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Abstract: Interacting with other roads users is a challenge for an autonomous vehicle, particularly in
urban areas. Existing vehicle systems behave in a reactive manner, warning the driver or applying the
brakes when the pedestrian is already in front of the vehicle. The ability to anticipate a pedestrian’s
crossing intention ahead of time will result in safer roads and smoother vehicle maneuvers. The
problem of crossing intent forecasting at intersections is formulated in this paper as a classification
task. A model that predicts pedestrian crossing behaviour at different locations around an urban
intersection is proposed. The model not only provides a classification label (e.g., crossing, not-
crossing), but a quantitative confidence level (i.e., probability). The training and evaluation are
carried out using naturalistic trajectories provided by a publicly available dataset recorded from a
drone. Results show that the model is able to predict crossing intention within a 3-s time window.
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1. Introduction

According to the World Health Organization, approximately 1.25 million people
die every year as a result of a road traffic accident, with pedestrians representing 22%
of fatalities [1]. Autonomous vehicles have the potential to reduce traffic fatalities by
eliminating accidents that occur due to human error. However, urban environments present
significant challenges for autonomous vehicles. Non-signalized intersections present a
particular challenge where the ego car must interact with other road users who may behave
in complex and unpredictable ways.

Accurate prediction of pedestrian movements in an urban environment is an extremely
challenging task. Although pedestrian detection and tracking algorithms have an extensive
research history [2–4], detecting and tracking pedestrians is just the first step towards
human-like reasoning [5–7] with the ability to answer questions such as: is the pedes-
trian going to intersect with the ego-vehicle’s path? Therefore, prediction of pedestrian
behaviour is important for the safe introduction of autonomous vehicles into busy urban
areas. Pedestrian behaviour has been studied extensively and related studies have been
categorized based on the output (i.e., objective) produced by their algorithms [8]: trajec-
tory prediction, crossing intention, behaviour classification (walking, starting, stopping,
standing, walking-crossing, running-crossing) [9,10], movement direction [11] and goal
prediction. The focus of this work is on forecasting pedestrian crossing intention.

Pedestrian intent is defined as the future action of crossing (C) or not crossing (NC)
the road. Anticipating pedestrian intention might result in smoother and safer maneuvers,
such as avoiding an unnecessary stop when a pedestrian at the roadside is not showing
a crossing intention. Pedestrian intent prediction is especially challenging in the case
of pedestrians because they can change their speed and heading unexpectedly. Current
designs of connected and autonomous vehicles rely heavily on sensors fitted to the vehicle
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(i.e., on-board sensors) [5–7,10,12–24]. This is extensively reflected in the literature and will
be discussed in the next section. Many dangerous situations arise from the fact that the
driver’s view of a pedestrian is restricted [24]. To help compensate for a the limited field
of view from on-board sensors, fixed infrastructure sensors may be used. Furthermore,
research initiatives are concerned with short-term and long-term predictions [8]. Short-
term approaches predict pedestrians’ position between 2.5 and 3 s [25,26], while long-term
predictions are more goal-oriented [8].

This study proposes a machine learning approach to predict pedestrian crossing
intention up to 3 s before the road crossing takes place. A publicly available dataset
recorded from a fixed drone is used to evaluate the model on naturalistic trajectories
collected at an intersection. To our knowledge this is the first time pedestrian intention
is estimated and evaluated from a drone perspective instead of on-board or ground-level
infrastructure sensors.

The main contributions of this work are:

• Utilization of random forest (RF) for detailed pedestrian intention forecasting using
naturalistic trajectories that were captured using a drone;

• An algorithm to automate the addition of pedestrian crossing intent labels to the
existing dataset (see Section 4.1);

• Extensive and detailed validation and evaluation of pedestrian trajectories extracted from
real data to show that the proposed model is applicable at different crossing locations,
not just a predefined ROI (e.g., crosswalk). Scenarios where the crossing intention is not
clear are also investigated (e.g., pedestrian slowing down before crossing);

• Comparison analysis between an RF and a feed-forward neural network (NN) in
the context of pedestrian intention forecasting, verifying that the proposed approach
outperforms the NN.

This paper is structured as follows. Section 2 reviews the related literature about
pedestrian intent forecasting using data collected from on-board sensors or a fixed node.
Section 3 describes the problem formulation and introduces the chosen dataset. Section 4
discusses how the data were pre-processed to add new labels that were used during
training. It introduces a case study evaluating different naturalistic pedestrian trajectories
(i.e., road users were not aware of measurements taking place) in the given intersection.
Also, a comparison analysis between an RF and a feed-forward neural network (NN) is
conducted. Section 5 concludes the findings and discusses future work.

