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Abstract: Performance bottlenecks in the optimization of JND modeling based on low-level manual
visual feature metrics have emerged. High-level semantics bear a considerable impact on perceptual
attention and subjective video quality, yet most existing JND models do not adequately account for
this impact. This indicates that there is still much room and potential for performance optimization in
semantic feature-based JND models. To address this status quo, this paper investigates the response
of visual attention induced by heterogeneous semantic features with an eye on three aspects, i.e.,
object, context, and cross-object, to further improve the efficiency of JND models. On the object
side, this paper first focuses on the main semantic features that affect visual attention, including
semantic sensitivity, objective area and shape, and central bias. Following that, the coupling role of
heterogeneous visual features with HVS perceptual properties are analyzed and quantified. Second,
based on the reciprocity of objects and contexts, the contextual complexity is measured to gauge the
inhibitory effect of contexts on visual attention. Third, cross-object interactions are dissected using
the principle of bias competition, and a semantic attention model is constructed in conjunction with
a model of attentional competition. Finally, to build an improved transform domain JND model,
a weighting factor is used by fusing the semantic attention model with the basic spatial attention
model. Extensive simulation results validate that the proposed JND profile is highly consistent with
HVS and highly competitive among state-of-the-art models.

Keywords: just noticeable difference (JND); visual attention; semantic visual features; biased competition

1. Introduction

Regarding the human visual system (HVS) as a communication system with limited
bandwidth and processing capacity, it is continuously receiving data input. As a result, the
HVS can only sense variations in signal strength above a certain threshold, which is termed
as JND [1]. Research on JND can be traced back to the experimental psychology of Ernst
Weber [2] in the 19th century and was transferred to the field of digital multimedia at
the end of the 20th century. Visual JND can build computational models by virtue of
relevant physiology, psychology and neural research, combined with feature detection.
Over the past decades, JND has proven to be a multi-factorial problem, including contrast
sensitivity function (CSF), luminance adaptation (LA), masking effects and visual attention.
An overview of these factors can be found in the survey by researchers in [3]. Using
the computational domain as a classification criterion, there are two branches of existing
JND models, i.e., the pixel domain (where JND thresholds are computed directly for each
pixel) [4–13] and the transform domain (where the image is first transformed into a subband
domain, and then JND thresholds are calculated for each subband) [14–24]. Nevertheless, both
model types generally follow the same design philosophy of simulating the visual-masking
effects of several elements before combining (multiplying or adding) them to obtain an
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overall JND estimation. The pixel-domain JND model has undergone a protracted evolution.
Based on the study of luminance and contrast, the pioneering work of Chou et al. [4]
computed luminance adaptation and contrast masking (CM), using the winner as the
JND thresholds. Yang et al. [5] considered the overlap effect between LA and CM, and
proposed a nonlinear additivity model of masking (NAMM). Furthermore, the image can
be decomposed into plain, texture and edge regions for more accurate modeling of CM [6].
Since the visual sensitivity decreases with increasing retinal eccentricity, the fovea masking
was introduced [7]. Inspired by the internal generation mechanism, the masking effects of
ordered and disordered components were quantified based on free energy theory [8], and
the pattern masking was extended sequentially [9]. In addition, the RMS contrast was used
as the spatial CSF of JND in the pixel domain [10]. Based on hierarchical predictive coding
theory, self-information and information entropy were utilized to calculate the perceptual
surprise and perceptual suppression effects at different levels to improve the accuracy of
the JND model [12].

Transform coding is a widespread means of mainstream image/video coding, and
transform domain JND modeling is also a significant research area. In 1992, Ahumada [14]
proposed the first DCT domain JND model combining spatial CSF and LA. Based on [14],
Watson [15] introduced the CM effect and proposed the DCTune model, which laid the
research foundation for the DCT domain JND modeling. Subsequently, a more realistic
LA function was proposed to improve JND estimation by integrating a block classification
(plain, edge, and texture) strategy [16]. For video, corresponding video JND models
for the DCT domain were proposed considering spatiotemporal CSF and eye movement
compensation [17], LA effect based on gamma correction and CM effect based on more
accurate block classification [18], texture complexity and frequency, visual sensitivity and
visual attention [19], the various sizes of DCT blocks (from 4 × 4 to 32 × 32) [20], motion
direction [21], fovea masking [22], temporal duration and residual fluctuations [23].

In recent years, machine-/deep-learning-based modeling of visual perception has be-
come a new research trend due to the rapid development of deep neural networks [25–33].
To fill the vacancy of JND databases for image and video compression, several scholars
have suggested MCL-JCI [34], JND-pano [35], MCL-JCV [36], VideoSet [37], etc. Based
on these datasets, various modeling techniques for JND eventually emerged, most no-
tably subjective data regression [25,27], binary classification [26], picture/video-wise JND
(PWJND/VWJND) or satisfied user ratio (SUR) modeling [27–30], and finding appropriate
weighting factors for the JND models [25,26]. In particular, motivated by the smoothing
performance (non-smoothed regions have better capability for hiding noise than smoothed
regions), Wu et al. [31] proposed an unsupervised learning method for generating JND
images in the pixel domain. Considering that JND should be evaluated in the human brain
perception domain, Jin et al. [33] presented an HVS-based signal degradation network
and employed visual attention loss to further regulate JND estimation. In addition, JND
modeling also extends to machine vision [38,39]; however, this specific topic is outside
the scope of this paper. Visual attention is a key attribute of HVS [40], and models com-
bined with visual attention can improve the accuracy of JND threshold. In a study by
Chen et al. [7], attention-induced fixation was detected and a scheme was designed to
reflect the increase in JND with increasing retinal eccentricity. Video JND estimation for
smooth pursuit eye movements (SPEM) and non-SPEM situations was accomplished by
investigating the relationship between JND thresholds and parameters (spatial frequency,
eccentricity, retinal motion velocity) [22]. Considering the special focus of HVS on people,
Wang et al. [41] combined Itti’s [42] and Judd’s [43] attention model (with face detector and
person detector) to adjust the JND threshold.

