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Abstract: Smart farming (SF) applications rely on robust and accurate computer vision systems. An
important computer vision task in agriculture is semantic segmentation, which aims to classify each
pixel of an image and can be used for selective weed removal. State-of-the-art implementations use
convolutional neural networks (CNN) that are trained on large image datasets. In agriculture, publicly
available RGB image datasets are scarce and often lack detailed ground-truth information. In contrast
to agriculture, other research areas feature RGB-D datasets that combine color (RGB) with additional
distance (D) information. Such results show that including distance as an additional modality can
improve model performance further. Therefore, we introduce WE3DS as the first RGB-D image dataset
for multi-class plant species semantic segmentation in crop farming. It contains 2568 RGB-D images
(color image and distance map) and corresponding hand-annotated ground-truth masks. Images were
taken under natural light conditions using an RGB-D sensor consisting of two RGB cameras in a stereo
setup. Further, we provide a benchmark for RGB-D semantic segmentation on the WE3DS dataset and
compare it with a solely RGB-based model. Our trained models achieve up to 70.7% mean Intersection
over Union (mIoU) for discriminating between soil, seven crop species, and ten weed species. Finally,
our work confirms the finding that additional distance information improves segmentation quality.

Keywords: crop farming; weed detection; semantic segmentation; image dataset; RGB-D; stereo vision

1. Introduction

Scene understanding is an important computer vision concept in applying smart
farming (SF) technologies, i.e., vegetation segmentation [1], detecting the composition of
plant species in crop farming [2], segmentation of different plant parts [3], or anomalie [4]
and disease detection [5]. Automated guided vehicles (AGV) or autonomous mobile robots
(AMR), also called field robots, can be used to monitor the status of the crops in high
temporal and spatial resolutions and perform precise actions on the field. With a ground-
based AGV or AMR equipped with image sensors and accurate computer vision systems, it
is possible to obtain parameters of single plants as well as soil heterogeneity and use them
for intelligent agricultural processes, such as robotic weed regulation [6] or site-specific
fertilization [7] and plant protection [8]. One goal of such SF applications is the reduction of
input resources, e.g., water, energy, and agrochemicals, while keeping or even increasing
yields [7,9]. The major factor for yield loss is uncontrolled weeds [10] that compete with
crops for resources such as nutrients, water, and light. The increasing occurrence of herbicide-
resistant weeds [11], as well as negative impacts on the ecosystem and human health [12]
makes it necessary to reduce herbicide usage. Spot spraying systems [13,14], mechanical
target hoeing [15], or tube stamp robots [16] are options to achieve this goal. However,
keeping specific weeds could benefit agricultural sites, for example by nitrogen fixation,
erosion protection, or increasing biodiversity [17]. Selective removal of weeds must rely
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on expert knowledge about plant-crop interactions [18] and computer vision systems that
are capable of detecting weed species to distinguish between harmful and harmless weeds.
This also includes the necessity of precise localization of different weed species, plant cover,
and biomass estimation as well as determining the growth stage of the crop. A computer
vision task, that is used for simultaneous classification and localization is called semantic
segmentation. The goal of semantic segmentation is to assign a class to each pixel of an
image. In an agricultural context, the used classes are often soil, plant residues, or different
plant species. The output of a semantic segmentation model is a color-coded segmentation
mask, where each color represents a different class. The differently colored areas show the
diverse plant composition in the image and the mask can be used to localize the plants on
the field to perform actions. Most state-of-the-art semantic segmentation applications in
agriculture [19–22] are based on RGB imagery and distinguish between three classes, i.e.,
soil, crop, and weeds (all non-crop plant species). The used methods range from machine
learning (ML) methods such as Random Forest (RF) based on feature extraction [20] to
convolutional neural networks (CNN), such as U-net [23] or fully convolutional network
(FCN) [21]. With the growing computational power of embedded computers with a graphics
processing unit (GPU), field robots can perform real-time field actions based on semantic
segmentation models using state-of-the-art CNNs.