2. Related Work

A mature pedestrian crossing intention system should consist of detection, tracking
and intention recognition components [27]. A considerable body of literature exists on
pedestrian detection and tracking [2–4,28–33] and while there is still scope for improve-
ment, pedestrian detection algorithms are well developed thanks to convolutional neural
networks (CNN) and common architectures such as YOLO [28] and Faster R-CNN [29].
Tracking algorithms using deep learning [30,31] are starting to reach the performance levels
of traditional and state-of-the-art tracking methods [32,33]. Thus, in this section pedestrian
crossing intention prediction is examined exclusively.

There is a clear distinction in the literature between predictions made with data
collected from an on-board sensor and data collected from a fixed sensor in the infrastruc-
ture [34]. Consequently, the following section is partitioned according to this distinction.

2.1. On-Board Sensors

State-of-the-art automated driving systems employ a range of on-board sensors such
as cameras, lidar and radar, although the majority of studies on pedestrian intent are based
on video sensors normally placed behind the windshield of the vehicle [5–7,10,12–24].

A vision-based pedestrian intention prediction approach from monocular images is
proposed in [7]. Using a multi-stage CNN [35], pedestrian pose is analysed for several
frames to determine if they are likely to cross the road. The authors report a classifica-
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tion accuracy of 0.88. The evaluation is performed on a publicly available naturalistic
dataset focused on driver and pedestrian behaviour. Intention estimation from a monocular
dashboard camera is also addressed in [18]. A large-scale dataset designed for pedestrian
intention estimation is proposed together with a baseline model for intention and trajectory
estimation. The ground truth for crossing intention is collected by conducting a large-scale
experiment to determine human reference data for this task. Their intention estimation
model, based on a convolutional long short-term memory neural network (LSTM), achieves
an accuracy of 0.79. In [6] graph convolution is used to model the spatiotemporal relation-
ship between pedestrians and other objects of interest in the scene. A new dataset, designed
specifically for autonomous-driving scenarios in areas with dense pedestrian populations,
is also introduced. Results show that their spatiotemporal relationship reasoning model
can predict pedestrian intention with an accuracy of over 0.8 on their own dataset one
second before the crossing commences.

Contextual knowledge using derived features or prior knowledge of the environ-
ment [19,20] can improve prediction. A context-based model is introduced in [21] predict-
ing pedestrian crossing behaviours in inner-city locations using a set of twelve carefully
chosen features. A supervised learning algorithm is deployed and trained on automatically
labelled the pedestrian’s crossing intentions. Context is also taken into consideration in [22],
modelling pedestrian movement in relation to relevant road edges. In order to determine
the relevant road edges, the scene is segmented into four zones comprising: the ego-zone
(defined by the ego-vehicle lane), the street-zone (comprising all non-ego-vehicle lanes),
the mixed-zone (parking lanes and inlets for buses) and the sidewalk-zone. The reported
accuracy using a Support Vector Machine (SVM) is 0.897. Crossing behaviour at signalized
intersections is modelled in [23] by incorporating pedestrian physical states and contextual
information. The probabilistic model is constructed using a dynamic Bayesian network and
is trained with data collected using three monocular cameras mounted on the car. A novel
dataset is introduced in [12] to facilitate traffic scene analysis and pedestrian behaviour. The
dataset is captured from three cameras positioned inside a car (below the rear-view mirror),
providing contextual and behavioural information along with bounding boxes. In order to
embed contextual information in the data, each frame is assigned a contextual tag describ-
ing the scene (e.g., number of lanes, presence of a zebra crossing, time of day or weather).
Results show that classification using only the attention/gait information (i.e., behavioural
information) can correctly predict approximately 40% of crossing behaviour observed;
however, adding context, such as the width of the street and the presence of the designated
crossing, improves the classification by 20%. Two-dimensional human pose features and
scene context are investigated in [13] to forecast the crossing intention of pedestrians and
other vulnerable road users (i.e., non-motorised road users). A multi-task learning model
is proposed to predict actions, crossing intent and trajectories. Finally, pedestrian intent
recognition, exploiting various sources of contextual information, is tackled in [14] as a
time series modelling and binary classification problem. A novel stacked recurrent neural
network (RNN) is proposed, achieving accuracies of 0.844. Moreover, a framework for
pedestrian intention estimation is proposed and deployed on a real vehicle in [15]. Results
from the field tests showed 0.75 overall accuracy. Additionally, using a Bayesian network
the motion and intention of pedestrians near a zebra crossing is estimated in [16] with
91.8% and 84.6% success in motion and intention prediction, respectively, one second into
the future.

In more recent work, [17] pedestrian crossing intention is determined though 3D Pose
estimation, achieving 0.9128 accuracy. This sets a new standard of performance, although
the C/NC labelling is done manually frame by frame. It should also be noted that the test
and validation sets have only 7 pedestrians each.

