 were selected from well-established academic
databases including Web of Science, Science Direct, ASCE Library, Wiley Online
Library, IEEE Xplore Digital Library, and Sage.

• The search was conducted using relevant keywords, including “structural damage
detection”, “unsupervised damage detection”, “unsupervised structural health moni-
toring”, “structural novelty detection”, “anomaly damage detection”, etc.

• Two rounds of screening were performed.

◦ In the first round, the titles, abstracts, and keywords of the articles were checked
for relevancy to the search topic.
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◦ A large number of papers were selected for the second round. in which careful
reading and analyzing of the complete article was performed.

• Papers were given relevancy scores based on aspects such as the learning mode,
method, objectives, feature types, application (structural or non-structural), the decision-
making process, thresholding, and results.

Table 1. Applications of unsupervised learning, vibration-based SHM (List of abbreviations is
provided in Table 2).

Authors Year Feature Extraction Classifier Test Structure

Eltouny and Liang [58] 2023 CNN-LSTM hybrid EVT-based test Numerical multi-story
multi-bay structure

Li et al. [59] 2023 Power cepstral
coefficients, GAE

MSD-based outlier
analysis

Z-24 Bridge, numerical 8
DOF model

Sadeghi et al. [60] 2023 VMD - Laboratory-scale bridge

Soleimani-Babakamali
et al. [61] 2023 FFT GAN (CNN, LSTM) QUGS, IASC-ASCE

benchmark

Entezami et al. [62] 2022 Empirical machine
learning EVT-based test Z-24 bridge, Tianjin

Yonghe bridge

Fernandez-Navamuel
et al. [63] 2022 AE-PCA hybrid Percentile Beltran bridge, Infante

Dom Henrique bridge

Giglioni et al. [64] 2022 AE, ensemble learning Percentile Z-24 Bridge

Kim and Song [65] 2022 Flexibility matrices,
CVAE - Numerical steel structure

Lucà et al. [66] 2022 Modal frequencies GMM Tie-rods

Meixedo et al. [67] 2022 ARX, PCA k-means Sado Bridge

Shi et al. [68] 2022 ANN, CNN SVDD
IASC–ASCE benchmark
(numerical), three-story

masonry frame

Soleimani-Babakamali
et al. [69] 2022 FFT GAN (CNN, LSTM) QUGS, IASC-ASCE

benchmark

Sony and Sadhu [70] 2022 Multivariate EMD Significance test Z-24 bridge, numerical
10-DOF model

Wang et al. [71] 2022 NExT, sparse Bayesian
learning Bayesian hypothesis test Tianjin Yonghe Bridge

Yan et al. [72] 2022 Transmissibility KL divergence, Bayesian
inference

S101 bridge, lab beams,
numerical 10-story

building

Zhang et al. [73] 2022 WT, Convolutional VAE Significance test Laboratory-scale tunnel
model

Eltouny and Liang [74] 2021 CIM, PCA Bayesian-optimized
KDME, EVT-based test

Numerical RC frame,
numerical high-rise

structure, three-story
masonry frame

Jiang et al. [75] 2021 AE Predefined threshold QUGS, LANL
three-story structure
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Table 1. Cont.

Authors Year Feature Extraction Classifier Test Structure

Li et al. [76] 2021 CNN-GCN hybrid Significance test Cable-stayed bridge

Ma et al. [77] 2021 PPCA
Q-statistic and

T2-statistic anomaly
detection

Numerical auditorium

Mao et al. [78] 2021 GAF, GAN, CAE CUSUM Cable-stayed bridge

Mousavi et al. [79] 2021 VMD - Numerical beam

Movsessian et al. [80] 2021 MD, ANN ROC Wind turbine

Sarmadi and Yuen [81] 2021 KNFST EVT-based test Z-24 bridge,
Wooden bridge

Sarmadi et al. [82] 2021 Sequential ensemble
(UMD, MSD, local MSD) EVT-based test Z24 bridge, wooden bridge

Silva et al. [83] 2021 Stacked AE GMM Z-24 bridge

Son et al. [84] 2021 LSTM Significance test Cable-stayed bridge

Wang and Cha [85] 2021 AE OCSVM
Laboratory-scale steel

bridge, numerical
shelf structure

Yuan et al. [86] 2021 CVAE Elliptic envelope,
OCSVM

Laboratory vehicle-track,
numerical vehicle-track

Rastin et al. [87] 2021 CAE Significance test

Tianjin Yonghe Bridge,
numerical IASC-ASCE
benchmark, numerical

grid structure

Entezami et al. [88] 2020 ARMA ESD-PKLD hybrid with
nearest neighbor Tianjin Yonghe Bridge

Entezami et al. [89] 2020 ARX MSD-PKLD hybrid Tianjin Yonghe Bridge

Entezami et al. [90] 2020 ARMA, AE MD, EVT-based Tianjin Yonghe Bridge

Ma et al. [91] 2020 CVAE - Laboratory steel bridge

Mousavi et al. [92] 2020 HHT, ANN - Laboratory steel
truss bridge

Ni et al. [93] 2020 - CNN Suspension bridge

Nie et al. [94] 2020 Fixed MPCA -
Suspension bridge,
laboratory beam,
numerical beam

Soman [95] 2020 EEMD POD analysis Laboratory offshore tripod

Tomé et al. [96] 2020 Johansen test Hotelling T2 control
charts

Numerical Corgo Viaduct

Tran et al. [97] 2020 SRIM
Hierarchical clustering,

univariate outlier
analysis

Laboratory bridge, Steel
pedestrian bridge

Xu et al. [98] 2020 WT EVT-based Numerical Xihoumen
suspension bridge

Bull et al. [99] 2019 Transmissibility MSD-based outlier
ensemble Z-24 bridge, Gnat aircraft

de Almeida
Cardoso et al. [100] 2019 TF-IQRM k-medoids, student’s

t-test
IASC-ASCE benchmark,

PI-57 bridge
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Table 1. Cont.

Authors Year Feature Extraction Classifier Test Structure

Entezami and
Shariatmadar [101] 2019 EEMD, AR, ARX, DTW,

PCA

Hotelling T2 control
charts, QRE, significance

test
IASC-ASCE benchmark

Entezami et al. [102] 2019 AR PKLD, significance test LANL three-story
structure, wooden bridge

Han et al. [103] 2019 TKEO, CEEMD - Scaled wind turbine

Ozdagli and Koutsoukos
[104] 2019 NExT/ERA, PCA, AE Euclidean distance LANL three-story

structure, numerical beam

Sousa Tomé et al. [105] 2019 Multilinear regression,
PCA

Hotelling T2 control
charts

Numerical Corgo Viaduct

Anaissi et al. [106] 2018 CANDECOMP/PARAFAC
Tensor Decomposition OCSVM

Cable-stayed bridge,
laboratory replica of SHB

jack arch

Cha and Wang [107] 2018 CWT, crest factor density peaks-based fast
clustering

Laboratory-scale
steel structure

Entezami and
Shariatmadar [108] 2018 AR PAC, RRC, significance

test

LANL three-story
structure, IASC-ASCE

benchmark

Rafiei and Adeli [109] 2018 SWT, FFT Deep RBM Laboratory-scale 38-story
concrete building

Vamvoudakis-Stefanou
et al. [110] 2018 MM learning (PCA, AR) KL-divergence Composite beams

Zhou et al. [111] 2018 Transmissibility, PCA - IASC-ASCE benchmark,
numerical beam

Alamdari et al. [112] 2017 Spectral moments k-means−− SHB

Gres et al. [113] 2017 Hankel matrix, MD
Significance test,

Hotelling T2 control
charts

S101 bridge, numerical
offshore support structure

Gu et al. [114] 2017 AE w/temperature input Euclidean distance Steel grid structure

Langone et al. [115] 2017 Modal frequencies Adaptive KSC Z-24 bridge

Neves et al. [116] 2017 ANN MD, GP Numerical bridge

Santos et al. [117] 2017 Modal frequencies GA-EM-GMM Z-24 bridge

Xia et al. [118] 2017 EEMD - Jiangyin suspension Bridge

Zhou et al. [119] 2017 Transmissibility Hierarchical clustering Numerical 10-story
structure, Laboratory beam

Amezquita-Sanchez and
Adeli [120] 2016 SWT, FD Significance test Laboratory-scale 38-story

concrete building

Avci and
Abdeljaber [121] 2016 SOM - IASC-ASCE benchmark

Diez et al. [122] 2016 FFT KNN, k-means SHB

Mohammadi Ghazi and
Büyüköztürk [123] 2016 HHT MSD-based outlier

analysis Laboratory steel structure

Santos et al. [124] 2016 ANN k-means, Gowda–Diday
dissimilarity

Numerical Guadiana
International Bridge

Silva et al. [125] 2016 Modal frequencies GA-clustering Z-24 Bridge, Tamar Bridge
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Table 1. Cont.

Authors Year Feature Extraction Classifier Test Structure

Tibaduiza et al. [126] 2016 PCA T2-statistic, Q-statistic,
combined index, I2 index

Wind turbine blade

Ulriksen and
Damkilde [127] 2016 CWT, GDTKEO MSD-based outlier

analysis
Numerical beam, Wind

turbine blade

Alves et al. [128] 2015 Symbolic analysis Dynamic clouds, FCM,
hierarchical clustering

Laboratory steel beam,
PI-57 bridge

Dervilis et al. [129] 2015 LTS MCD Z-24 Bridge, Tamar bridge

Shahidi et al. [130] 2015 SVR, CR, AR, ARX Significance test Laboratory steel frame

Döhler et al. [131] 2014 Subspace identification GLR
Numerical mass-spring
chain, numerical truss,

numerical beam

Figueiredo et al. [132] 2014 Modal frequencies
MCMC-GMM,

MSD-based outlier
analysis

Z-24 Bridge

Nigro et al. [133] 2014 Time series modeling,
CUSUM, EWMA, MSE

Bootstrapping, Fisher
Criterion- MSD
significance test

Laboratory steel frame

Figueiredo and Cross
[134] 2013 GMM MSD-based outlier

analysis Z-24 Bridge

Kunwar et al. [135] 2013 HHT - Laboratory bridge

Laory et al. [136] 2013 MPCA Significance test The Ricciolo viaduct,
numerical concrete frame

Sankararaman and
Mahadevan [137] 2013 Bond graph model

residuals Bayesian hypothesis test Numerical frame

Yu et al. [138] 2013 FRF, PCA, KPCA FCM Experimental truss bridge

Kesavan and
Kiremidjian [139] 2012 WT, PCA k-means IASC-ASCE

Benchmark (numerical)

Meredith et al. [140] 2012 EMD - Numerical
Euler–Bernoulli beam

Table 2. List of Abbreviations.