Our goal is to perform a multi-class plant species semantic segmentation under natural
light conditions. The challenges are caused by the difficult outdoor environment (different
lighting conditions, changing soil and plant appearance) and the complex biological system
(many plant species, different growth stages, and supply status). Therefore, a large image
dataset is needed to train state-of-the-art semantic segmentation models. First implemen-
tations have limited the number of classes to soil, crops and weeds [19–21,24] or tried to
standardize the light conditions by blocking out the sunlight and artificially illuminating
the plants [21,22]. Nevertheless, those models are restricted to the given constraints and can
not be used for a broader plant composition analysis or selective removal application. As
shown in the literature [25,26], additional distance information can help to achieve better
results for semantic segmentation of indoor environments and cityscapes. It is plausible to
assume, that this result also holds for multi-class plant species semantic segmentation. For
that reason and the lack of publicly available image datasets in agriculture, we collected
and annotated images from crops and weeds in early growth stages under real outdoor
conditions. To capture a 4-channel color and distance image (RGB-D), we used two cameras
in a stereo setup. By adding ground-truth segmentation masks for selected RGB-D images,
we introduce a novel RGB-D image dataset, called WE3DS. Finally, we provide a benchmark
result for multi-class plant species semantic segmentation and compare models based on
RGB, RGB-D and D trained on our developed WE3DS RGB-D image dataset.

The article is structured as follows: Section 2 reviews comparable RGB-D image
datasets in other domains and related agricultural image datasets. In Section 3, we describe
the development of the WE3DS image dataset including RGB-D sensor and data collection
and give an overview of the dataset statistics. Section 4 describes the bechnmark design and
results of our multi-class plant species semantic segmentation model. A discussion of the
significance of our WE3DS image dataset and our semantic segmentation results is given in
Section 5. Section 6 concludes the work and gives an outlook on future research topics.

2. Related Work

An RGB-D sensor captures RGB-D images that combine color information (RGB) with
depth information (D) to create a detailed 3D representation of an object or scene. We use the
term distance to indicate, that the intensity value of the depth map is encoded to represent
the distance from an object in the scene to the camera. Another depth map representation
encodes the disparity, i.e., pixel parallax of an object between the left and right camera
image, of a stereo camera system. Our research focus is on outdoor applications. However,
it is worth noting that early implementations of RGB-D image datasets primarily focused
on indoor environments and utilized active sensors, such as the Microsoft Kinect, that emit
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structured light patterns to measure distance. Examples of such datasets are SUNRGB-D [27]
and NYUv2 [28]. For outdoor environments, structured light methods are less stable because
of exterior lighting conditions [29]. In these environments, passive settings such as stereo
sensors are preferable. Cordts et al. published an RGB-D image dataset CityScapes [30] of
inner city street scenes captured with a stereo camera setup mounted on top of a driving car.
They used two RGB cameras with 2 MP CMOS sensors (OnSemi AR0331) to capture RGB-D
images in 50 cities. The final dataset contains 5000 densely labeled and 20,000 coarsely
labeled RGB-D images with 19 classes. Other similar RGB-D datasets of street scenes are
KITTI Vision Benchmark Suite [31] (400 images, 35 classes), CamVid [32] (701 images,
32 classes), or Daimler Urban Segmentation [33] (500 images, 5 classes).

Image datasets for various computer vision tasks are also available in the field of agri-
culture. They are collected manually [19,24], with robotic devices [34,35], or by unmanned
aerial vehicles (UAV) [20]. Wu et al. [36] have collected weed detection methods based on
computer vision and summarized the advantages and disadvantages of various methods
and give an overview of available datasets.