2.2. Infrastructure Sensors

To date, not as much work has been done on crossing intention forecasting from
infrastructure sensors (e.g., roadside sensors or cameras installed on aerial vehicles, such
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as drones) as there has been with on-board (on vehicle) sensors. Previous studies have
focused on the detection and tracking of pedestrians and vehicles [36], pedestrian counting
using video surveillance cameras [37], interactions between pedestrians and other agents
or path prediction. In [38] interactions between pedestrians and vehicles are studied using
video data from two cameras fixed to a lamppost. Their framework, also referred to as the
distance-velocity model, is based on vehicle trajectory speed and distance to the crosswalk.
In path prediction (i.e., trajectory forecasting), the forecasting of destinations is studied.
Although strictly speaking this is not direct pedestrian intention estimation (i.e., binary
intention interpretation (C, NC)) it is still classified as pedestrian behaviour prediction.
In [26] trajectory prediction is also studied using real-world data collected from a static
wide-angle camera and an artificial neural network (ANN). The ANN has two hidden
layers and can forecast pedestrian short-time trajectories up to 2.5 s ahead of time for traffic
safety applications. Results show that the ANN outperforms other methods such as a
constant velocity model Kalman filter (KF) and the extrapolation of fitted polynomials by
21% on average. Using outdoor video recordings and pre-generated cost maps dependent
on the environment semantics, an extension to the growing hidden Markov model is
proposed in [19] to predict pedestrian positions over a longer time horizon.

Recently, there has been a trend towards formulating the problem of trajectory fore-
casting as a time series prediction problem using an RNN and its variants [39,40]. In [41] a
model where a LSTM is used to predict human movement and forecast future trajectories is
proposed. The LSTM method is demonstrated on two publicly available human-trajectory
datasets and has been shown to predict motion dynamics in crowded scenes, outperform-
ing methods such as an off-the-shelf KF, or social force model [42]. Based on the same
datasets, [43] shows that a simple constant velocity model outperforms some of the most
advanced neural network architectures when dealing with linear trajectories.

It is worth mentioning the work by [44,45]. In [44] the authors use quantile regression
forests to predict time-to-cross when approaching a crosswalk. Their evaluation is based
on vehicle and pedestrian tracks extracted from LIDAR data from a crosswalk in Germany.
Because of their aim, prediction of pedestrian crossing behaviour at urban crosswalks in
terms of remaining time-to-cross, they only evaluate the trajectories of actual crossing
pedestrians. In [45] nine types of pedestrian-vehicle interactions are interpreted by using
pose estimation to generate 2 d key points on a pedestrian skeleton and RF. The highest
reported accuracy is 0.965 on their own dataset.

Nine studies on crossing intent prediction from a fixed sensor were identified in
the literature. Using a database of LIDAR-derived pedestrian trajectories, a large set of
features is studied by [46]. The best features are selected to train a binary classifier based
on a Support Vector Machine (SVM) achieving an accuracy of 0.9167. In [47], the same
authors propose a pedestrian motion prediction method combining pedestrian motion
tracking algorithm and a data-driven method, which improves the generalization ability
of the model. The pedestrian intention classifier is based on a SVM and mainly serves
as a data reduction procedure removing irrelevant pedestrians from the scene, therefore
reducing the number of targets to be tracked. For all identified crossing pedestrians,
the time-to-cross and crossing point is predicted. Pedestrian intention to cross the road
is also investigated by [24] to develop an active pedestrian protection system. Using
motion contour histograms of oriented gradients combined with a SVM they estimated
the pedestrian crossing intent. Using high-level pre-processed data (e.g., position, velocity,
orientation), several ML algorithms are used in [48] to train different classifiers to estimate
the intention of a pedestrian to cross at a zebra crossing. Four features are derived from the
original dataset and used in the classification task: (i) distance to zebra crossing, (ii) distance
between the nearest road border point and the pedestrian position, (iii) distance between
the nearest road point and the zebra anchor, measured along the border curve and the angle
between a pedestrian’s current heading direction, and (iv) pedestrian-to-zebra direction.
The k-nearest neighbours is found to be the best performing method for classification,
achieving a F2 score (i.e., test accuracy) of 0.9237. Using pre-processed roadside LIDAR
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point cloud data, a naïve Bayes based model is presented in [25], predicting the intention
to cross between 0.5 and 3 s before the crossing commences. Only 3 features are selected:
position, velocity and direction. For evaluation, a test set is collected and divided into
10 C and 10 NC trajectories using a probability threshold of 40%. Results show a high
prediction accuracy and higher flexibility than the popular ANN model. LIDAR-based
images (i.e., sampled from a point cloud), and different deep learning architectures are used
in [49] to estimate pedestrian intention at a crosswalk. A precise map of the environment
is utilized, providing information on road geometry and the accurate position of curbs
and crosswalks. The best results are achieved using a dense neural network achieving an
accuracy greater than or equal to 0.8. The use of LSTM or CNN architectures does not yield
the expected improvement although all of them outperform the SVM, which is used as a
baseline for performance evaluation. An LSTM is deployed in [50] to predict pedestrians
red-light crossing intentions on video data collected at a crosswalk, achieving an accuracy
of 0.916. Crossing intention is labelled manually along with other features such as gender,
grouping behaviour and walking direction. The model presents a high false-positive rate
and according to the authors this problem can be overcome by adding more features related
to pedestrian mobility information such as walking speed and acceleration. An extension of
the previous work is found in [51] where four machine learning models are used to predict
pedestrians’ red-light crossing intentions. The best model, an RF, achieves an accuracy
of 0.920. An LSTM with attention mechanism (AT-LSTM) is proposed in [27]. Attention
mechanism (AT) ensures that greater weight is given to key features. Thanks to the addition
of AT and precisely chosen parameter sets using statistical analysis, the model achieves
accuracies of 0.9615 and 0.9068, 0 s and 0.6 s prior to crossing, respectively.