Abbreviation Definition Abbreviation Definition

AE Autoencoder KNFST Kernel Null Foley–Sammon Transform
ANN Artificial Neural Network KNN K-Nearest Neighbor
ARMA Autoregressive Moving Average KPCA Kernel Principal Component Analysis
ARX Autoregressive-Exogenous KSC Kernel Spectral Clustering
ASCE American Society of Civil Engineering LANL Los Alamos National Laboratory
CAE Convolutional Autoencoder LSTM Long Short-Term Memory

CEEMD Complementary Ensemble Empirical
Mode Decomposition LTS Least Trimmed Squares

CIM Cumulative Intensity Measure MCD Minimum Covariance Determinant
CNN Convolutional Neural Network MCMC Monte Carlo Markov Chain
CR Collinear Regression MD Mahalanobis Distance
CUSUM Cumulative Sum MM Multiple-Model
CVAE Convolutional Variational Autoencoder MPCA Moving Principal Component Analysis
CWT Continuous Wavelet Transform MSD Mahalanobis Square Distance
DTW Dynamic Time Warping NExT Natural Excitation Technique

EEMD Ensemble Empirical Mode
Decomposition OCSVM One-Class Support Vector Machine
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Table 2. Cont.

Abbreviation Definition Abbreviation Definition

EM Expected-Maximization PAC Parametric Assurance Criterion
EMD Empirical Mode Decomposition PCA Principal Component Analysis

ESD Euclidean Square Distance PKLD Partition-Based Kullback–Leibler
Divergence

EVT Extreme Value Theory POD Probability of Detection

EWMA Exponentially Weighted Moving
Average PPCA Probabilistic Principal Component

Analysis
FCM Fuzzy C-Means QRE Q-Reconstruction Error
FD Fractal Dimension QUGS Qatar University Grandstand Simulator
FFT Fast Fourier Transform RBM Restricted Boltzmann Machine
FRF Frequency Response Function RC Reinforced Concrete
GA Genetic Algorithm RRC Residual Reliability Criterion
GAE Generalized Autoencoder SHB Sydney Harbor Bridge
GAF Gramian Angular Field SOM Self-Organizing Maps

GAN Generative Adversarial Network SRIM System Realization Using Information
Matrix

GCN Graph Convolutional Networks SVDD Support Vector Data Description

GDTKEO Generalized Discrete Teager–Kaiser
Energy Operator SVR Single-Variate Regression

GLR Generalized Likelihood Ratio SWT Synchrosqueezed Wavelet Transform

GMM Gaussian Mixture Models TF-IQRM Time–Frequency Interquartile
Range-Median

GP Gaussian Process TKEO Teager–Kaiser Energy Operator
HHT Hilbert–Huang Transform UMD Univariate Mahalanobis Distance

IASC International Association For Structural
Control VAE Variational Autoencoder

KDME Kernel Density Maximum Entropy VMD Variational Mode Decomposition
KL Kullback–Leibler WT Wavelet Transform

Finally, based on our search methodology, papers that were closely related to the
review topic were selected. We also present some of the most commonly-used benchmarks
in validating the unsupervised SHM methods. These datasets are selected based on their
recurrence in the reviewed list of articles. Furthermore, we discuss a number of the
open issues for the practical implementation of unsupervised learning damage detection
methods, as well as future research trends. The remainder of the article is organized
as follows. The following section describes the popular experimental datasets used in
the literature. Sections 3–5 provide a detailed review on the papers shown in Table 1,
categorized into conventional feature extraction techniques, artificial neural networks,
and novelty detection methods based on the key used unsupervised learning technique.
Section 6 discusses the challenges and future research in unsupervised learning SHM
methods. Finally, a summary and closing remarks are presented in Section 7.

2. Popular Datasets for Unsupervised Learning-Based SHM

Lack of training data has always been a significant challenge in the creation of struc-
tural damage detection systems. By recognizing the importance of structural health moni-
toring over the long term, governments, organizations, and researchers have joined forces
to provide training data that supports the development of technologies in this field. In this
section, we will briefly describe the most common benchmarks that were used for training
and testing of unsupervised learning SHM in recent studies.

2.1. Z-24 Bridge

The Z-24 bridge is a post-tensioned concrete bridge in which the main girder has
a box cross-section with two vents. The middle span length is 30 m, and it has two
symmetric 14-m-long bays from each side, as shown in Figure 3. The Swiss bridge, which
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was constructed in 1963, is by far the most common test benchmark in the reviewed papers.
In 1998, the bridge was demolished to allow a new railway to be constructed. During its
last year, accelerations and environmental conditions were continuously recorded. These
conditions included humidity, rain, wind speed, and directions and temperature. Then
several damage scenarios were applied to the bridge and recorded. The bridge dynamics
data were collected using 16 accelerometers to record the accelerations at different locations
and in different directions. A total of 48 sensors were used to collect the environmental
parameters [141]. The bridge was suitable for testing methods’ environmental variability
robustness, as the monitored data included the cold months.
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2.2. Tamar Bridge

Tamar bridge is a major suspension bridge located in Devon, UK to connect Saltash
in Cornwall and Plymouth. With an overall length of 643 m, the main span is 335 m
while the side spans are 114 m each. The concrete deck is suspended by cables carried
by two 73-m-high towers [143]. An upgrade took place in the late 1990s to comply with
the new European Union directive to support vehicles up to 40 tons. Acceleration and
environmental sensors were installed to record data; however, as all of these observations
were taken from the undamaged condition of the bridge, only false positive errors can
be identified.

2.3. Sydney Harbour Bridge

The Sydney Harbour Bridge (SHB) is a steel through arch bridge in Australia that
connects the northern suburbs of Sydney to the city center. The bridge has eight lanes for
vehicles and two railway lines, and it is used by many vehicles daily. The structure of the
SHB can be divided into three main sections: the southern approach. the northern approach,
and the central main span with a length of 503. Lane 7 is made up of an asphalt surface on
a concrete deck supported by a combination of concrete and steel jack arches, as shown in
Figure 4. Along a total distance of 1.2 km, there are approximately 800 of these jack arches
that have been equipped with three tri-axial MEMS accelerometers. One of these sensors
is located at the bottom of the jack arch, while the other two are attached to each side
(Figure 5). As some of the joints were known to be damaged, the data was collected during
operation before and after the repair. If all 2400 sensors were to operate continuously,
they would generate approximately 1 TB of data per day. During the recording period,
two types of data were collected: event-based data and continuous data. For event-based
data, a pre-determined threshold for acceleration was used to trigger the recording after
vehicles, usually buses, pass above the sensors, and it lasts for 2 s. The continuous recording
started only in 2015, when a 10-min continuous window of recording was stored at five
predetermined times in the day [112].
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2.4. S101 Bridge

The S101 bridge, which crossed the A1 Westautobahn national highway in Reibersdorf
in Austria (Figure 6), was a 6.6-m-wide prestressed concrete bridge. The bridge was built in
1960 and eventually demolished due to structural issues and to make room for additional
lanes on the highway below. Demolishing the bridge provided an opportunity to conduct
tests on the progression of structural damage, and fifteen tri-axial sensors were mounted on
the bridge deck to record dynamic responses. The data was continuously recorded from 10
to 13 December 2008, with a sampling frequency of 500 Hz, resulting in 714 data sets, each
containing 165,000 samples. The bridge was closed to traffic during the damage testing, so
the main sources of excitation were the wind and vibrations from the highway below the
deck [144].
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2.5. Qatar University Grandstand Simulator

The Qatar University grandstand simulator (QUGS) (Figure 7) is a steel frame sup-
ported by 4 columns and made up of eight girders, 4.6 m long, and 25 secondary beams,
while the cantilevers are 1 m long and the others are 77 cm [146]. The simulator has 30 ac-
celerometers attached to the joints. While a shaker was used to simulate the excitation
on the structure, 31 scenarios were conducted to gain the training data. Two scenarios
represented the undamaged case and the other 29 scenarios represented different cases
of joint damage. Dynamic responses were collected for 256 s at a sampling frequency
of 1024 Hz [147]. Due to its dense grid-like sensor layout, the dataset attracted multiple
researchers seeking to validate their deep learning SHM methods in recent years [61,69,75].