The main feature of the HVS attention mechanism is the information-selection process,
in which only a small number of visual signals are transmitted to the brain for processing.
Indeed, the object-based attention theory suggests that humans are drawn to objects and
advanced concepts [44]. Although Wang at al. [41] considered the advanced semantics
of faces, there are often more advanced semantics in images than in plain faces. In any
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case, traditional visual attention models mainly consider low-level features such as color,
luminance, and orientation, while underestimating high-level semantic information, which
leads to reduced JND model accuracy under the attention mechanism of HVS. This is
mainly due to the difficulty of semantic feature extraction and fusion. Meanwhile, it is well
known that deep neural networks are full of semantic information [45], but current JND
models based on deep learning mainly try to construct PWJND/VWJND or SUR without
fully considering semantic character behaviors.

In addition, neurons transmit and express visual information by consuming energy [46].
The structure and function of neural networks follow the essential principles of resource
allocation and minimization of energy constraints. Therefore, not all stimuli trigger neuronal
responses, i.e., biased competition for visual attention influences neuronal activity [47]. The
theory of biased competition suggests that selectivity of one (or more) points in the visual
process is caused by interaction between visual objects for neural representations. More
interestingly, with the limited attentional resources, there will always be certain items and
their visual features that win out in the competition. Therefore, it is inevitable to consider
such interaction while constructing a semantics-based attention model.

From the above discussion, it is clear that semantics is crucial for accurate estima-
tion of JND thresholds. Furthermore, it should be noted that this paper concentrates on
the tuning scheme for DCT-based JND estimation because the majority of image/video
processing, especially in image/video compression, is conducted in the DCT domain. Par-
ticularly, this paper argues that there are three semantic features to be considered in the
attention allocation problem of videos, namely, object, context, and cross-object. Since it is
troublesome to extract semantic attributes manually, this paper uses grad-CAM [48] and
VNext [49] to extract semantic objects and features through deep learning. Based on this,
attention effects induced by object-based semantic features are analyzed, including the
sensitivity and size of semantic objects and central bias. Second, contextual information is
another vital element that enhances instance differentiation and is considered as a form
of center-surround contrast. Furthermore, considering limited attentional resources and
infinite information, this paper describes the attentional competition effects of different
semantic features (including focus intensity, spatial distance, and relative area) in terms of
cross-objects to achieve an accurate model of semantic attention.

Specifically, inspired by the framework of [23], this paper proposes a statistical proba-
bility model corresponding to the feature parameters and quantifies the response of visual
attention in a perceptual sense using information theory. Then, the attentional competition
factor for calibrating the semantic attention model is proposed. Finally, the adaptive seman-
tic attention weight is obtained by unifying and fusing the perceptual feature parameters,
and the JND model is adjusted using this weight.

The rest of this paper is organized as follows. Section 2 section presents three fea-
tures and describes the quantification strategies for these parameters. Section 3 section
analyzes the interaction between the objects and context. Section 4 section depicts the fu-
sion approaches of these parameters together with the competition properties of attention.
Section 5 part details the proposed JND profile. Simulation results and conclusions are
given in the Sections 6 and 7, respectively.

2. Object-Wise Semantics Parameter Extraction and Quantification

As stated, the literature lacks a clear understanding of the mechanism of interaction
between semantic perception and semantic features. This motivates us to formulate an
effectual JND profile leveraging the HVS semantic traits, which is subject to challenges. The
first issue is how to precisely extract and quantify the feature parameters that thoroughly
depict the perceptual response of semantic HVS features in videos, such as semantic
sensitivity, objective area, central bias.
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2.1. Semantic Instances Extraction

Accurate extraction of high-level semantic features of videos helps to better visual
attention modeling. On that basis, this paper uses grad-CAM for the extraction of high-level
semantic features. In this network, the further the layer, the ampler the semantics is and
the more spatial information can be preserved. In this respect, grad-CAM contains all the
semantics of our target of interest. For more details, please see [48]. With grad-CAM, we
can draw heat maps which are shown in Figure 1 below. Moreover, to effectively utilize
the various properties of semantic objects, this paper uses VNext [49] to extract semantic
objects, and the results are shown in Figure 2.

Figure 1. The grad-CAM heat-map results.

Figure 2. The VNext extraction results.

2.2. Semantic Sensitivity Quantification

The research [50] has shown that attention is focused on informative content. One
definition of attention describes it as a limited resource for information processing, with
the area of interest carrying the bulk of the information transmitted to the brain. Hence,
Bruce et al. [51] pointed out that Shannon self-information can be used to outline attention.
Whereupon, the attention value of a pixel located at (x, y) in a video frame is defined below.