In this paper, we propose a model based on an RF that predicts pedestrian crossing
intention at different locations around an urban intersection (i.e., crosswalk, pedestrian
walking in parallel to the road and a pedestrian walking on other arms of the intersection),
not just a predefined ROI. Random forests is a well-established algorithm for statistical
learning and has been applied to classification and recently for classification of pedestrian
trajectories [48,52,53] and intention [5,51]. We also investigate the addition of a derived
categorical feature, which we have called crossing, to the original dataset by performing
a semantic segmentation of the environment (i.e., partition the image into two segments:
sidewalk and road), and evaluate ten crossing and ten non-crossing trajectories. Results
show how effective the model is at predicting pedestrian crossing intention when the TTC is
above 2 s. Furthermore, we conduct a comparison between an RF and a feed-forward neural
network (NN), showing that the former outperforms the latter in terms of accuracy and
training times. Finally, we study how the model reacts when the pedestrian demonstrates
apparent hesitation (e.g., a significant velocity drop before crossing) and the potential
impact of oncoming traffic.

3. Methodology

The problem of crossing intention prediction is formulated as a binary classification
task where the objective is to determine if a given pedestrian will cross or not cross the
street. The proposed model is able to predict the crossing intention of pedestrians walking
at different locations around an unsignalized intersection (e.g., crosswalk, sidewalk or
in front of the curb) given a list of selected features and derived features provided by a
publicly available dataset and data preprocessing, respectively.

3.1. Random Forest

A random forest [54] is a supervised machine learning algorithm used for classification
and regression. As an ensemble learning method, many decision trees are constructed
during training using bagging [55] and feature randomness. Each decision tree, consisting
of split and leaf nodes, is fitted with random sub-samples of the dataset. Once the RF is
trained, the dependent variable is computed by averaging the prediction of all trees in the
ensemble (i.e., forest), in the case of regression, or by majority vote of the predicted class
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label, for classification. This paper focuses on the latter, the classification task. Random
forests can also deal with missing and categorical data [56], are less computationally
expensive, are more interpretable and are less prone to overfit than a (NN) [57,58]. Neural
networks trained models are difficult to interpret, consisting of hundreds to millions of
parameters. This black box problem makes it complicated to use NN in applications
where trustworthiness and reliability of the predictions are of great importance. Humans
have to understand what models are doing, especially when they are responsible for the
consequences of their application [59].

Given a set of input features v, a trained RF classifier will output the class c they belong
to and the probability of it being in that class. The predicted class probabilities of an input
feature vector are computed as the mean predicted class probabilities of the trees in the
forest, denotated by T. The class probability of a single tree is the fraction of samples of the
same class in a leaf [60].

p(c|v) = 1
T

T

∑
t

pt(c|v) (1)

For the case of an RF, important hyperparameters include: number of decision trees in
the forest and number of features considered by each tree when splitting a node. For the
experiments, 500 tree estimators with

√
v features in each split are used. To measure the

quality of the split, entropy is used.

Entropy =
#Classes

∑
i=1

−pi ∗ log2(pi) (2)

3.2. Dataset

This study relies on a publicly available dataset [61] to train and test the proposed
model. Pedestrian trajectories are extracted from drone video recordings taken at four
German road intersections. The videos were recorded in 4K (4096 × 2160 pixel) resolution
at 25 frames per second. Every recording has a duration of approximately 20 min covering
areas of 80 × 40 m to 140 × 70 m. All four intersections are unsignalized and differ in
shape (e.g., T-junction, four-armed), right-of-way rules, and the number and types of
lanes and traffic composition. In this study, the intersection at Frankenburg is chosen (see
Figure 1) because it contains the largest number of pedestrians, due to its location near the
city center. There are 12 recordings (#18–#29) of this intersection with a total duration of
~242.5 min. An image and three CSV files are provided per recording. The image shows the
intersection from a drone’s viewpoint. Two of the CSV files contain meta data about the road
users and the recording itself (e.g., recording number, track id, class, frame rate, duration,
location, number of pedestrians) while the third contains the trajectory information. The
features provided per frame are: id, frame, xPosition, yPosition, xVelocity, yVelocity, Heading,
xAcceleration and yAcceleration. The dataset contains trajectories of vehicles including cars,
buses and trucks, as well as VRU such as pedestrians and cyclists; however, in this work
pedestrian trajectories are the primary interest.