2.6. Los Alamos National Laboratory Three-Story Frame Structure

The Los Alamos National Laboratory (LANL) three-story frame structure consists of
four aluminum plates and four aluminum columns, with the plates only permitted to move
in the x- direction (Figure 8). Additionally, a central column that is connected to the top plate
is added to simulate the damage to the structure as it induces nonlinearity to the structure’s
behavior. The structure’s dynamic response is measured using four accelerometers attached
to the center of each plate. The testing scenarios can be mainly classified into four main
groups. The first one represents the baseline where the structure is considered undamaged.
The second one is set to simulate the environmental and operational conditions which are
performed by changing the columns’ stiffnesses and masses. The damage is simulated in
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the third group by using the bumper to introduce the nonlinearities to the structure. Finally,
the last group is a combination of the last two groups together to simulate both the damage
and the environmental change [148].
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2.7. IASC-ASCE Benchmark Structure

The IASC-ASCE Benchmark Structure was designed by the IASC-ASCE Structural
Health Monitoring Group. It has several numerical simulation studies [149] and was
experimentally tested twice [150,151]. It is 3.6 m tall and has two 2.5-m-long spans in
both directions (Figure 9). The structure is made up of four floors, and each floor has
four steel plates, measuring 1.5 m by 0.65 m, that support the dead load. The frame is
made of 300 W steel with S75 × 11 beams and B100 × 9 columns. Each floor also has
four 50 mm square steel tubes for in-plane stability and four pairs of 12 mm diameter
steel rods for lateral stability. These rods are pretensioned with a torque wrench to ensure
consistent force throughout the structure. The structure is equipped with 15 accelerometer
sensors, 3 of which are placed on the base and 3 on each floor (north, south, west) of the
structure. In addition, there is one temperature and one moisture sensor placed to consider
the effects of the environmental effect on the detection process. Various levels of damage
were introduced to the structure by removing one or both braces on each floor, resulting in
15 different damage configurations. It is worth noting that testing the mentioned damage
scenarios was conducted on four non-consecutive days.
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2.8. Tianjin Yonghe Bridge

This cable-stayed bridge has two towers, each 55.5 m long, and its main span is 510 m
long (Figure 10). After 19 years of the bridge’s operation, cracks up to 2 cm wide were found
at the mid-span girder segment. It is suspected that these cracks were caused by vehicles
exceeding the weight and volume limits of the bridge’s original design. Additionally,
the cables had severely corroded. To adjust these issues, repairs were conducted from
2005 to 2007. During the rehabilitation and repair of the bridge, over 150 sensors on the
bridge’s girders, cables, and towers, as well as data acquisition devices in the control room,
were installed. There were 14 uniaxial accelerometers permanently attached to the deck
and only one biaxial accelerometer installed on the top of one of the towers. To measure
wind velocity in all directions and ambient temperature, a temperature sensor and an
anemoscope sensor were also placed on the south tower. Additionally, the bridge deck had
a weigh-in-motion system installed for all lanes [153].
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2.9. The Corgo Bridge

The Corgo Bridge, located in the Vila Real District of Portugal, is a long bridge
constructed from prestressed concrete box-girders. It is 2796 m in total length and is
divided into three parts: the East Sub-Viaduct, the West Sub-Viaduct, and the Central
Sub-Viaduct, which is a cable-stayed bridge with a 300-m-long central span (Figure 11). It
is held up by a suspension system made up of four semi-fans, each with 22 stay cables. The
deck of the Central Sub-Viaduct is 28 m wide and is made of a 3.5-m-high box-girder. It has
two carriageways with two traffic lanes each. The pylons of the bridge are about 193 m
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tall and are directly connected to the deck [96]. The system includes the measurement
of various parameters such as bearing displacements, deflections, rotations, forces in the
cables, concrete strains, and concrete temperatures. To measure these parameters during
operation continuously, both fiber-optic and electric sensors were employed [155].
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2.10. PI-57 Bridge

The PI-57 bridge is a double-deck structure in France that carries the A1 motorway. It
was built in 1965 but encountered issues with cracking and deflection due to insufficient
prestressing. To address these problems, the bridge underwent a reinforcement proce-
dure in 2009, which involved adding additional longitudinal prestressing. To determine
the efficiency of the procedure and assess the structural behavior under thermal effects,
vibration-based monitoring took place. Two campaigns of measurements were carried out
before and after the reinforcement, and sixteen piezoelectric accelerometers were used. The
tests were performed relying on traffic as the excitation source, and dynamic tests were
conducted between October 2009 and April 2010 [128].

3. Conventional Feature Extraction Techniques

A summary of SHM methods that primarily rely on conventional feature extraction
techniques is presented in this section. The methods are categorized based on the type of
feature extraction techniques, which are grouped into two categories: dimensionality reduc-
tion methods and signal processing methods. All damage detection methods involve some
form of a univariate or multivariate novelty detector, such as outlier analysis, but the meth-
ods with more emphasis on the feature extraction part are discussed in this section. Some
frameworks also may rely on multiple feature extraction techniques that are performed in
series, which is especially the case for low-complexity machine learning methods.

3.1. Subspace Analysis-Based Dimensionality Reduction

Raw measurements often contain mixed signals from different sources, each having a
different level of contribution. Subspace analysis techniques can be used to provide a set
of linear combinations of the signals that best explain the underlying data, resulting in a
reduction in dimensions. Principal components analysis (PCA) [156,157] is one of the most
common dimensionality reduction techniques in SHM (Figure 12). Singular value decom-
position of the normalized data is often used to obtain the principal components, which are
the eigenvectors with the highest eigenvalues (variance). While PCA and other linear sub-
space learning techniques are linear mapping methods, there are nonlinear dimensionality
reduction techniques, including PCA variants using the kernel trick (e.g., kernel PCA).

Kesavan and Kiremidjian [139] presented an unsupervised damage detection method
based on a hybrid of wavelet transform (WT) and PCA for feature extraction. Using k-
means clustering, damage can be hypothesized if more than one cluster is needed to model
the features using gap statistics. When compared to features based on time series coeffi-
cients [158], the introduced method resulted in more separable observations, persuading
the authors to opt for k-means instead of the more complex Gaussian mixture models
(GMM) clustering. Additionally, the Euclidean distance between the two clusters can be
used as an estimate for damage severity. The method is validated using the numerical
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simulations of the IASC-ASCE benchmark structure [147]. Owing to the efficiency and
practicality of PCA, many researchers preferred using it for dimensionality reduction com-
pared with other methods [67,74,104]. For example, Zhou et al. [111] combined the use of
transmissibility and PCA as a way to reduce the number of transmissibility functions by
selecting a few components of their projections into the principal components space.
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Tibaduiza et al. [126] used PCA mapping to determine four damage indices that
can be utilized to detect the occurrence of damage in structural systems. The first two
indices are T2-statistic and Q-statistic, which can be determined from residual data. Then,
the combined index and I2 index can be calculated using the two indices. An airplane
turbine blade and aircraft skin panel were tested for validation purposes. In addition,
aiming for a practical SHM system, Sousa Tomé et al. [105] introduced a damage detection
and localization method that uses the residuals from a multilinear regression model of
cable forces of cable-stayed bridges as damage-sensitive features. Their novelty detection
approach was to use Hotelling T2 control charts based on PCA of the model residuals. In
their case study of a numerically simulated Corgo Viaduct, their model was able to flag stay
cables with area reductions smaller than 1%. Localization was also performed using the
relative variation of the T2 statistic. In a latter study, however, a multivariate cointegration
analysis based on the Johansen test was used, replacing PCA [96].

Moving principal component analysis (MPCA) is a PCA variant that is best suited
for continuous condition monitoring [159]. In MPCA, PCA is applied to a sliding window
instead of the entire signal to reduce computational costs. Laory et al. [136] studied the
impact of using MPCA with four regression methods for structural damage detection.
The regression residuals were used as damage indices, which were tested for novelty
using a confidence interval of six standard deviations. Upon validation on concrete bridge
experimental tests, they concluded that the addition of MPCA improves the damage
detection accuracy and increases the computational efficiency. Focusing on real-time bridge
monitoring applications, Nie et al. [94] introduced a damage detection and localization
method based on fixed MPCA. The method is an improvement over MPCA as the length
of the moving window is determined based on the convergent spectrum of cumulative
contribution ratio. The principal components’ vectors and eigenvalues are used as damage
indices. It was tested on a suspension bridge in Guangdong, China and the method was
able to identify the occurrence of a minor non-damaging incident. The study, however, does
not provide details on thresholding the damage indices for automated decision making.

Motivated by the limitations of PCA in handling measurement uncertainty and missing
data, Ma et al. [77] introduced an anomaly detection method based on probabilistic principal
component analysis (PPCA). A probabilistic variant of PCA based on the Gaussian latent
variable model, PPCA is generally used when there are missing values in the input data
matrix. Two anomaly statistics are used: Q-statistic and T2 statistic, while the residual
in Q-statistic is used to localize damage. The method was tested in a dataset collected
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from a revolving auditorium in China, with simulated damage showing high success in
identifying damage with and without missing data when compared to traditional PCA.
However, damage in members with high redundancy can be challenging under moderate
noise conditions.

While PCA and its variants constitute the majority of commonly used dimensionality
reduction techniques in SHM, there are other subspace learning methods used, such as
tensor decomposition. In this regard, Anaissi et al. [106] presented a tensor analysis-based
damage detection method that allows for learning sensors interdependence. In this method,
the acquired data is structured into a three-dimensional array with axes representing time,
location, and frequency. A CANDECOMP/PARAFAC tensor decomposition is then used
to obtain three matrices for features extraction. Finally, a one-class SVM (OCSVM) model is
fitted using the features to detect novelties. The method is validated using two experimental
case studies including a cable-stayed bridge instrumented with an array of 24 sensors. The
method resulted in a damage detection accuracy of 92.5% compared to 61.1% achieved
using the wavelet packet energy approach.

Döhler et al. [131] presented a subspace-based damage detection algorithm using
residual vectors that are less susceptible to environmental changes combined with a gen-
eralized likelihood ratio test for anomaly detection. In a later study, Gres et al. [113] used
the Mahalanobis distance (MD) of the empirical block-Hankel matrices constructed by the
structure acceleration response as damage indicators. The method was validated using a
numerical offshore mono bucket foundation and the S101 bridge, showing high sensitivity
to low levels of damage but also suffering from a high false positive rate. The best results
were obtained when fusing this approach with other subspace-based damage detection
techniques with the use of Hotelling T2 control charts.

Sarmadi and Yuen [81] presented a one-class kernel null space algorithm based on
the Foley–Sammon transform (FST), a linear subspace analysis method [160]. The damage
index is the distance between the new observation null projection and the average of
all training sample transformations in the kernel space. Based on extreme value theory
(EVT), the generalized Pareto distribution (GPD) with a peak-over-threshold technique
is used for threshold estimation. The kernel null FST-based novelty detector was tested
on two bridges dataset, including the Z-24 bridge dataset, resulting in better damage
detection performance compared to the OCSVM-MSD technique. It was also found that
the inappropriate selection of the kernel and its parameters can impact performance by
increasing the error rate.

3.2. Signal Processing Techniques

Signal processing techniques used in SHM involve time series analyses in the time
domain, frequency domain, and time–frequency domain for extracting meaningful features
from sensor measurements. Time series modeling (e.g., autoregressive modeling) is one
of the most commonly used techniques for extracting time domain features. There are
extensive studies that rely on time-series models to extract damage-sensitive features for
SHM [31,161–167]. In time-series modeling, models’ parameters are often used directly
as representative features, or further reduced using a dimensionality reduction method
such as PCA. In other cases, the reconstruction error, also known as the residuals, is used
to indicate damage. One of the main challenges with time-series modeling is the selection
of model order, which impacts the damage detection accuracy. Researchers often propose a
model order selection method that is based on regression accuracy or the model simplicity,
such as the root mean square error or Akaike’s information criterion.