A(x, y) = −log2P(F = f (x, y)) (1)

where F denotes a random variable of the feature of pixel (x, y), f (x, y) represents the
image features of pixel (x, y), P(F = f (x, y)) indicates the probability of feature F.

The concept of constructing statistically sparse representations of images appears to be
fundamental to the primate visual system, as evidenced by a large body of research. That
is, to some extent, computing the probability distribution of features is essentially a matter
of statistical feature sparsity. If a pixel associated with a feature has a lower probability
of appearing, it has a better chance of attracting attention because it conveys a greater
amount of information. In view of this, the probability density function (PDF) of feature
F is measured as follows by performing histogram statistics on the whole picture.

PDF = hist(F = f (x, y)) = P(F = f (x, y)) (2)

Accordingly, the initial attention based on semantic sensitivity (m) can be calculated
as follows.

I(m) = −log2hist( f (m)) (3)
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It is worth noting that instead of using a uniform-fitting function, to better suit the
image content, the histogram of each frame is adaptively fitted. Figure 3 shows the
histogram of the 2nd frame in the HEVC standard test sequence “BasketballDrill” and its
PDF fitting curve, separately.
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Figure 3. (a) A semantic sensitivity histogram; (b) A semantic sensitivity PDF curve.

2.3. Objective Area Quantification

The literature demonstrates that the larger the area, the higher the probability of atten-
tion, i.e., the probability of attention of semantic objects is proportional to size, however,
this property becomes smooth after a certain saturation threshold [52]. This relationship
can be summarized below using a piecewise function [53], with values within [0,1].

− log2(p(ηj)) =


− ln(1−ηj)

c1
0 ≤ ηj ≤ t1

1− exp(−c2 · ηj) t1 < ηj ≤ t2
s2 + c3 ln(1− ηj + t2) t2 < ηj ≤ t3
s3 · exp(−c4(ηj − t3)) t3 < ηj ≤ t4
0 t4 < ηj ≤ 1.0

(4)

where 0 < j ≤ N, N is the number of semantic objects in an image frame, ηj represents the
size of semantic object, which is calculated as: ηj = Bj/(W × H), Bj represents the number
of objective pixels, and W, H refer to the width and height of the image frame. Figure 4
shows the relationship between area and attention.

Likewise, for the same size semantic objects, attention will be affected by the aspect ratio.
As is known to all, the aspect ratio of current popular displays is 16:9. It follows that the closer
the aspect ratio of a semantic object is to our vision field, the more it attracts attention.

Figure 5 is an illustration for the aspect ratio. For a more clear description, the blue
rectangle on the left is labeled as A, the one on the right is B, and the container containing
these two rectangles is C. Despite having the same area, A and B have various aspect ratios.
The aspect ratios of A and C are 16:9, while B is 9:16. It is obvious from the example that
rectangle A attracts more attention than rectangle B. Note that the rectangle is used merely
for convenience of observation, and the results hold true other shapes as well.

Therefore, the joint effect of semantic object size, the aspect ratio (Rr) is used to measure
the attention of semantic object size.

I(ηj) = −log2[p(ηj)]− α1log2

(Rrj

β1

)β2

(5)

where α1, β1, β2 are all adjustment control parameters, rj denotes the aspect ratio of the
j-th semantic object and is normalized to [0,1].

The model is consistent with HVS subjective perception that HVS perceptual attention
intensity increases with the size of the object but there is a saturation point. The reason is
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that when the object area is too large, the target and background are non-separable, i.e., the
target is likely to be the background component at this point. In addition, targets with an
aspect ratio closer to 16:9 attract greater HVS attention, which raises perceptual sensitivity
and lowers JND thresholds.
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Figure 4. The function map of Equation (4).

Figure 5. The illustration for the aspect ratio.

2.4. Central Bias Quantification

It is stated that most images have the foreground object in the center of the image
frame [43]. It follows that when a person looks at an image, he or she habitually looks at the
center of the image first. Eye-movement experiments have shown that HVS tends to focus
on the center of the image, and the deviation from the target center to the image center, i.e.,
the central bias, has been considered a noteworthy prior in attention modeling [44]. Based
on this prior knowledge, many attention modeling algorithms based on central bias use
various methods to increase the attention value at the image center location as a way to
highlight the salient targets in the image.

Nevertheless, the feedback brought by the central bias is not always favorable. For
some unconventional cases where the target is off-center in the image, attention enhance-
ment at the image center can lead to over/under estimation of the target far from the image
center. In general, the problem with the classical center-priority based attention modeling
algorithm is that it tends to lack flexibility, which leads to significant inaccuracies when the
foreground targets of the image are not positioned as expected.
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The formation of a top-notch attention map is the ultimate goal of attention modeling.
The complexity of attention modeling is greatly reduced and the quality of the final attention
map is improved if the locations of the salient targets are approximated before proceeding
to formal attention modeling.

In this letter, the object (M) closest to the image center is calculated, and the central bias
is constructed with M as the experienced center of vision. The closer an object is to the visual
center, the higher probability it is to be noticed, i.e., the attention probability of semantic
objects is inversely proportional to the central bias distance, which is denoted as follows.