Pedestrian crossing intention is inferred based on their features (xPosition, yPosition,
xVelocity, yVelocity, Heading) and a derived feature distanceToRoad. As discussed in Section 2,
derived features and semantic segmentation of the environment can improve prediction.
Here, the derived feature distanceToRoad is extracted along with x-yPosition, x-yVelocity and
Heading, to train an RF. Given a trajectory sample, the RF will output a class label (C, NC)
and its probability. The next section discusses how the data are processed to extract the
labels (C and NC) and presents results in two cases: when the model is applied to the
overall dataset and when the model is applied to a particular subset of selected trajectories,
belonging to one of the recordings of the chosen intersection.
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Figure 1. Segmented intersection. Blue represents the sidewalk and red the road.

4. Experiments and Results
4.1. Data Preprocessing

Since the original dataset does not provide labels for pedestrian crossing intention,
an automatic labelling strategy (i.e., an algorithm that provides the ground truth at each
timestep) was adopted. A similar approach was carried out by [21], although their data
were collected from an on-board camera and they presented their results from the ego
lane perspective.

In this paper, in order to add the derived categorical feature crossing to the original
dataset, a basic semantic segmentation of the environment is needed to partition the image
into two segments: sidewalk and road. This segmentation was done manually since
the dataset did not provide a high-definition map, although it could have been done
automatically using data from OpenStreetMaps [62] and a CNN [63] or using roadside
LIDAR data [64]. Figure 1 shows the segmentation applied to the chosen intersection. As a
result of this segmentation and a derived feature, which we have called distanceToRoad, it
can be determined if a pedestrian commences crossing the road. The distanceToRoad feature
can be calculated by casting a vector relative to the pedestrian’s heading from its current
position to the road and measuring the vector length (Figure 2). When a crossing action
is detected, each previous timestep (up to 3 s) is annotated as a C behaviour. The rest are
considered NC except for the trajectories where the pedestrian is on the road (i.e., being on
the road is always considered C) which are ignored and not used during training or testing.
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In the dataset containing the derived categorical feature crossing, there is a significant
imbalance among classes (C, NC). This imbalance can be observed in Figure 3 for recording



Sensors 2023, 23, 2773 8 of 16

#18, where ~7700 C samples and ~98,990 NC samples. The imbalance was addressed by
randomly down sampling the majority class [65], NC in this case.
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4.2. Training

Using crossing labels and pedestrian features xPosition, yPosition, xVelocity, yVelocity,
Heading and the derived feature distanceToRoad, an RF was trained with the hyperparameters
discussed in Section 3. For training and evaluation Scikit-learn was used [66] which is a
Python machine learning library. The trajectory data were shuffled and split into training
(70%) and test sets (30%) for model fitting and evaluation purposes. We also ensured
the test set did not contain any duplicates of trajectory samples found in the training set.
Eleven recordings from the intersection located at Frankenburg (#19–#29) were used. The
pedestrian trajectory data from the recording that was not used for training (#18) was used
to perform further evaluation.

4.3. Evaluation

Since a binary classifier was used, performance can be expressed by using a confusion
matrix. This gives the number of correctly and incorrectly classified instances: true positives
(TP), true negatives (TN), false positives (FP) and false negatives (FN). The normalized
confusion matrix for the test set is illustrated in Figure 4.
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Classification accuracy is also computed according to the widely accepted definition:

Accuracy =
(TP + TN)

(TP + FP + FN + TN)
(3)

K-fold cross-validation with k = 5 is used, which results in an average accuracy of
0.9883 with a standard deviation of 0.0006.

The confusion matrix in Figure 4 shows that the model is able to classify C and NC
trajectory samples successfully, with TPs and TNs above 97%. In terms of FNs, which is an
important safety concern, the number is below 1%. The FPs are also low at ~2%.