To study the effectiveness of different models used in damage detection, Shahidi et al. [130]
compared the results of four different models: the single-variate regression, collinear
regression, AR models, and autoregressive with exogenous input (ARX) models. For
verification, a scaled steel frame test bed was used. The author showed that although all
the methods were able to detect the damage, the ARX model had the best performance in
localizing the damage.
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Entezami and Shariatmadar [108] presented a damage detection, localization, and
quantification method based on AR models’ parameters and residuals. An AR model
was trained for each sensor record and the Ljung-Box Q-test was used as an iterative
approach for model order selection. For the novelty test, they used the parametric assurance
criterion (PAC) and residual reliability criterion (RRC) as damage indices, along with a
95% confidence interval. However, there are no instructions on how to combine both
indices into a single novelty detection scheme. They validate their method using datasets of
two experimental structures: the LANL three-story laboratory frame and the IASC-ASCE
benchmark structure.

In a later study by Entezami et al. [102], they opted for extracting the features based
solely on AR models residuals while using Partition-based Kullback–Leibler Divergence
(PKLD) as a damage index. By relying on online learning, these adjustments made the
damage detection system computationally more efficient and reliable under different
environmental and operational conditions. Another, yet similar, feature extraction method
was presented by Entezami et al. [88] based on autoregressive moving-average (ARMA)
models’ coefficients and residuals. They also used a hybrid distance-based measure based
on Euclidean-squared distance and PKLD with the nearest neighbor rule to indicate damage.
More recently, Entezami et al. [89] trained an ARX model and used a nongraphical automatic
model order termination method. The damage index in this framework is a hybrid distance-
based measure combining PKLD with MSD using ARX model residuals. They validated
their proposal on the Tianjin Yonghe Bridge, a cable-stayed bridge, and results showed that
the method offers an improvement in efficiency over earlier methods. More researchers
also favored time-series modeling for extracting the damage-sensitive features in the past
decade [67,90,110,133].

Time–frequency domain representations are currently gaining more attention from
SHM researchers as viable damage-sensitive features. Unlike frequency domain features,
time–frequency features represent a signal record over both frequency and time. Short-
Time Fourier Transform and WT are common techniques for extracting such features.
Amezquita-Sanchez and Adeli [120] suggested using synchrosqueezed wavelet transform
(SWT) combined with fractal modeling for damage detection, localization, and quantifi-
cation. SWT was used to reduce signal noise, while fractal dimension (FD) is used to
detect system changes using the median absolute deviation between the FD of training
and new observations. The framework and three methods for estimating FD were tested
on a laboratory-scaled 38-story building in Hong Kong [167], showing damage detection
improvements by using SWT for denoising.

Ulriksen and Damkilde [127] presented a damage detection and localization method
based on continuous wavelet transform (CWT) and a generalized discrete Teager–Kaiser
operator. For detecting damage, they first applied PCA followed by MSD outlier analysis
to detect abnormalities. Two case studies of a numerical beam model and an experimental
study of a wind turbine blade showed that their method was able to localize introduced
cracks. However, the method depends on a dense array of sensors which could make it
impractical in some applications.

Xu et al. [98] introduced a two-level anomaly damage detection method based on WT,
GPD, and moving fast Fourier transform (MFFT). WT was used to reduce the temperature
effects on the raw measurements. GPD was used to estimate a more reliable threshold
that corresponds to a 95% true detection rate within 100 years. They also implement a
threshold updating strategy to include traffic volume increase and structure degradations.
This anomaly test procedure is accompanied by anomaly trend detection that is based on
MFFT. Their method was validated on a dataset from the Xihoumen Suspension Bridge
with multiple numerically simulated anomalous and damage events. The method was
successful in detecting most anomalies and a reduction in main cables stiffness, but failed
to detect a reduction in the girder stiffness.
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3.3. Signal Decomposition Techniques

Another method that deals with non-stationary signals is the empirical mode decompo-
sition (EMD). Developed by Huang et al. [168], EMD is a data-driven method that iteratively
decomposes the signal into simpler components, called the intrinsic mode functions (IMFs),
which correspond to different oscillation modes. By examining the resulting IMFs, informa-
tion regarding the signal, such as amplitudes and frequencies, can be obtained. Combined
with Hilbert spectral analysis, more insights regarding the signal, and also a spectrogram,
can be gained in a process known as the Hilbert–Huang transform (HHT). Several studies
have conducted reviews and comparisons of different signal decomposition techniques in
the context of fault and damage diagnosis [169–171].

Meredith et al. [140] examined the use of EMD for detecting and localizing damage
in numerical beams based on the acceleration response of a moving load by detecting
response discontinuity from the IMFs. They found that EMD can detect multiple cracks,
but applying a moving average filter prior to EMD can make results easier to interpret.
In another study, Kunwar et al. [135] explored bridge damage detection using a variety
of output data from the HHT process also under a moving load. The experimental test
structure was a small-scale single span-bridge instrumented with 10 wireless sensor nodes
subject to three different levels of connection damage simulated by bolts removal. Results
showed that the marginal Hilbert spectrum from a sensor in the proximity of damage can
indicate a reduction in peak frequency compared to far away sensors. Additionally, changes
in instantaneous phase values were more sensitive to simulated damage. Mohammadi
Ghazi and Büyüköztürk [123] presented a damage diagnosis system based on HHT-based
normalized cumulative energy distribution (NCED) and MSD-based hypothesis testing.
Their framework combines four damage indicators estimated by comparing NCEDs of
baseline and monitored structures with different methods, such as Kolmogorov–Smirnov
distance. Although less efficient, the HHT-based approach provided better results when
compared to a power spectral density-based method on a three-story laboratory steel frame.
Striving for incorporating inter-channel information, Sony and Sadhu [70] propose using
multivariate EMD for localizing structural damage. The absolute percentage change in
energy from the baseline at each sensor is used as a localization indicator while the mean
value among all sensors is used as an adaptive threshold. The method was capable of
localizing damage in a numerical 10-DOF model and the Z-24 bridge despite limiting the
number of sensors and observations.

EMD, however, suffers from the notorious mode mixing issue. Mode mixing occurs
when the EMD process produces IMFs containing multiple frequencies, which should have
been separated into individual IMFs. A number of modifications were proposed to solve
this problem, resulting in ensemble EMD (EEMD), complete EEMD with adaptive noise
(CEEMDAN), and variational mode decomposition (VMD). Xia et al. [118] used EEMD to
separate temperature-induced strain from the raw strain measurements of a suspension
bridge to identify damage. The temperature-induced strain was later used to form a matrix
of Euclidean distance-based indices to facilitate damage diagnosis. However, the method
does not involve a decision-making process. Soman [95] presented a semi-automated
damage diagnosis framework for offshore wind turbine structures using EEMD and a
sensitivity analysis-based thresholding method. The relative energy change in IMFs is
used as a damage index, while the ratio of the individual sensors’ damage index to the
mean of all sensors is used as a localization index. The method, however, is not entirely
automated, as user input is needed at multiple stages in the framework, including the
thresholding process, which may need access to historical damage data, making the method
not fully unsupervised. Hybrid approaches involving EEMD for SHM were also developed,
such as the EEMD-AR-ARX method proposed by Entezami and Shariatmadar [100] for
damage-sensitive feature extraction accompanied by dynamic time warping for providing
a dissimilarity measure.

Nevertheless, EEMD has some limitations, especially when the white noise amplitude
is too low or excessive. Complementary EEMD (CEEMD), an extension of EEMD, alleviates
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this problem by using pairs of complementary white noise for signal decomposition.
Tian et al. [103] combined the use of the Teager–Kaiser energy operator and CEEMD for
bearing fault diagnosis. They argued that the proposed method is tailored to applications
with weak vibration signals, as the Teager energy operator can enhance the signal’s strength
before CEEMD can decompose the signal into a set of IMFs. An IMF is then manually
selected and is further analyzed through envelope analysis to detect faults. It can be
considered a feature extraction approach as no decision-making policy was proposed.
Complete EEMD with adaptive noise (CEEMDAN) is also a variant of EEMD that relies
on adaptive noise, which is updated based on the residue signal [172]. Mousavi et al. [91]
explored combining the use of CEEMDAN and artificial neural networks for structural
damage detection and localization. They trained a 20-layers deep network to predict four
IMF features using IMFs as input. Three damage indices, estimated using the percentage
error between healthy and new observations features output, are used to assess and
locate damage.

An alternative method to EEMD that also does not suffer from the mode mixing
problem, yet can be more efficient, is VMD [173]. Mousavi et al. [79] developed a VMD-
based bridge damage diagnosis method under moving load by combining the instantaneous
frequency and amplitude of the first IMF into a damage indicator. By testing their method
on a numerical beam, they showed that VMD successfully localized damage when EMD
could not. Similar conclusions were obtained by Sadeghi et al. [60], who compared the use
of VMD to EMD for localizing shear connectors damage in composite beams based on shear
slip data. The change in energy in the second mode center frequencies is used as a damage
indicator. A laboratory-scale bridge fitted with slip sensors was used for evaluation, and
the damage was simulated by unscrewing the shear connectors.

4. Unsupervised Learning SHM Based on Artificial Neural Networks

This section provides a summary of key studies in the past decade for using artificial
neural networks (ANN) for SHM trained in absence of damage data. Basic ANNs have
long been used for SHM. but there is currently a general trend toward leveraging deep
learning techniques and architectures in building SHM. Like the feature extraction methods
described in Section 3, ANNs are used to learn representations of the data and often
reduce the dimensions. Deeper networks can even be used to extract representative
features from raw vibration measurements without any preprocessing. A novelty detector
is used for detecting system changes. which are usually simple tests depending on the
network depth and the sensitivity of the learned features. In the field of SHM, some
networks rely on supervised learning tactics for training. However, the labeling process is
automatically performed through the available normal condition data only. Additionally,
these methods incorporate representation learning and novelty detection strategies. We
can therefore categorize them as unsupervised learning methods in the context of SHM,
as per the categorization by Farrar and Worden [2]. Common learning goals include
input reconstruction (e.g., autoencoders), forecasting (e.g., recurrent neural networks),
and generative learning (e.g., generative adversarial networks). Examples of some of the
commonly used ANN architectures are shown in Figure 13.