P(A|dj) = 1− log 2

[
1 +

( dj

ω1

)ω2
]

(6)

where dj is the distance from the semantic object to M, and normalized to [0,1].

dj = mean( ∑
f∈Oj

∥∥∥(x f , y f )− (xM, yM)
∥∥∥2
) (7)

here, Oj is a semantic object, f denotes the pixel of Oj, (x f , y f ) represents the coordinates
corresponding to f , (xM, yM) means the center coordinates of M, ‖·‖ is the euclidean
distance, ω1, ω2 serve as the adjustment parameters.

As illustrated in Figure 6, the modified central bias result is better in line with HVS
perception. Since the target M in the figure is closest to the image center, it obviously draws
the highest attention, which is shown by the brightest brightness. In this instance, the
target M stands in for the image center as the experienced center of vision and the closer
the other objects are to the target M, the more attention they attract, and the brighter they
are presented in the figure.

M

(a)

M

(b)
Figure 6. (a) The traditional central bias map; (b) The modified central bias map.

3. Context-Wise Attentional Inhibition Quantification

Given that HVS still beats the state-of-the-art computer vision systems, modeling visual
attention in natural scenes is a hot topic of research today. How is such great effectiveness
achieved? The ability of HVS to utilize the context of a scene to direct attention before most
items are recognized appears to be a key factor compared to artificial systems [54].

How does the context of a scene serves to focus attention on objects in the scene?
Davenport and Potter [55] suggest that there is an interaction between objects and context
during scene processing, which is supported by research. On this basis, this paper con-
ceptualizes the local spatial arrangement of the image background as an alternative to the
context and focuses primarily on the complexity of the patterns.

In most situations, the region between the target and its background is heterogeneous
and has a complex organization. The density of the visual information presented is normally
used to describe the complexity of the visual background. In general, a scene is complex
when its background displays a large amount of information and the unpredictability of this
information is considerable [56]. Typically, the complexity of the visual context usually has
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a detrimental impact on the visual task. The higher the visual complexity, the longer the
response latency of the nerve cells and the stronger the degree of inhibition of the target [57].

As the contextual complexity of the target suppresses the attention strength, the more
complex the pattern of the background, the stronger the suppression, while this is going
on, the findings of numerous human visual field experiments indicate that the human
binocular visual field is approximately circular (oval), with the proximate form depicted in
Figure 7 [58]. Hence, to represent the inhibition of each semantic target background, we
utilize the average of the contextual complexity in the circumcircle of semantic targets to
simplify the calculation. Since entropy reflects the chaotic degree of a system, we estimate
contextual complexity by local entropy. As a result, attention and contextual complexity
are related in the following way.

P(Ā|uj) = log 2

[
1 +

( uj

ξ1

)ξ2
]

(8)

where uj is the contextual complexity, and normalized to [0,1].

uj = mean(ent f ilt(circle(Oj)−Oj)) (9)

here, ξ1 and ξ2 serve as the scaling factors, circle(·) denotes circumcircle, ent f ilt(·) is the
function to calculate the local entropy.

Figure 8 shows the inhibitory effect of contextual complexity on semantics.
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(a) (b)

(c) (d)

Figure 8. (a) The 212th original frame of the “Basketball Drill”; (b) The complexity map of the whole
frame; (c) The contextual complexity map of the semantics; (d) The inhibitory effect of contextual
complexity on semantics.

4. Fusion Strategies and Cross-Object-Wise Attentional Competition

Furthermore, given elaborately chosen feature parameters, the second sore point is
how to quantify the interaction among these feature parameters, i.e., how to fuse these
heterogeneous feature parameters.

Consolidating the semantics-based attention model is the aim of this part. In general,
different feature maps do not have the same attributes, and different features contain
complementary global contextual information and local detailed information between
them. Consequently, to obtain reliable results for the attention distribution, it is essential to
select the appropriate weights for each feature map.

In this paper, to estimate the weights of the feature maps above, the gradient change
value of each feature map is first calculated, where the greater the variation of the data,
the more information can be gleaned. The gradient variation is then used to estimate
the relative weights of these feature maps. Finally, utilizing their individual weights, the
feature maps are normalized and combined into a single attention map.

attpre =
λ1 · I(m) + λ2 · I(η) + λ3 · P(A|d)

P(Ā|u)
(10)

here, λi(i = 1, 2, 3) serves as the weighting factor, and is calculated as follows.

λi =
vg(zi)

3
∑

i=1
vg(zi)

(11)

vg(zi) =
max(g(zi))−min(g(zi))

mean(g(zi))
(12)

g(zi(Om)) =
N

∑
m=1,m 6=n

|zi(Om)− zi(On)| (13)

where zi ∈ {I(m), I(η), P(A|d)} is the attention map of different semantic features.
Figure 9 displays the initial attention map with different weighting factors. As illus-

trated, compared to map (a), the map (b) with the gradient variation based weights is more
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consistent with the HVS subjective perception. This is partly due to the fact that we fully
take the content characteristics of different feature maps into account.

(a) (b)
Figure 9. (a) The initial attention map with the identical weights; (b) The initial attention map with
the gradient variation based weights.