To further evaluate the model performance, ten crossing and ten non-crossing tra-
jectories, previously unseen by the model during training, are chosen in an experiment
similar to that performed in [25]. The trajectories are chosen from recording #18. Figures 5
and 6 show a subset of the selected C and NC trajectories along with the crossing intent
prediction and its probability. The possible predicted intention values are 0 or 1, C and NC,
respectively.
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Our results show a higher confidence level than [25] when the TTC is longer than
2 s. As expected, the crossing probability increases as the pedestrian approaches the
crossing facilities (e.g., zebra crossing or road edge). Prediction accuracy for the ten
crossing trajectories is 0.97, with a decision boundary of 0.5. As in [25], intent prediction is
computed every 0.5 s. In the evaluation for the ten non-crossing trajectories, it is not possible
to replicate the experiment meticulously due to differences in the road structure (e.g., size of
the sidewalk when approaching decision making point). Instead, NC trajectories capturing
a range of scenarios are presented (e.g., pedestrians turning when approaching any of the
crossing areas, pedestrians walking in parallel to the road, pedestrians walking away from
the pedestrian crossing or changing direction abruptly).

Figure 5 shows how the model is capable of predicting pedestrian intention for differ-
ent crossing scenarios in the intersection:

• C Pedestrian at the zebra crossing, ID: 42, 121, 162, 273;
• C Pedestrian at the bottom arm of the intersection, ID: 4, 100, 242;
• C Pedestrians on less utilized (i.e., walked) areas (left and top arms of the intersection),

ID: 1, 171, 299.

Conversely, Figure 6 shows the classification results for non-crossing trajectories:

• Pedestrians walking on the sidewalk with NC intention, ID: 193, 369;
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• NC while walking in front of the zebra-crossing, ID: 63, 77, 148, 183, 203_1, 242;
• Pedestrian walking away from the crosswalk, ID: 248;
• Pedestrian turning and NC in front of the road, ID: 203_2.

Finally, for the sake of completeness, a confusion matrix of all trajectory samples for
intersection recording number 18 is provided in Figure 7. Results show that the model is
able to classify C and NC trajectory samples successfully, with TPs and TNs counts of 96%
and 95%, respectively. Although there has been an increase in the number of FNs and FPs
with respect to Figure 4, their values are below 5%.

Sensors 2023, 23, x FOR PEER REVIEW 12 of 17 
 

 

 

Figure 7. Confusion matrix for RF classification for all samples at recording #18. 

To further evaluate the proposed model, we compare the classification accuracy of 

the RF against a NN. We train a multi-layer perceptron (MLP) [67] which stands for a NN 

with one or more hidden layers [68], by using the same training and testing sets discussed 

in section IV (B). In order to tune the hyperparameters of the NN, we use grid search (GS) 

[69] which let us define a search space grid of hyperparameter values and evaluate every 

position in the grid to find the best combination that achieves the higher classification 

accuracy. In our case the (GS) is parameterized for training a MLP classifier using 5-fold 

cross-validation with the following hyperparameter values: 

• Number of hidden layers (1, 2, 3) 

• Number of units per layer (10, 100, 200, 500, 1000) 

• Activation function (rectified linear unit (ReLU), hyperbolic tangent) 

• Alpha (0.0001, 0.05) [70] 

• Learning rate (constant, adaptive) [70] 

• Solver (stochastic gradient descent, Adam [71]) 

The best combination of hyperparameters is shown in Table 1 and achieves a mean 

accuracy of 0.97, which is moderately lower than the accuracy obtained by the RF. Both 

models are implemented in Python running on an Intel Desktop (Intel Core i7-8700 CPU 

@3.20 Ghz, 16 GB RAM). The training time of the RF is 6.9 s, which is significantly lower 

than the 861.2 s required to train the NN. Finally, the RF did not require a grid search, 

which took 28,150 s (~7.8 h) for a NN on the desktop system. 

Table 1. Grid search results. 

Hyperparameter Value 

Number of hidden layers 3 

Number of units per layer 1000 

Activation function ReLU 

Solver Adam 

Alpha 0.05 

Learning rate Constant 

4.4. When Pedestrian Intention Is Not Clear 

The previous section investigated the crossing intention in cases where the pedes-

trian maintained a steady walking velocity. This section studies how the model reacts 

when the pedestrian demonstrates apparent hesitation (e.g., a significant velocity drop 

before crossing). Figure 8 shows the crossing intention of two pedestrians that show 

Figure 7. Confusion matrix for RF classification for all samples at recording #18.

To further evaluate the proposed model, we compare the classification accuracy of
the RF against a NN. We train a multi-layer perceptron (MLP) [67] which stands for a NN
with one or more hidden layers [68], by using the same training and testing sets discussed
in section IV (B). In order to tune the hyperparameters of the NN, we use grid search
(GS) [69] which let us define a search space grid of hyperparameter values and evaluate
every position in the grid to find the best combination that achieves the higher classification
accuracy. In our case the (GS) is parameterized for training a MLP classifier using 5-fold
cross-validation with the following hyperparameter values:

• Number of hidden layers (1, 2, 3)
• Number of units per layer (10, 100, 200, 500, 1000)
• Activation function (rectified linear unit (ReLU), hyperbolic tangent)
• Alpha (0.0001, 0.05) [70]
• Learning rate (constant, adaptive) [70]
• Solver (stochastic gradient descent, Adam [71])

The best combination of hyperparameters is shown in Table 1 and achieves a mean
accuracy of 0.97, which is moderately lower than the accuracy obtained by the RF. Both
models are implemented in Python running on an Intel Desktop (Intel Core i7-8700 CPU
@3.20 Ghz, 16 GB RAM). The training time of the RF is 6.9 s, which is significantly lower
than the 861.2 s required to train the NN. Finally, the RF did not require a grid search,
which took 28,150 s (~7.8 h) for a NN on the desktop system.