4.1. Classical Neural Networks

Classical ANNs are networks with relatively low parameter counts and no more
than two hidden layers (Figure 13a). They are mostly used as dimensionality reduction
techniques akin to those discussed in Section 3.1 (e.g., PCA). Avci and Abdeljaber [121]
presented a structural health monitoring algorithm based on self-organizing maps (SOM).
SOM are a type of ANN that can map high-dimensional input data onto a representative
lower dimensional grid, often called topology maps, while preserving the topological
structure of the data. The acceleration readings are used to construct the input matrix and
the root mean squared error (RMSE) based on the topology maps of the baseline, and test
data is used to identify damage. Their approach was tested on the phase II IASC-ASCE
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benchmark, showing a correlation between the damage index and the level of damage.
However, no anomaly detection or thresholding methods were proposed. Gu et al. [114]
proposed using an ANN for response reconstruction, which takes the temperature mea-
surements as additional input in an attempt to reduce temperature variations effects. The
proposed method uses the Euclidian distance between the predicted and target responses
as an indicator of novelty. For verification, an experimental steel grid structure was tested
under different temperature levels. The proposed method showed a good performance in
differentiating between temperature changes and structural changes.
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ANNs can also be used for forecasting to detect damage in structures. Neves et al. [116]
proposed using an ANN trained to predict the upcoming acceleration values based on the
structural acceleration response of passing trains. Then, the Gaussian process is used to
provide a discordancy measure by categorizing the errors in the network predictions at each
train speed. While the authors did not provide a clear-cut thresholding method, they sug-
gested selecting the threshold based on the receiver operating characteristic (ROC) curves
and false detection costs. ROC curves, however, are not easily obtained without access
to damage observations. In a different damage detection approach, Movsessian et al. [80]
proposed training an ANN which predicts the MD of the damage-sensitive features based
on these features as input. Another damage indicator was proposed based on the network’s
prediction error. They tested their method on a dataset captured from a wind turbine
relying on the cross-covariance between the acceleration response as features.

Recently, Fernandez-Navamuel et al. [63] debated that traditional PCA is not ideal
for data compression as it uses linear mapping, while kernel function selection for kernel
PCA is challenging in an unsupervised setting. Therefore, they introduced an autoencoder-
PCA hybrid that mimics the linear mapping of a PCA in addition to nonlinear residual
connections between the low and high-dimensional feature layers. The reconstruction error
of this hybrid network is used as a damage index and is tested against a threshold based
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on the 99th percentile of the baseline index values. The method was validated on two
numerically simulated bridges calibrated with real-world measurements, and the results
showed more accurate detections compared to linear PCA. This method is also capable of
localizing damage if it was in proximity to one of the utilized sensors.

Different from autoencoders (AE), generalized autoencoders (GAE) make each input
instance reconstruct a group of instances, not just itself. Li et al. [59] argued that GAE can
better learn the basic structure of the original data while reducing noise effects compared
to traditional AE. Therefore, they developed an SHM framework based on a modified
GAE network which was trained to model power cepstral coefficients extracted from the
structure response. The GAE was used to produce two damage indices in the form of
normalized RMSE and the standard deviation ratio. For decision-making, they opted for
MSD along with the 0.95 quantile of an F-distribution using training data. The method
was validated using the Z-24 bridge dataset along with a numerically simulated dataset.
Compared to traditional AE and PCA, the introduced GAE had a higher detection accuracy
in the numerical case study.

4.2. Deep Dense Neural Networks

Multiple researchers opted for deeper architectures for their neural network models as
advances are made in artificial intelligence and hardware technology (Figure 13b). With the
added depth, the pre-network feature engineering steps can be further reduced, or entirely
eliminated, by using direct acceleration measurements as input. These networks can
also directly produce effective damage indices which facilitate the use of simpler novelty
detection algorithms. Dense neural networks are used to refer to standard neural networks
where all nodes in contiguous layers are connected forming a dense mesh of connections.

Ozdagli and Kooutsoukos [104] examined two unsupervised learning models; one
relies on a dense AE to learn representation, and the other uses PCA. They used the
Euclidean distance between the actual measurements and their model reconstruction as
a damage indicator. Interestingly, temperature measurements can be added as an input
parameter to both frameworks. They validated their methods via three case studies which
showed that their method can detect and localize damage under temperature variability,
especially when mode shapes are included as input parameters. Entezami et al. [90]
presented a deep learning-based damage detection method with a focus on handling
large quantities of high-dimensional data. The method combines ARMA coefficients and
residuals as features, a deep AE as a dimensionality reduction mechanism, and MD as
a novelty detector into a single framework. A final prediction error function is used to
optimize the number of nodes in the deep autoencoder layers. Generalized extreme value
(GEV) distribution with block maxima technique is used for thresholding. The method was
able to accurately detect damage cases in the Tianjin Yonghe cable-stayed bridge dataset.
In another study that also advocates for automatic feature extraction, Jiang et al. [75]
introduced two deep AE architectures for learning damage-sensitive features from raw
acceleration measurements. The first provides features from the bottleneck layer while the
other uses the reconstruction error as features. Multiple AE networks are trained in parallel,
one for each sensor. The learned features are then tested for detecting structural damage
against a predefined threshold, which they suggest setting according to the structure’s
importance. Localization is also possible based on which sensor the anomalous features
were extracted from. These methods are validated using both the LANL three-story frame
structure and QUGS.

Silva et al. [83] introduced a damage-sensitive feature extraction method using stacked
AEs. They used natural frequencies as input to their network and used the output of
the bottleneck layer as a more compressed damage-sensitive feature vector, often two
features only. While their proposal did not include a novelty detection method, they used
Gaussian mixture models (GMM) based on expectation-maximization as an example. A
comparison with other representation learning techniques including PCA, AANN, and
kernel PCA was performed using the Z-24 bridge dataset. Their model provided the best
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damage detection results, which were slightly better than kernel PCA while requiring
fewer parameters for the features vector. However, the explainability and the physical
interpretation of the introduced method are low compared to raw modal parameters and
other classical methods.

Exploring deep-learning solutions for unsupervised learning SHM, Wang and Cha [85]
introduced a deep dense AE network to automatically extract features from raw acceleration.
Three metrics are used to produce the features: MSE, original-to-reconstructed-signal ratio
(ORSR), and Arias intensity. Two or more of these metrics are fed into an OCSVM model
for novelty detection. However, it requires predefined hyperparameters which control
the shape of the decision boundary, affecting the decision-making process. The method
is validated using two case studies, including a laboratory-scaled steel bridge where
the method detected a 10% stiffness reduction. It is, however, not suitable for damage
localization and quantification. Using the same metrics, Giglioni et al. [64] introduced an
ensemble-based damage detection and localization method for large-scale structures based
using AE models. An AE network is trained for each sensor based on raw measurements
and MSE and ORSR metrics are obtained from each model, forming a binary decision
matrix. A value of 1 is given at a sensor and index when it passes a threshold based on the
90th percentile; otherwise, it remains zero. A summation-based ensemble inference method
can then be used to assess global damage in addition to localization capabilities. The
method was validated using the Z-24 bridge dataset showing promising damage detection
performance with fair localization ability.

4.3. Convolutional Neural Networks

A convolutional neural network (CNN) is a type of deep neural network that relies on
convolution operation using learned filters that allow for weight (Figure 13c). This makes
CNNs demand fewer parameters than deep dense neural networks, making them ideal for
deeper networks. CNNs are generally best suited to grid-like structured data with local
spatial correlation, such as images. Therefore, to use vibration data for CNNs, researchers
often propose a data organization method to make full use of CNN’s capabilities [58].

Focusing on data compression for SHM, Ni et al. [93] introduced two deep convo-
lutional autoencoder models for detecting measurement anomalies and compressing the
recorded data. Both networks rely on 1D-CNN autoencoder architectures. The first is used
for anomaly detection and is trained in a supervised fashion, while the second is for data
compression and reconstruction. The method was tested using a dataset from a suspension
bridge showing good compression and reconstruction performance when the compres-
sion rate is 0.1. Shi et al. [68] developed two forecasting dense-based and CNN-based
neural networks for real-time SHM. A noteworthy feature in their framework is the use of
model pruning to make their networks more efficient by eliminating some of the redundant
connections between neurons with insignificant loss to model accuracy (Figure 14). The
prediction errors of their models are used as features and deep support vector domain
description (SVDD) generates a decision boundary and is used as a novelty detector. Their
method is tested using two case studies of frame structures, including an experimental
study, showing its real-time damage detection performance. Rastin et al. [87] presented
a damage detection framework based on a convolutional AE (CAE) trained on a matrix
formed of stacked acceleration measurements. They use the Euclidean distance between
the latent vectors of baseline and unknown structural states as damage indicators after
normalized them to unit vectors. Novelty detection is performed by setting a threshold,
typically 1.6 or 1.4 standard deviations away from the mean. The Tianjin Yonghe Bridge
and two numerical case studies are used for evaluation.
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Variational autoencoder (VAE) is a type of variational inference-based generative
model that treats the latent features as random variables with a prior distribution. The
network learns the latent distribution during training which can be later used to generate
new samples. Ma et al. [91] proposed a bridge damage localization approach based on
a one-dimensional convolutional variational autoencoder (CVAE) as a dimensionality
reduction method. The model input and output are the acceleration response to a moving
load, and the Euclidean distance between the latent features at different time steps is
used as a localization index. However, since this approach only localizes damage, no
thresholding strategy was proposed. Another one-dimensional CVAE architecture was
proposed by Yuan et al. [86] to identify light rail squat damage, and they combined it with
either an MSD-based elliptic envelope or OC-SVM as an anomaly detector. When tested
on a laboratory full-scale track platform, they concluded that the elliptic envelope was the
better choice, as it makes full use of the Gaussianity of the latent variables. Kim et al. [65]
presented a CVAE-based damage localization system that encodes the structures’ flexibility
matrices obtained by operational modal analysis. A flexibility disassembly method is then
used to localize damage by comparing the input and output of the CVAE model. Estimating
the flexibility matrix, however, can be challenging for complex structures. Zhang et al. [73]
developed an unsupervised tunnel damage detection method using wavelet packet energy
of trains’ dynamic response data, which are fed into a CVAE. The RMSE is used as a damage
index, while the relative entropy of wavelet packet energy is used to localize damage. The
method was tested on a laboratory-scale tunnel, resulting in 91.5% accuracy. It was not,
however, tested using data with a low signal-to-noise ratio.