However, there is a competitive mechanism that manifests itself as a relative enhance-
ment of responses to task-relevant objects or a relative inhibition of neglected objects
within the brain [59]. That is, when modeling the semantic attention model, it is not suffi-
cient to consider only the semantic object itself, but also to take full account of the biased
competition between different objects.

• Focused Intensity: when multiple stimuli are present in the visual field at the same
time, inhibitory competition in the visual cortex affects the allocation of attention,
which probably stem from the inability to bias the interaction toward a particular
object [60]. In reality, the brain’s representation of information is essential for human
vision, and regardless of the distance between neurons or neuronal populations,
they do not operate independently, but constantly interact with each other. Because
their activities are interconnected and competing, they cannot provide “independent
attentional resources” [61]. That is, when there are multiple semantic objects in an
image, attention to each semantic object is impacted by the other objects. The higher
the intensity of the focus, the more pronounced the suppression of the other objects;

• Spatial Distance: event-related potentials, functional MRI investigations as well as
single-cell recordings in monkeys [62] and humans [63] have pointed out that neural
enhancement in attentional focus may be followed by neural inhibition in peripheral
regions. Detection is slower and discrimination performance is poorer at interference
locations close to the target compared to interference locations far from the target [64].
In the receptive fields of cells, shifting attention from one stimulus to another can have
a strong effect when two stimuli are in close proximity to each other. For stimuli that
are far apart, the effect is much less [59]. In other words, the more spatially distant the
objects are from each other, the smaller the inhibitory impact;

• Relative Area: since an object generally has several neighbors, the relative area of an
object shows with its neighbors affects its attention competition. The rationale for
selecting relative area is that, even if the object has an attractive intrinsic area, it may
not stand out unless it exhibits the greatest contrast if all of its neighbors also have
attractive areas [53]. In particular, the higher the area contrast, the more strongly other
objects will be suppressed.

Based on the points discussed above, the attentional competition weight is defined as follows:

CA(k) =

(
N

∑
k=1,k 6=l

Dτ(k, l)timesDν(k, l)

)
· Sδ(k) (14)
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in which, Dτ(k, l), Dν(k, l) are the average focused intensity distance and the spatial
proximity distance between the k-th, l-th semantic objects, respectively.

Dτ(k, l) = exp
(

F(Ok)− F(Ol)

F(Ok) + F(Ol)

)
(15)

F(Ok) = mean(attpre(Ok)) (16)

where F(Ok) denotes the average focused intensity fo the k-th object.

Dν(k, l) = exp

(
µ

‖(xk, yk)− (xl , yl)‖2

)
(17)

where µ is a scaling factor, (xk, yk) and (xl , yl) are the coordinates of the center point of the
k-th, l-th semantic objects.

Sδ(k) = 1− exp(−12 · G(k)) (18)

where Sδ(k) represents the relative area competition weight of the k-th semantic object, G(k) is
the relative area of the k-th object with respect to its neighbors, see [53] for more details.

As a result, the semantics-based attention model is constructed by melting the atten-
tional competition weight.

Sematt = attpre · CA (19)

Figure 10a–c takes the 2nd frame of the ”Basketball Drill” sequence as an illustra-
tion, showing the attention map of semantic sensitivity, objective area and central bias.
Figure 10d displays the inhibition effect of the contextual complexity. Figure 10e shows
the attentional competition result. Figure 10f exhibits the final attention map. Intuitively,
brighter areas indicate higher attention, inhibition and competition.

(a) (b) (c)

(d) (e) (f)

Figure 10. (a–c) The attention map of the semantic sensitivity, objective area, central bias; (d) The
inhibition effect of the contextual complexity; (e) The attentional competition map; (f) The semantic
attention map.

5. Semantic-Based Spatio-Temporal Transform Domain JND Profile

As mentioned above, this paper combines semantic sensitivity, objective area, central
bias, contextual complexity and attentional competition to measure semantic perceptual
attention. Then, based on the model in [65], considering the impact of semantics, this study
modifies the spatial attention factor, aiming for a more accurate JND model. The framework
of the proposed JND profile is shown in Figure 11.
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Figure 11. A briefoverview of the proposed spatio-temporal JND model.

By introducing the weighting factor of the semantics-based attention, we propose the
following JND model.

JND(t, n, i, j) = JNDst(t, n, i, j) · ws(t, n) (20)

here, JNDst(t, n, i, j) is the spatio-temporal JND threshold of coefficient (i, j) of the n-th
block in the t-th frame, considering the LA, CSF and masking effects [23].

Taking the spatio-temporal JND threshold JNDst as the basis, this work proposes
a patch-wise weighting factor, the attentional weight ws(t, n), accounting for the visual
perceptual attention of semantics, aiming at developing a more accurate JND model. Patch
level ws(t, n) is determined as the mean of pixel-wise adjustment factors in the spatial
domain, ws(t, i, j), of the n-th image block in the t-th frame.

To be specific, by following [65], we estimate spatial attention As(x), and combine se-
mantic attention Sematt(x) to get semantics-based spatial attention AF(x) using NAMM [5].