Table 1. Grid search results.

Hyperparameter Value

Number of hidden layers 3
Number of units per layer 1000

Activation function ReLU
Solver Adam
Alpha 0.05

Learning rate Constant
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4.4. When Pedestrian Intention Is Not Clear

The previous section investigated the crossing intention in cases where the pedestrian
maintained a steady walking velocity. This section studies how the model reacts when
the pedestrian demonstrates apparent hesitation (e.g., a significant velocity drop before
crossing). Figure 8 shows the crossing intention of two pedestrians that show hesitation
before crossing the street (i.e., C intention). In order to investigate the potential impact
of oncoming traffic, an extra plot displaying both the pedestrian (blue) and approaching
vehicle (black) velocities is added.
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and 298 (right) from recording #18.

Analysing the results in Figure 8 shows that the model reacts with a decrease in
crossing intention probability for pedestrians ID 53 and 298 when the pedestrian velocity
drops below 0.1 m/s. In the case of pedestrian ID 298, the probability goes below the
decision boundary predicting NC for ~12 frames. Other features such as heading, position
and distance to the road are used to infer pedestrian crossing intention. Pedestrian ID 298
changes direction and speed suddenly and therefore distance to the road, which contributes
to the probability decrease seen in the initial frames (frames 1–20). A similar sudden change
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of direction with the consequent probability decrease is also observed for pedestrian ID 369
in Figure 6.

Finally, in an attempt to infer the cause of the significant pedestrian change of velocity
before crossing, we further inspect the scenarios for pedestrians ID 53 and 298 by extracting
the trajectory and velocity of the closest vehicle that is about to encounter the pedestrian.
Pedestrian ID 53 decreases their velocity as the vehicle approaches the zebra crossing at
above 9 m/s. The pedestrian velocity drop is lower at the beginning, possibly due to the
distance of the vehicle to the zebra crossing and, although the driver is decreasing the
vehicle speed, potentially encouraging the pedestrian to cross, we observe a pedestrian
velocity drop (below 0.1 m/s) up to frame ~80 when the vehicle speed is below ~3 m/s.
In contrast, the vehicle approaching pedestrian ID 298 does not decrease its velocity until
frame ~40, forcing the pedestrian to decrease their velocity more aggressively. This supports
the importance of studying pedestrian interaction with other agents in the scene. The model
could also be improved by adding other contextual information (e.g., extracting further
pedestrians features such as body pose or gaze direction).

5. Conclusions and Future Work

This paper has presented a random forest classifier to predict pedestrian crossing
intention at a busy inner-city intersection. Using pedestrian features such as position,
velocity and heading, provided by a publicly available dataset, and derived features, the
model was able to predict crossing and non-crossing intention within a 3-s time window
and an accuracy of 0.98. Due to the nature of the dataset used, providing only information
related to the trajectory of the tracked pedestrian, detailed features such as body pose or
gaze direction that might potentially improve the model performance could not be extracted.
In future, this could be improved by building a dataset recorded from a fixed sensor and
extracting these features. The authors also conducted a comparison analysis between
an RF and a NN showing that the RF outperformed the latter in terms of accuracy and
training times. Scenarios where the crossing intention was not clear were also investigated
(e.g., pedestrian slowing down before crossing), revealing the potential importance of
studying pedestrian interaction with other agents in the scene in future work.

Author Contributions: Conceptualization, E.M., M.G., E.J., B.D., E.W. and J.H.; methodology, E.M.;
software, E.M.; validation, E.M.; formal analysis, E.M.; investigation, E.M.; resources, E.M.; data
curation, E.M.; writing—original draft preparation, E.M.; writing—review and editing, E.M., M.G.,
E.J., B.D. and D.M.; visualization, E.M.; supervision, M.G., E.J., B.D., D.M., A.P., P.D., C.E., E.W. and
J.H.; project administration, M.G. and E.J; funding acquisition, M.G. and E.J. All authors have read
and agreed to the published version of the manuscript.