4.4. Other Deep Learning Architectures

There are different other types of neural network models used for unsupervised
learning SHM beside those discussed earlier. A restricted Boltzmann machine (RBM) is
a stochastic neural network that can be used for dimensionality reduction. Rafiei and
Adeli [109] introduced a damage detection and localization method tailored to high-rise
buildings based on a deep RBM architecture. The hidden nodes of the RBM are used to
estimate a structural health index. The building is split into multiple parts, which are
used for training parallel models to localize damage. Their method is validated using the
dataset of the laboratory-scaled 38-story building in Hong Kong [167]. Based on the results,
they provide recommendations for health index ranges corresponding to different damage
levels. However, it does not seem that the method incorporates a thresholding scheme
based solely on undamaged data.

Graph convolutional network (GCN) is a generalized version of CNNs where node
connectivity is predefined (or learned) via a global adjacency matrix instead of the standard
local connections. It is also a part of the graph neural networks family. Li et al. [76]
argued that it is not ideal to represent vibration data in image structure form and that the
sensor’s spatial correlation is not easily learned by CNNs. Instead, they proposed using
a spatiotemporal GCN for sensor fault detection to learn both the spatial and temporal
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dependencies of the sensor measurements. The network adopts GCNs with trainable
adjacency matrices in addition to temporal 1D-CNNs. The framework was tested on
a dataset of cable forces from a cable-stayed bridge, and it used the learned adjacency
matrices and the model residuals to detect faulty sensors in a novelty detection scheme.

A long short-term memory (LSTM) network is a type of recurrent neural network that
is commonly used to learn complex temporal patterns from time-varying data [174,175].
Son et al. [84] proposed a two-stage anomaly detection framework, relying on an encoder-
decoder LSTM network, for identifying abnormalities in the collected SHM data. Since
their focus was on monitoring cable-stayed bridges, the input to their two-layered LSTM
network is the raw cable tension time series, and the reconstruction error is used for
estimating an anomaly score. While their method provided an ROC of 0.99, it did not
identify the anomaly source, which could be structural damage, sensing malfunctions,
or environmental effects. Eltouny and Liang [58] presented a spatiotemporal composite
autoencoder network for detecting and localizing damage in systems with a large sensor
array (Figure 15). The network is a CNN-LSTM hybrid network with a dual output
providing both a signal reconstruction and a forecast, making it suited for learning spatial
and temporal dependencies in the data. Raw accelerations are organized into a grid-like
structure incorporating the sensor’s location and the time-domain, which are then used
as an input to the network. Damage indices are obtained from the latent features, and the
output residuals and novelties are identified using an EVT-based threshold. The framework
achieved accuracies of 93.1% and 85.2% for damage detection and localization, respectively,
when tested on a numerical multi-bay, multi-story structure. The case study also showed
that results were not significantly impacted by the reduction in available sensors.
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Generative Adversarial Networks (GAN) are generative models composed of a gener-
ator and a discriminator neural network that compete against one another during training
(Figure 13d). The generator learns to generate synthetic samples that are realistic enough
that the discriminator fails to identify them as synthetic. The weights of the two models are
updated iteratively based on their performance. Mao et al. [78] proposed an anomaly detec-
tion algorithm for structural health monitoring, which combines a convolutional GAN and
a CAE into a single model. The vibration data are converted into Gramian Angular Field
images, to be better suited for the CNN layers, and are used as input to the hybrid network.
After training the GAN model, the trained generator is set as a decoder for the CAE. For
evaluation, the latent features and cumulative sum control charts are used to detect anoma-
lous data in a cable-stayed bridge, achieving more than 94% accuracies for all channels.
With a focus on the sensitivity to sensors’ configurations, Soleimani-Babakamali et al. [69]
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introduced three GAN models to be used in a damage-detection framework (Figure 13d).
The three models share the same dense generator architecture but have different discrimi-
nators, including dense-based, CNN-based, and LSTM-based models. All GAN networks
use normalized FFT amplitudes as input and provide a discriminator score which is used
as a damage index. One of the interesting aspects of this method is the threshold tun-
ing and adaptive thresholding, making it capable of detecting recurrent novelties. Their
models were tested using both QUGS and the IASC-ASCE benchmark structure, and it
was concluded that the LSTM-based GAN provided the best damage detection results. In
a later study, Soleimani-Babakamali et al. [61] investigated the effects of dimensionality
reduction on the damage detection results using the models proposed in [69] after applying
techniques such as PCA, kernel PCA, and AE. It was found that reducing the dimensions
of the input vector had a negative impact on the detection accuracy, but regularization of
nonlinear methods can reduce this effect.

5. Novelty Detection Techniques

The majority of vibration-based unsupervised-learning SHM methods rely on novelty
(or anomaly) detectors for detecting system changes based on damage-sensitive features
(Figure 16). Sometimes more than one novelty detector is used in a stacked fashion to
further compress the input features, or in an ensemble learning framework. Most novelty
detection techniques theorize that the normal condition forms a single class (or a cluster),
and points outside the class’s boundary are flagged as novelties, anomalies, or outliers.
This makes this type of novelty detection a one-class classification problem, and examples
of this approach include outlier analysis and OCSVM. If the data forms multiple groups,
due to multiple normal or damaged conditions, then cluster analysis is preferred. In this
section, we provide a summary of key studies in the last decade with a focus on the novelty
detection aspect of the unsupervised-learning SHM framework.
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5.1. One-Class Novelty Detection

One-class outlier analysis is by far the most common novelty detection technique
used in the unsupervised learning SHM literature. Even when performing cluster analysis
or processing the features using complex deep learning techniques, a simple significance
test is often performed to the estimated damage index for a deterministic decision. In
one-class novelty detection, all obtained damage indices from the training data are used to
fit a distribution, most commonly the Gaussian distribution, representing the normal class.
Damage cases are detected when the index exceeds a certain threshold, which is set using
various statistical techniques.

For univariate outlier analysis, a statistical significance test (e.g., z-test or t-test) is
commonly used. A threshold can be set using confidence intervals [83,108,130,136], sig-
nificance [62,73,88,102,120], percentiles [58,63,64,66,74], or other data statistics. For mul-
tidimensional features, MD, or MSD, is often used [59,67,72,82,89,90,99,116,132]. There
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are different techniques for selecting a threshold for MSD-based outlier detection. One
popular method is based on Monte Carlo simulation, which is described by Worden
et al. [29,72,99,130]. One advantage of this technique is that it takes into account the size of
the data and the feature dimension besides the chosen percentile. Another way is to assume
that the data follows a Chi-square distribution with degrees of freedom corresponding
to the feature dimension [67]. Related to the MSD-based outlier analysis, Hotelling T2

control charts are also used for detecting novelties [96,105]. For outlier analysis in both
its univariate and multivariate modes, some researchers rely on EVT for selecting the
threshold [58,62,74,81,82,90].

Nigro et al. [133] provided a comparison of different damage detection statistics with
a focus on damage localization. Three statistics were inspected: the cumulative sum
indicator, the exponentially weighted moving average, and a modified MSE metric which is
normalized according to data variance. For each metric, they proposed an outlier detection
based on a confidence interval produced via a bootstrapping process. They also suggested
combining all metrics into a multivariate feature using MD with the Fisher Criterion to
provide the localization threshold.

Besides outlier analysis, other one-class novelty detection methods were adopted
for unsupervised learning damage detection frameworks. OCSVM is a novelty detection
method used in SHM frameworks that attempts to learn a decision boundary around
the training data [85,106]. It first maps the data into a higher dimension using a kernel
function, then finds the maximum marginal hyperplane which separates the data from the
origin [176]. A further one-class classifier that is being used for damage detection is SVDD,
which tries to find the hypersphere with the minimum radius that encloses the training
data [68,177].

5.2. Cluster Analysis

Clustering is a statistical modeling technique that aims to sort observations with
similar features in groups or clusters. Commonly used clustering techniques are classified
into partition-based (e.g., K-means), hierarchy-based, distribution-based (e.g., Gaussian
mixture models), fuzzy theory-based (e.g., fuzzy c-means), and density-based (e.g., density
peaks) [178]. In SHM, clustering is typically used as a decision-making algorithm in which
models extracted damage-sensitive features to detect abnormalities. Examples of using
clustering for novelty detection include testing if a new observation does not belong to any
of the modeled clusters and if a group of new observations can instead form their own
cluster. Nevertheless, it is sometimes used for feature extraction and reduction followed by
a one-class novelty detector.