AF(x) = As(x) + Sematt(x)− 0.3 ·min(As(x), Sematt(x)) (21)

In general, the larger the visual attention AF(x), the smaller the JND threshold. Intu-
itively, it seems sensible to apply the sigmoid-like function to normalize AF(x) to [0,1] and
measure the spatial attention weight ws(t, n) below.

ws(t, n) = ϑ1 ·
(

1− 1
1 + exp(−ϑ2 · AF(t, n))

)
(22)

where ϑ1, ϑ2 are normal constants, AF(t, n) is the mean of the n-th block of AF(x). Accord-
ing to subjective experiments, ϑ1 and ϑ2 are set to 2.5 and 2, respectively.

Figure 12a,b display the obtained attention map and the corresponding weight map.
Figure 12c shows the final spatio-temporal JND threshold map. In Figure 12a,c, brighter
areas indicate higher visual attention or masking, while the opposite is true for Figure 12b.



Sensors 2023, 23, 3149 13 of 20

(a) (b) (c)

Figure 12. (a) The semantic-based spatial attention AF(x) map; (b) The spatial attention weight ws(x)
map; (c) The proposed JND threshold map.

6. Experimental Results
6.1. Comparison of Model Performance

An ideal JND model should, in a sense, distribute noise more fairly, concealing more
of it, with acceptable perceptual quality. Thus, we add coefficient-wise JND-guided noise
to video sequences, as described in [22], to assess the effectiveness.

R̂(t, n, i, j) = R(t, n, i, j) + ρ · rand(t, n, i, j) · JND(t, n, i, j) (23)

where R(t, n, i, j) is the transform coefficients of original sequence, R̂(t, n, i, j) is the JND
noise contaminated coefficients, ρ regulates the energy of JND noise, and rand(t, n, i, j) ∈
{+1,−1} is a bipolar random noise.

We evaluate the effectiveness of the proposed work in comparison to four bench-
mark models, namely Bae 2017 [22], Zeng 2019 [66], Wang 2020 [12], Xing 2021 [23], and
Li 2022 [67]. Ten videos with diverse semantics were chosen from the HEVC standard
sequences in order to meet the requirements of different resolutions. Four of them are
videos with 1920 × 1080 full HD resolution, namely, “Kimono1”, “ParkScene”, “Basket-
ball Drive” and “BQTerrace”, as shown in Figure 13a–d. Three of them, “FourPeople”,
“Johnny”, “KristenAndSara”, are 1280 × 720 resolution videos, as shown in Figure 13e–g.
The remaining three, “Basketball Drill”, “PartyScene”, and “RaceHorses”, are videos with
832 × 480 resolution, as shown in Figure 13h–j.

(a) (b) (c) (d)

(e) (f) (g)

(h) (i) (j)

Figure 13. The HEVC standard test sequences. (a) Kimono1; (b) ParkScene; (c) Basketball Drive; (d)
BQTerrace; (e) FourPeople; (f) Johnny; (g) KristenAndSara; (h) Basketball Drill; (i) PartyScene; (j)
RaceHorses.

Using Peak Signal-to-Noise Ratio (PSNR) as an objective evaluation criterion, a lower
PSNR indicates a better ability to mask noise. However, despite that PSNR is the most popular
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objective quality evaluation metric, the results of a large number of empirical-psychological
studies have demonstrated that PSNR scores fall short of properly capturing HVS perception
due to the involvement of visual physiological and psychological mechanisms. Furthermore,
the human eye is the receiver of the final visual signal, and therefore, subjective quality metrics
must be taken into account when evaluating the proposed JND model.

In this paper, the visual quality of JND-contaminated videos was assessed by recruiting
17 subjects with normal or corrected normal vision, using the subjective viewing test in [68].
Specifically, the monitor used for the display was a 27-in LED monitor, while the view
distance was six times the height of the video frame. The difference between the original
and processed sequences was observed using the Double Stimulus Continuous Quality
Scale (DSCQS) method [23].

Figure 14 illustrates the testing procedure of the DSCQS. In the experiment, for each
presentation, the reference and test sequences are arranged in a pseudo-randomized form.
During the voting period, participants are expected to rate the quality of each of the two
videos. The visual quality of the JND-contaminated videos is then measured by calculating
the MOS difference (DMOS) between the original and matched processing sequences. The
calculation is described below.

DMOS = MOSJND −MOSORI (24)

where MOSORI and MOSJND are the measured average opinion score values for the
original and test videos, respectively. Five quality scales are used, i.e., excellent (80–100),
good (60–80), fair (40–60), poor (20–40), and bad (0–20). The smaller the value of DMOS,
the better the visual quality of the JND-polluted video.

- s: second

10s 10s 10s 10s3s 3s 3s 7s

ORI TEST TESTORIGrey Grey Grey Grey

Voting time

Figure 14. DSCQS method, where the original sequence (ORI) and test sequence (TEST) are pseudo-
randomly ordered for each presentation.