An agricultural image dataset collected with the field robot BoniRob [37], which is
meant to tackle several tasks including plant classification, localization and mapping was
published by Chebrolu et al. [35]. The authors collected a large-scale agricultural robot
dataset on sugar beet fields in 2016 using a 4-channel multi-spectral, color (RGB) and near
infrared (NIR), camera in an opaque shroud, a Kinect RGB-D sensor under natural light
conditions, multiple lidars and Global Navigation Satellite System (GNSS) sensors as well
as wheel encoders. They provide ground-truth annotation for 300 RGB-NIR images taken
with a JAI AD-130GE camera with a total of 10 classes (sugar beet and 9 different weed
species). The dataset was used by Milioto et al. [22] to perform a crop/weed semantic
segmentation based on the RGB-NIR images and pre-calculated feature maps.

The Ladybird Cobbitty 2017 Brassica Dataset [34] is a collection of data acquired with
the Ladybird field robot, which is equipped with stereo color, thermal and hyperspectral
imagery, combined with environmental data collected by a weather station and soil sensor
networks and manually added ground-truth data regarding crop status. The data was
captured at field trials covering cauliflower and broccoli in different management systems
regarding fertilization and irrigation. Bender et al. [38] also provide benchmark results for
the task of semantic segmentation (discriminating between broccoli, weeds and soil). They
used a multi-class, sparse variational Gaussian process classifier [39] to perform semantic
segmentation on pixel-level based on hyperspectral information (400–1000 nm). Therefore,
their ground-truth annotation was limited to selected pixels of the plant and no densely
annotated data is provided. Furthermore, the RGB-D images were not used for the semantic
segmentation task. The distance map was also not used in the benchmark task for object
detection. Here they used bounding box annotations of 1248 images of the left camera
together and the Faster R-CNN model [40] to detect cauliflower, broccoli and five calibration
panels. The distance map is not provided, but the image dataset contains both the left and
right camera images with additional intrinsic and extrinsic camera calibration results.

The availability of sufficiently large RGB-D image datasets with dense multi-class
semantic annotation has recently enhanced RGB-D semantic segmentation implementa-
tions [25,26,41–45] and lead to improvements in model architectures regarding effectiveness
and segmentation quality for indoor and outdoor scene understanding. By introducing our
WE3DS RGB-D image dataset, we expect a similar improvement in semantic segmentation
quality for crop farming, where the biggest challenge is to distinguish similar plants in early
growing stages. Additionally, the depth information can be used for further plant status
analysis, such as biomass approximation or determining grasp positions for automated
actions on the field. By now, no large-scale RGB-D image dataset in the field of crop farm-
ing has been published that covers various crop and weed species in early growth stages
captured under natural lighting conditions.
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3. WE3DS Dataset
3.1. RGB-D Sensor

For high flexibility, we chose to use two industrial RGB cameras (XIMEA MC023CG-
SY) in a stereo camera setup. Each camera contains a 2.3 MP Sony IMX174 LLJ-C sensor
with global shutter and a general-purpose input/output (GPIO) connector. We used the
XIMEA Application Programming Interface (xiAPI) to trigger the right camera with a
software trigger and set up the left camera to be triggered using a synchronization cable
and the GPIO connector. The cameras were screwed on a mounting bracket with a baseline
of 4 to 5 cm (see Figure 1 left). We used manual iris and focus controlled lenses at 12 mm
focal length (TAMRON M112FM12). The equipment reached a spatial ground resolution of
0.4 mm pixel−1 and a ground depth accuracy of 1.6 mm when using it at a working height
of 90 cm. Table S2 provides detailed information on the depth accuracy of our RGB-D
sensor that depends on the baseline and working distance.

Figure 1. RGB-D sensor with calibration target (left) and measurements trolley equipped with sensors
on the field (right).