K-means clustering is a partition-based clustering technique and one of the simplest
and most widely used in SHM. In this method, each data point is assigned to one of the k
number of clusters with the closest centroid. Its simplicity and efficiency are what attract
many researchers to apply it in unsupervised learning-based SHM frameworks. However,
it may need advanced feature engineering in the earlier stages of the framework before
clustering. Diez et al. [122] suggested performing the FFT algorithm on the collected
dynamic response data to improve efficiency. Moreover, they removed the outliers first,
using the k-nearest neighbor algorithm. Then by applying the k-means algorithm to the
extracted features, the abnormal conditions can be detected. The proposed method was
verified by the Sydney Harbour Bridge benchmark. Santos et al. [124] also used k-means
clustering to detect stiffness reductions from a cable-stayed bridge. They used the global
silhouette index for cluster validity and the Gowda–Diday dissimilarity measure as a
damage index. More recently, Meixedo et al. [67] introduced a clustering-based SHM
method that relies on the transient response from train passing to detect bridge damage
under environmental conditions. The damage-sensitive features are the parameters of
ARX models reduced by PCA and further processed by MD. The resulting features are
fitted to clusters by k-means and the average dissimilarity between clusters is used as a
damage index.
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There are many other variants of the k-means algorithm which attempt to address
the method’s shortcomings. The k-means—algorithm is a clustering algorithm modified
from the k-mean clustering algorithm [179]. Where the conventional k-means is sensitive to
outliers, the k-means—method overcomes this limitation by removing the clusters that have
only one member. Alamdari et al. [112] proposed using a modified k-means—algorithm
for detecting damage. The verification was performed using the Sydney Harbour Bridge
benchmark, and it was found that the proposed method was able to detect the abnormal
responses in the damaged arches. Another method that is related to k-means clustering is
the k-medoids algorithm. Unlike k-means, k-medoids uses an actual datapoint as a cluster
center and minimizes the dissimilarities between points within a cluster, making it more
robust to outliers. De Almeida Cardoso et al. [100] used the interquartile ranges and the
medians in both time and frequency domains (obtained using FFT) as damage-sensitive
features. They then used the k-medoids clustering method to detect novelties based on the
distances between all possible medoids. A threshold is set based on the 99.9th percentile of
a t-student distribution measured from the novelty index median. Both the IASC-ASCE
benchmark structure and the PI-57 bridge were used as experimental case studies. The
results showed that, with tuned hyperparameters, the method is successful in detecting
low levels of damage under environmental and operational conditions. However, these
hyperparameters may be difficult to tune in an unsupervised learning setting.

FCM, also known as soft clustering, is a fuzzy theory-based clustering algorithm that
shares a lot of similarities with k-means. Instead of assigning each data point to a unique
cluster, FCM provides a grade of membership ranging from 0 to 1 to all clusters. In this case,
data points can potentially belong to multiple clusters to a certain degree. FCM was first
proposed by Dunn [180], improved by Bezdek [181], and was applied to SHM applications
in the past few decades [36]. In 2013, Yu et al. [138] introduced a damage detection approach
based on reduced frequency response function and fuzzy c-means clustering. They also
suggested using either PCA or kernel PCA for dimensionality reduction. Their method
was validated on a steel truss bridge subject to different damage scenarios simulated by
loosened bolts. Alves et al. [128] suggested a monitoring method using symbolic signals
and clustering techniques. First, he manipulated the raw dynamic response data using
symbolic analysis, and then applied three clustering techniques: dynamic clouds, FCM,
and hierarchical clustering. The proposed methodology was verified using data collected
from the PI-57 bridge, showing better results achieved by FCM compared to the other two
clustering methods.

Hierarchical clustering is a greedy clustering algorithm that establishes a hierarchy of
clusters for data points based on their inter-similarity. This can be performed either in a
bottom-up manner (agglomerative) where each point starts as its own cluster and merging
is performed at each step, or in a top-down manner (divisive). In 2017, Zhou et al. [119]
proposed a hierarchical clustering model to detect damage in structures. The proposed
model takes transmissibility as an input feature. Two similarity measures were adopted
for damage indication: cosine similarity and distance similarity. In a later study, Tran and
Ozer [97] introduced a bridge health monitoring framework using modal parameters along
with hierarchical clustering. They used a univariate anomaly detection method based on
the gaussian distribution as a discriminant test and validated their method on a laboratory
bridge experiment and a steel pedestrian bridge. However, they argued that it is difficult to
properly select the clustering threshold as cross-validation is not easily performed with the
absence of damaging data.

GMM is a probabilistic model that assumes all the data points are generated from a
mixture of a finite number of Gaussian distributions with unknown parameters. Figueiredo
and Cross [134] compared MSD-, PCA-, auto-associative neural networks-, and GMM-based
novelty detection methods for bridge damage detection under the influence of operational
and environmental variabilities. When evaluating these methods using the Z-24 bridge,
they found that the MSD of GMM parameters as a damage indicator provides the least
errors among the other three methods. They also conclude that linear methods, such as
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PCA and plain MSD, struggle to remove the nonlinear patterns caused by the operational
and environmental effects, leading to a high number of false positives. Santos et al. [117]
used GMM for clustering with the expectation-maximization (EM) algorithm to detect the
anomalies. EM is dependent on the initial guess of the parameters. Thus, the authors used
the genetic algorithm along with EM to improve the overall performance of the system.
Using the Z-24 bridge benchmark as a validation, it was shown that introducing the genetic
algorithm improved the stability of the EM method, especially in minimizing type 2 errors.
Addressing tie-rods evolutive damage, such as corrosion, Lucà et al. [66] proposed a tie-rod
damage detection method by fitting a GMM using eigenfrequencies. The existence of
damage can be detected based on the likelihood values of two GMM hypotheses, which
are single versus double Gaussian densities. An experimental setup of tie-rods was used to
validate this method and it was concluded that the GMM-based method outperformed the
MSD-based one in detecting evolutive deteriorative phenomena, but MSD could be more
suitable to sudden damage scenarios.

There are many other variations of clustering algorithms. For example, Silva et al. [125]
presented a genetic algorithm-based clustering method for unsupervised learning bridge
health monitoring. Selecting the number of clusters is often challenging, and thus they
rely on a concentric hypersphere algorithm to optimize the number of clusters. The
minimum Euclidean distance between new observations and cluster centroids is used as
a damage index. The method outperformed GMM and MSD-based outlier analysis for
damage detection when applied to two case studies: The Z-24 bridge, and the Tamar bridge.
Spectral clustering (SC) is a clustering technique based on graph theory that utilizes the
eigenvalues of the similarity matrix. Kernel spectral clustering (KSC) is the kernel-based
variant of spectral clustering, making it a useful algorithm for clustering data that is not
linearly separable. It is also useful for handling large data sets, as the computational cost of
SC can be reduced by using an appropriate kernel function. Langone et al. [115] proposed
a damage detection method based on an adaptive KSC algorithm and validated it using the
Z-24 benchmark dataset. The calibration of the model is performed during the undamaged
case, and then it can be applied to detect the anomaly. Density-based clustering algorithms
generate clusters that are characterized by centers of high observation density in the feature
space. Cha and Wang [107] modified the density peaks-based fast clustering algorithm to
train under an unsupervised learning setting for damage detection and localization. They
used features based on continuous wavelet transform (CVT) and the crest factor. In the
testing phase, observations with a local density below a predefined cut-off are considered
novel. Using a laboratory-scale steel structure, the method was able to outperform OCSVM
in damage localization. However, it was found to be computationally expensive, and
recommendations were given to increase its efficiency.

5.3. Bayesian Methods

Bayesian analysis relies on the Bayes theorem to update probabilities based on prior
information. Bayesian methods interpret probability as a degree of belief and can often
be used to incorporate uncertainty in parameter estimation. Sankararaman and Mahade-
van [137] focused on quantifying the uncertainty for the detection, localization, and quan-
tification of damage using Bayesian approaches. For damage detection, they used Bayesian
hypothesis testing of the model residuals to estimate the Bayes factor. Then the limits
set by Harold Jeffreys [182] were used to assess damage based on the Bayes factor. The
Bayes factor can later be used to estimate the probability for each of the two scenarios
which can be treated as an uncertainty measure. They also quantified the uncertainty for
both damage localization and quantification using the concepts of likelihood and Bayesian
inference. They also presented a strategy for updating the uncertainty with the acquisition
of new measurements. Wang et al. [71] also used Jeffreys–Bayes factor hypothesis testing
to detect the structural damage in the Tianjin Yonghe cable-stayed bridge. They proposed a
damage index obtained from the Natural Excitation Technique, which has both real and
imaginary parts. A sparse Bayesian learning regression model was then trained to predict
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the imaginary part given the real part as input. The relative change between the two parts
was used to assess the structural health condition. They also proposed using Bayes factor
as an indicator of damage severity.

Yan et al. [72] introduced an unsupervised method for damage detection which also
attempts to accommodate uncertainties, such as data randomness, measurement error, and
environmental variability. Damage is detected by estimating the symmetric KL divergence
between the transmissibility function (TF) of a baseline condition and the TF of an unknown
condition. They use a statistical threshold estimation process involving Bayesian inference
and Monte Carlo discordancy testing [29] to account for the measurement uncertainty. This
framework is validated through four case studies, one of which uses experimental data from
the S101 bridge. Results show satisfactory performance in detecting global damage and
quantifying its severity. However, damage localization was not possible, as the locations of
anomalies-producing sensors do not necessarily correspond to the damage location.

Bayesian approaches can be used for parameter estimation. For example, Figueiredo
et al. [132] introduced a Bayesian approach based on Markov-Chain Monte Carlo for
GMM clustering instead of the conventional EM method. The novelty test was carried
out using MSD-based outlier detection. While results on the Z-24 bridge dataset showed
comparable performance to the EM-based clustering method, the Bayesian approach offered
some insights for the model which, for example, aided in the selection of the number
of components. In another study, and aiming to avoid predefined data distributions,
Eltouny and Liang [74] used Bayesian optimization to build a probabilistic model based on
the kernel-density maximum-entropy (KDME) method for localizing damage. Bayesian
optimization is a global optimization technique often used to tune machine learning
models’ hyperparameters without assuming the form of the objective function. To train a
multivariate KDME, they relied on independent component analysis as a preliminary step.
Joint probabilities of new observations are used as a damage index, and a threshold is set
based on EVT. The method was validated using three case studies of a three-story concrete
building, a high-rise structure, and an experimental masonry frame, achieving an average
accuracy of 92.6%. It was also found that Bayesian optimization significantly accelerated
the tuning of the KDME model compared to the genetic algorithm.

5.4. Other Methods

In addition to the aforementioned machine learning techniques for detecting system
changes, other methods are discussed here including robust regression, ensemble learning,
and empirical machine learning. Robust regression is a method to estimate mathematical
model parameters while minimizing the effect of outliers. Dervilis et al. [129] applied
robust regression using the least trimmed squares (LTS) and the minimum covariance
determinant (MCD) algorithms on the Z-24 and Tamar bridges datasets to detect structural
damage. The author suggested that future research can study moving from linear LTS to
non-linear robust regression.