The detailed performance results of different JND models are shown in Table 1. From
the panoramic viewpoint, it can be found that the proposed JND model has the best
performance on PSNR and DMOS for all videos except the “RaceHorses” sequence. This
is mainly due to the large proportion of foreground semantic objects in the “RaceHorses”
sequence, while our model guides only a small amount of noise into the foreground
semantic object region. Therefore, the PSNR value of the proposed JND model is slightly
higher than this of Xing, 2021. In addition, as shown in Table 2, the Video Multimethod
Assessment Fusion (VMAF) scores [69] of the noise-contaminated videos of different JND
models are measured, and the proposed model obtains optimal or suboptimal scores.
The larger VMAF scores indicate that the subjective quality of the noise-contaminated
sequences is closer to that of the original sequences. The results in Table 2 further verify the
superiority of the proposed model in the VMAF metric scenario. Meanwhile, the average
PSNR values of Bae 2017, Zeng 2019, Wang 2020, Xing 2021, Li 2022 and the proposed JND
profile are 28.36 dB, 30.08 dB, 28.90 dB, 27.83 dB, 30.95 dB, and 27.03 dB, respectively. The
average DMOS values of these are 12.49, 23.47, 24.08, 12.51, 19.59 and 9.42, respectively. The
average VMAF values of these are 90.09, 87.71, 90.98, 97.30, 88.96 and 97.39, respectively.
To visualize the data, Figure 15 displays the bar graphs of the average PSNR, VMAF and
accompanying DMOS results for test sequences of various resolutions. Apparently, the
noise-contaminated video generated by our model achieves the best perceptual quality
(smallest DMOS score) and the largest distortion (lowest PSNR value) compared to the
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other four models. These experimental results validate the superiority of our JND profile
in guiding noise injection.

832x480 1280x720 1920x1080
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Bae2017 Zeng2019 Wang2020 Xing2021 Li2022 Proposed
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Bae2017 Zeng2019 Wang2020 Xing2021 Li2022 Proposed

(c)

Figure 15. (a) Average PSNR values in Table 1 for 832 × 480, 1280 × 720, and 1920 × 1080; (b)
Average DMOS values in Table 1 for 832 × 480, 1280 × 720, and 1920 × 1080; (c) Average VMAF
scores in Table 2 for 832 × 480, 1280 × 720, and 1920 × 1080 [12,22,23,66,67].

Table 1. Performance comparison of different JND models.

Sequences Bae 2017 [22] Zeng 2019 [66] Wang 2020 [12] Xing 2021 [23] Li 2022 [67] Proposed
PSNR DMOS PSNR DMOS PSNR DMOS PSNR DMOS PSNR DMOS PSNR DMOS

BasketballDrill 27.24 14.24 31.93 22.18 30.05 22.94 26.19 11.59 33.32 19.82 25.22 10.88
PartyScene 29.40 10.18 30.43 23.88 28.91 24.53 27.94 12.24 32.04 19.35 27.10 10.06
RaceHorses 31.27 9.59 30.58 22.76 29.57 23.47 29.50 10.47 31.48 21.06 29.96 8.71
FourPeople 26.86 14.41 29.06 24.41 28.38 24.94 25.90 14.88 29.86 19.29 25.30 11.94
Johnny 27.76 13.65 30.89 21.76 29.20 22.47 28.98 11.71 31.26 17.94 26.91 7.29
KristenAndSara 27.28 12.47 29.30 24.12 28.01 25.59 24.94 12.94 29.69 20.12 24.56 7.71
Kimono1 27.54 13.94 28.17 25.06 27.86 25.64 26.55 14.76 27.93 23.29 25.94 7.41
ParkScene 26.61 13.00 28.25 23.18 27.60 24.00 24.94 13.12 28.62 20.53 24.56 8.18
BasketballDrive 31.10 10.76 32.29 22.47 30.56 23.29 30.52 10.65 33.42 16.24 29.15 9.88
BQTerrace 28.54 10.53 29.89 23.65 28.90 23.88 29.73 12.71 31.88 18.29 28.54 8.12

Average 28.36 12.49 30.08 23.47 28.90 24.08 27.83 12.51 30.95 19.59 27.03 9.42

Table 2. Video multimethod assessment fusion scores.

Sequences Bae 2017 [22] Zeng 2019 [66] Wang 2020 [12] Xing 2021 [23] Li 2022 [67] Proposed
PSNR VMAF PSNR VMAF PSNR VMAF PSNR VMAF PSNR VMAF PSNR VMAF

BasketballDrill 27.24 87.98 31.93 87.07 30.05 92.37 26.19 97.99 33.32 88.40 25.22 98.78
PartyScene 29.40 87.64 30.43 84.06 28.91 88.86 27.94 96.36 32.04 85.40 27.10 96.03
RaceHorses 31.27 93.36 30.58 90.40 29.57 98.65 29.50 99.91 31.48 91.61 29.96 99.92
FourPeople 26.86 89.66 29.06 87.48 28.38 87.63 25.90 93.07 29.86 88.54 25.30 93.10
Johnny 27.76 89.92 30.89 89.18 29.20 89.21 28.98 95.80 31.26 90.83 26.91 95.56
KristenAndSara 27.28 90.01 29.30 88.56 28.01 87.07 24.94 95.62 29.69 90.11 24.56 95.84
Kimono1 27.54 90.01 28.17 85.44 27.86 85.71 26.55 99.82 27.93 85.53 25.94 99.71
ParkScene 26.61 86.76 28.25 83.15 27.60 89.11 24.94 95.15 28.62 83.29 24.56 95.66
BasketballDrive 31.10 93.25 32.29 91.15 30.56 95.80 30.52 99.92 33.42 92.52 29.15 99.93
BQTerrace 28.54 92.08 29.89 90.56 28.90 95.40 29.73 99.40 31.88 93.40 28.54 99.35