Funding: This work was supported with the financial support of the Science Foundation Ireland
grant 13/RC/2094_P2 and co-funded under the European Regional Development Fund through
the Southern & Eastern Regional Operational Programme, Lero—the Science Foundation Ireland
Research Centre for Software (www.lero.ie (accessed on 9 September 2019)).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. World Health Organization. Global status report on road safety. Inj. Prev. 2015. Available online: http://www.who.int/violence_

injury_prevention/road_safety_status/2015/en/ (accessed on 20 May 2020).
2. Cao, J.; Pang, Y.; Xie, J.; Khan, F.S.; Shao, L. From Handcrafted to Deep Features for Pedestrian Detection: A Survey. IEEE Trans.

Pattern Anal. Mach. Intell. 2021, 44, 4913–4934. [CrossRef] [PubMed]
3. Yilmaz, A.; Javed, O.; Shah, M. Object tracking: A survey. ACM Comput. Surv. 2006, 38, 13. [CrossRef]
4. Gawande, U.; Hajari, K.; Golhar, Y. Pedestrian Detection and Tracking in Video Surveillance System: Issues, Comprehensive

Review, and Challenges. In Recent Trends in Computational Intelligence; Elsevier: Amsterdam, The Netherlands, 2020.
5. Fang, Z.; Vázquez, D.; López, A.M. On-Board Detection of Pedestrian Intentions. Sensors 2017, 17, 2193. [CrossRef]
6. Liu, B.; Adeli, E.; Cao, Z.; Lee, K.-H.; Shenoi, A.; Gaidon, A.; Niebles, J.C. Spatiotemporal Relationship Reasoning for Pedestrian

Intent Prediction. IEEE Robot. Autom. Lett. 2020, 5, 3485–3492. [CrossRef]

www.lero.ie
http://www.who.int/violence_injury_prevention/road_safety_status/2015/en/
http://www.who.int/violence_injury_prevention/road_safety_status/2015/en/
http://doi.org/10.1109/TPAMI.2021.3076733
http://www.ncbi.nlm.nih.gov/pubmed/33929956
http://doi.org/10.1145/1177352.1177355
http://doi.org/10.3390/s17102193
http://doi.org/10.1109/LRA.2020.2976305


Sensors 2023, 23, 2773 14 of 16

7. Fang, Z.; Lopez, A.M. Is the Pedestrian going to Cross? Answering by 2D Pose Estimation. In Proceedings of the 2018 IEEE
Intelligent Vehicles Symposium (IV), Changshu, China, 26–30 June 2018; pp. 1271–1276. [CrossRef]

8. Ridel, D.; Rehder, E.; Lauer, M.; Stiller, C.; Wolf, D. A Literature Review on the Prediction of Pedestrian Behavior in Urban
Scenarios. In Proceedings of the 2018 21st International Conference on Intelligent Transportation Systems (ITSC) 2018, Maui, HI,
USA, 4–7 November 2018; pp. 3105–3112. [CrossRef]

9. Kwak, J.-Y.; Ko, B.C.; Nam, J.-Y. Pedestrian intention prediction based on dynamic fuzzy automata for vehicle driving at nighttime.
Infrared Phys. Technol. 2017, 81, 41–51. [CrossRef]

10. Quintero, R.; Parra, I.; Llorca, D.F.; Sotelo, M.A. Pedestrian Intention and Pose Prediction through Dynamical Models and
Behaviour Classification. In Proceedings of the 2015 IEEE 18th International Conference on Intelligent Transportation Systems
2015, Gran Canaria, Spain, 15–18 September 2015; pp. 83–88. [CrossRef]

11. Dominguez-Sanchez, A.; Cazorla, M.; Orts-Escolano, S. Pedestrian Movement Direction Recognition Using Convolutional Neural
Networks. IEEE Trans. Intell. Transp. Syst. 2017, 18, 3540–3548. [CrossRef]

12. Rasouli, A.; Kotseruba, I.; Tsotsos, J.K. Are They Going to Cross? A Benchmark Dataset and Baseline for Pedestrian Crosswalk
Behavior. In Proceedings of the IEEE International Conference on Computer Vision Workshops, Venice, Italy, 22–29 October 2017;
pp. 206–213. [CrossRef]

13. Ranga, A.; Giruzzi, F.; Bhanushali, J.; Wirbel, E.; Pérez, P.; Vu, T.-H.; Perotton, X. VRUNet: Multi-Task Learning Model for Intent
Prediction of Vulnerable Road Users. Electron. Imaging 2020, 32, art00012. [CrossRef]

14. Rasouli, A.; Tsotsos, J.K. Pedestrian Action Anticipation using Contextual Feature Fusion in Stacked RNNs. arXiv 2020,
arXiv:2005.06582.

15. Alvarez, W.M.; Moreno, F.M.; Sipele, O.; Smirnov, N.; Olaverri-Monreal, C. Autonomous Driving: Framework for Pedestrian
Intention Estimation in a Real World Scenario. In Proceedings of the 2020 IEEE Intelligent Vehicles Symposium (IV), Las Vegas,
NV, USA, 19 October–13 November 2020; pp. 39–44. [CrossRef]
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