Ensemble learning is a machine learning technique that combines a set of models
in a way that promotes diversity to improve and stabilize predictions. There are many
ways to create an ensemble, such as bootstrap aggregating and stacking. Inference can also
be performed in different ways, such as voting or averaging. Multiple researchers used
ensemble learning for improving the damage detection performance of novelty detectors.
For example, Bull et al. [99] presented an ensemble of MSD-based novelty detection models
for SHM to reduce the masking effects produced by inclusive outliers. The ensemble
models were generated using the bootstrap sampling technique and the models’ averages
were used as the ensemble output. For thresholding, they used the Monte Carlo simulation
thresholding method [29]. When compared to MCD [128] using the Z-24 bridge dataset, the
outlier ensembles provide comparable results with a significant reduction in computational
cost. Both the presented method and the MCD benchmark, however, produced false
positives for the Z-24 bridge during the cold weather monitoring period. The method was
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also tested on an aircraft wing for damage localization, achieving 95.85% detection accuracy
in an unsupervised learning setting.

Another ensemble learning-based unsupervised learning damage detection technique
was presented by Sarmadi et al. [82]. They aimed to benefit from the computational
efficiency of ensemble learning while also mitigating environmental variability effects on
the SHM system. Their sequential learning framework included three different MD variants.
A set of nearest neighbors of the features are obtained at each level using the distance
participation factor. The local MSD values at the final level are used as damage indices,
and a threshold is set based on EVT. The method was validated using two experimental
case studies, including the Z-24 bridge, and it successfully detected damage under strong
environmental variations. It also produced a lower error rate when compared to a selection
of traditional techniques, such as PCA, k-means clustering, and MSD.

Multiple-model (MM) learning is a method closely related to ensemble learning where
more than one statistical model is used to analyze or make predictions about a dataset.
Vamvoudakis-Stefanou et al. [110] compared two AR methods based on MM models with
two other conventional autoregressive models. They used MM to represent the undamaged
dynamics of a structure with a set of conventional models using estimated parameter
vectors and Gaussian probability density functions. For assessment purposes, ROC curves
were used to represent the accuracy of each model. The study included a population
of 31 composite beams subjected to impact damage at two different energy levels. The
results showed the MM-based models achieved significantly improved results, especially
for low-energy-level damage, where all damage is correctly detected at an error rate of 5%.

Some methods opt for the more flexible non-parametric methods which do not impose
prior assumptions on the data. Empirical machine learning only relies on the observations
and the relative distance between them for building models [183]. Using this concept,
Entezami et al. [62] introduced a damage index obtained by multiplying the empirical local
density by the minimum distance of each sample to all other samples. This non-parametric
novelty detection approach was inspired by the density peak clustering method [107].
When applied to both the Z-24 and Tianjin Yonghe bridges, the method outperformed a
selection of other non-parametric novelty detection techniques in damage detection and
computational efficiency.

6. Challenges and Future Trends

While unsupervised learning offers a more practical approach for applying vibration-
based SHM compared to its supervised counterpart, some limitations and challenges
are delaying widespread industrial use. Most of these difficulties stem from the concept
of unsupervised learning SHM, that is, the absence of classes of both damaged and un-
damaged conditions. The section summarizes the current challenges in unsupervised
learning vibration-based SHM applications as well as future research observed from the
reviewed literature.

6.1. Parameters Selection

With the absence of damaged and some undamaged classes, performing cross-validation
for parameter tuning is challenging. This is especially true for thresholding, as the selection
of a significance level for outlier analysis, the parameter “ν” in OCSVM, or the number of
clusters is nontrivial in an unsupervised learning setting [97,99]. Instead, they are often
selected based on engineering judgment, which would not necessarily provide the optimal
SHM model. In novelty detection, it is mainly a problem of balancing the false positive and
false negative rates according to the design objective. Before testing, a boundary can be
established to fit the available normal data with the assumption that the training data is a
representative sample of the normal condition. Nevertheless, the size of the data may not
be large enough to establish the boundary, especially if there are no available observations
for other normal classes or if there is an overlap with the unknown damaged class. The
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damage detection performance of some models can be less sensitive to parameter selection,
yet post-test sensitivity analysis may show superior attainable models [74].

Multiple attempts have been made to provide a more robust threshold via Monte Carlo
sampling techniques [72,99,129,133], while others implemented an EVT-based threshold
selection procedure [81]. Stochastic and EVT-based thresholding methods, however, may
also need selecting parameters, such as the sample size or the block maxima window size.
Others have provided threshold selection guidance based on case study results of post-test
ROC curves [116]. On the other hand, most proposed SHM methods are structure-specific
and suffer from a generalization problem. Adaptive thresholding methods have also been
proposed such that the novelty detector can identify future damage scenarios when the
system was already subject to change [67,69]. The threshold selection strategy is expected
to remain an open area of research in the future.

6.2. Environmental and Operational Variability

Environmental and operational variations pose a major challenge to the development
of SHM methods in general, and unsupervised learning-based methods in particular [184].
Novelty detection attempts to detect deviations from normality in the system based on
damage-sensitive features. These deviations could be attributed to structural damage or
other system changes such as variations in the temperature or operational conditions. For
example, model parameters, which are commonly used as damage-sensitive features, can
drastically change due to temperature variations [185]. In the past decade, many researchers
focused on developing damage-sensitive features and novelty detection techniques that
are less sensitive to environmental variability [66,67,81–83,96,105,125]. Others considered a
probabilistic novelty detection method that would incorporate uncertainties including envi-
ronmental variations and measurement noise [72,132]. In addition, expanding the training
dataset such that it includes a wider range of environmental conditions is important to
reduce these effects and the resulting false positives [74,186]. Additionally, including mea-
surements other than vibration to the SHM model input, such as temperature, wind speed,
and loads, can add valuable information to the model and help reduce the uncertainty
associated with damage identification [104,114].

Recent literature suggests that mitigating the effects of environmental and operational
variability remains a key topic in SHM systems development. We expect that future un-
supervised learning SHM research attempts to tackle this challenge by (1) utilizing the
advances in sensor technology and the internet of things to collect long-term monitoring
data to decrease the data uncertainty; (2) relying more on unsupervised learning methods
that can learn highly nonlinear and nonstationary patterns, especially deep learning meth-
ods (see Section 6.5); (3) incorporating environment monitoring systems (e.g., temperature,
humidity, and wind speed sensors) and performing a fusion of data from different sources,
which can add extra layers of information.

6.3. Benchmarking Standards

While there are various types of unsupervised learning SHM frameworks, it appears
that there is no standard practice for establishing a direct comparison between them.
Benchmarking practices often exist in domains with other machine learning applications,
such as using ImageNet [187] for computer vision models or Human3.6m [188] for human
sensing models. While some benchmarks are available in the literature (as described in
Section 2), comparisons with previously introduced methods are lacking because authors
often test their methods using different metrics and partitions of the dataset [184]. Taking
the Z-24 Bridge dataset as an example, some authors use the undamaged state period from
11 November 1997 to 4 August 1998 for training, while the damaged state period from
5 August to 10 September 1998 is used for testing [83]. Others use 75% of the undamaged
state period for training while adding the rest to the testing set [81]. Some alternative
methods are including the first month, the first three months, or the last undamaged state
month of the record for training, in addition to different sets of testing [59,115]. In addition,
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making the model source code available for the community, which would facilitate the
comparisons or the building of a Model Zoo, is still not a common practice in SHM research.
Standardized benchmarks, in general, can provide a quick overview of the state-of-the-art
and may accelerate the development of SHM machine-learning models. Therefore, it is
encouraged that this practice is adopted in the SHM future research.

6.4. Datasets Availability

As per the reviewed literature, there are multiple available datasets that can be used for
the validation of the proposed methods. However, most of these datasets fail to represent
real cases of damaged structures. Figure 17 shows the percentage of datasets used from
field studies with real observed damage, laboratory tests, and numerical simulations, based
on the reviewed literature in Table 1. Many of these methods are based on numerical
simulations and laboratory experiments, with the latter being an improvement over the
former. Datasets based on real structures which suffered damage, such as the commonly
used Z-24 bridge dataset, would often record damage cases without consideration of real-
life operational conditions (e.g., passing traffic). The collection of datasets that include
structural states under realistic conditions and uncertainties while being large enough
to train deep learning models remains desired for developing advanced unsupervised
learning SHM methods.
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6.5. Deep Learning

Deep learning-based SHM methods have gained considerable attention in the last
few years, as demonstrated in Figure 2. Nevertheless, they require a significant amount of
training data, and the limited availability of experimental data can be an inhibiting factor
for the development of more complex architectures. This is especially the case for super-
vised learning methods, but obtaining large quantities of training data for unsupervised
learning SHM frameworks can be easier. It is expected that more deep learning-based
unsupervised learning SHM methods will emerge in future studies with the advent of big
data benchmarks.

6.6. Model Generalization

While unsupervised learning offers a more practical solution to SHM compared to
supervised learning, it still suffers from limitations that are slowing the transition to
industrial practice. Compared to machine condition monitoring, which benefits from
reliable statistics obtained from similar applications, unsupervised learning SHM methods
are mostly structure specific, as civil structures often have unique characteristics [51]. The
generalization of vibration-based SHM methods is therefore needed. In recent years, some
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researchers have attempted to address this problem by proposing methodologies based
on the concept of transfer learning (or domain adaptation) [189–192] and self-supervised
learning [193]. It is expected that interest in this topic will keep increasing in future research,
especially with the rapid advancements in deep learning research.

7. Conclusions

SHM is an important asset for autonomous, real-time structural condition assess-
ment. Unsupervised learning could be the key to closing the gap between academia and
industry for vibration-based SHM. This study provides a detailed review of the state-
of-the-art unsupervised-learning SHM applications in the past decade. These methods
involve different types of unsupervised learning techniques, including conventional feature
extraction techniques (e.g., PCA, AR models), deep learning methods (e.g., AE, GAN),
novelty detection, and cluster analysis. Additionally, a selection of common benchmarks
used in unsupervised learning SHM were described. Challenges, such as thresholding,
environmental variability, and model generalization, were discussed based on the reviewed
literature. In summary, it is expected that more unsupervised learning SHM techniques will
be developed in the upcoming years that will attempt to address the described challenges
with practicality as a primary objective.
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