Average 28.36 90.09 30.08 87.71 28.90 90.98 27.83 97.30 30.95 88.96 27.03 97.39
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In order to compare these five JND models more clearly, Figure 16 takes the 4th frame
of the “Kimono1” sequence as an example. In general, HVS tends to pay more attention to
the semantic targets [65]. In Figure 16a, the woman is prominent relative to the background.
Therefore, a lower JND value should be applied in this region to inject less noise. We
mainly focus on the head and body to allow for facilitate visual comparison. Apparently,
there is considerable visible noise in Figure 16d–g, while the eyes and ears in Figure 16c
are blurred. In contrast, Figure 16h is significantly clearer with the lowest PSNR value.
As far as the body is concerned, the noise in Figure 16j–m is plainly apparent without
exception, while in Figure 16o it is almost undetectable. As a consequence, the above
objective and subjective evaluations validate that the proposed semantic attention-based
weighting model is effective and excellent.

（a）

（b） （c） （d） （e） （f）

（i） （j） （k） （l） （m）

1

2

（g）

（n）

（h）

（o）

Figure 16. The 4th frame of the “Kimono1” sequence. (a) The original image; (b–h) are the enlarged
images of the sub-region ¬; (i–o) are the enlarged images of the sub-region . In turn, they are the
original patch and the distorted versions processed by Bae 2017, Zeng 2019, Wang 2020, Xing 2021, Li
2022 and the proposed JND model, respectively. The PSNR values of the distorted versions are 27.53
dB, 28.17 dB, 27.76 dB, 27.10 dB, 27.98 dB and 26.69 dB, respectively.

As mentioned in the introduction, high-level semantic objects other than humans
often appear in image and video frames. Frame 70 of the “Basketball Drill” sequence
is depicted in Figure 17 as an illustration. Clearly, this is a scene depicting basketball
training. Naturally, in this case, the basketball and the ball frame are obviously of interest in
addition to the basketball players. With respect to the basketball frame, Figure 17c–g show
significant distortion, while Figure 17h exhibits strong performance. For the basketball,
Figure 17j–l,n depict considerable distortion, Figure 17m shows significant distortion at the
lower right of the basketball, while the noise in Figure 17o is barely visible.

6.2. Ablation Experiment and Analysis

To verify the effectiveness of each module in this algorithm, this paper performed
ablation experiments from three perception modules: object, context, and cross-object, and
evaluated their impacts on the perception results.

The experimental results in Table 3 demonstrate that a combination of the three
modules achieves optimal results, while the other combinations do not achieve the desired
effect. In other words, when considering the influence of semantics on JND, one of the three
aspects of object, context and cross-object features is indispensable. It is worth noting that
since the context and cross-object modules are calculated based on object, combinations
that do not contain object module are discarded. In practical applications, different kinds of
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videos focus on different scales of semantic features, and the combination of three modules
achieves better generality.

（a）

（b） （c） （d） （e） （f）

（i） （j） （k） （l） （m）

1

2

（g）

（n）

（h）

（o）

Figure 17. The 70th frame of the “Basketball Drill” sequence. (a) The original image; (b–h) are the
enlarged images of the sub-region ¬; (i–o) are the enlarged images of the sub-region . In turn, they
are the original patch and the distorted versions processed by Bae 2017, Zeng 2019, Wang 2020, Xing
2021, Li 2022 and the proposed JND model, respectively. The PSNR values of the distorted versions
are 27.24 dB, 32.12 dB, 30.63 dB, 26.16 dB, 33.42 dB and 25.42 dB, respectively.

Table 3. Performance Comparison of Different Combinations of Modules.

Modules PSNR

Object Context Cross-Object 832 × 480 1280 × 720 1920 × 1080

X

26.67 27.85 28.41
29.95 32.07 27.91
31.45 29.51 31.09

29.80

X X

25.66 26.07 26.53
28.30 29.26 25.02
30.32 27.48 30.19

29.12

X X

25.56 26.10 26.32
28.22 28.78 25.67
30.28 28.24 30.70

28.97

X X X

25.22 25.30 25.94
27.10 26.91 24.56
29.96 24.56 29.15

28.54

7. Conclusions

A novel semantic-based JND model was proposed in this paper by thoroughly mining
and characterizing the semantic feature parameters that affect attention. The interaction
between semantic visual features and HVS was investigated from object, contextual and
cross-object perspectives. This analysis included HVS responses induced by semantic
sensitivity, objective area and central bias, as well as perceptual suppression brought about
by contextual complexity and cross-object competition for attention. In conjunction with
underlying attention in the spatial domain, perceptual attention to stimuli was measured
with information-theoretic support and incorporated into a patch-level weighting factor.
Using the semantic-based attentional weight, the JND model for the spatiotemporal trans-
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form domain was modified. The experimental results demonstrate the effectiveness of the
proposed JND model with superior performance and stronger distortion-hiding ability
compared to the state-of-the-art JND model.

Existing JND models only consider the effects of unimodal signals, while the study
of cross-modal JND remains an open problem. However, there exists great incentive to
transfer this issue from the laboratory to real-world adoption. In the future, we will further
investigate multimodal asynchronous perception, seek a more unified approach to fusing
multi-modal feature parameters, and obtain more accurate JND thresholds.
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