3.2. Acquisition Setup

The RGB-D sensor was mounted, top-down heading, on a two-wheeled measurements
trolley, which served as a carrier vehicle for hardware and sensors (see Figure 1 right).
The wheel distance was fixed at 60 cm to cover common row spacing of different crops. It
was equipped with a 12 V battery for power supply, a laptop running our in-house control
software, and an Emlid Reach M2 module as GNSS with an antenna mounted above the
RGB-D sensor. A stereo camera calibration was performed indoors for each measurement
date, to obtain both the intrinsic and extrinsic camera system parameters using the C++
interface of the image analysis tool HALCON. In the calibration process the RGB-D sensor
was used to capture ten image pairs (left and right camera image) of a calibration target (see
Figure 1 left) in different poses, i.e., position and orientation, and our in-house software
calculated camera distortions and relative pose of the cameras. Details about the stereo
calibration algorithms that are used by HALCON can be found in [46]. All images were
captured with a fixed F-number and pre-set exposure time. At the parcel site, the cameras
were focused and white balance was adjusted to the natural light conditions. The exposure
time was set using the graphical user interface of the in-house control software and was
adjusted if changing light conditions made it necessary. During data collection, the parcel
information (parcel ID, plant species, parcel row number) was passed to the in-house
software and the acquisition started. While moving the measurements trolley over the
crop rows, the cameras captured images at a frame rate of one frame per second (FPS).
Depending on the number of parcels ready for collection, the data collection on the field
trial took about one hour.
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3.3. Field Trials

Consecutive field trials were performed in the years 2020 and 2021 on the experimental
farm of the University of Natural Resources and Life Sciences, Vienna (BOKU) in Groß-
Enzersdorf (48°20′N, 16°56′ E, 154 m above sea level). The soil is silty loam chernozem
of alluvial origin which is rich in calcareous sediments. Each repetition contained small
parcels (2.5 m× 9 m in 2020, 1.5 m× 5 m in 2021). After the seedbed preparation, sowing
was performed by hand at a depth of 1–2 cm at a row spacing of 50 cm and manual irrigation
was performed as required to ensure fast and homogeneous emergence. Thinning of plants
and removal of undesired weeds was carried out manually. A parcel contained a single
crop species, a single weed species, or a combination of crop and weed species. During
seven repetitions (four in 2020, three in 2021) 247 parcels were seeded with 39 different
plant species (see Table S1) at three sites of the experimental farm. Due to a high amount of
undesired weeds at one site, these parcels could not be used for data acquisition. Other
exclusion reasons were too slow or no emergence or damage caused by birds.

3.4. Data Collection

The collection of the images started right after the emergence of the plants and until the
plants reached a height of 30 cm. Therefore, the specific dates and amount of measurement
dates differed for each parcel. Data acquisition was started separately for each parcel. In
addition to the stereo image pair (right and left RGB image), a system timestamp, the
geolocation (longitude, latitude, UTC), and all camera parameters read by the xiAPI, such
as exposure time, image resolution, image format, and white balance factors were recorded.
Manually collected metadata (camera mounting height, used cameras, light conditions,
wind) was also collected for each measurement date. In total, we collected 6224 image pairs
on 25 measurement dates from 84 different parcels.

3.5. Data Pre-Processing

We manually selected RGB images of the left camera for the ground-truth annotation,
thus excluding images of poor quality and plant absence. The calculation of the distance
map is based on the camera calibration, which consists of intrinsic parameters, i.e., focal
length, pixel size, and image origin, and extrinsic parameters, i.e., relative position and
orientation of the cameras. This is done in three steps: First, the images are rectified, making
use of the calibration data to transform the image to an image space of the calibrated stereo
setup. In the calibrated stereo setup, factors such as lens distortions are corrected and
features depicted in the left and right images are located on horizontal epipolar lines.
Second, stereo matching is performed on the rectified images by finding corresponding
features in the left and right images. Based on the simple structure of the epipolar lines,
the search space of correspondence is limited to horizontal lines. We used the method
normalized cross-correlation (NCC) as a similarity measure at a mask size of 21 pixels for
template matching. The NCC method, although computationally more expensive than the
absolute gray value differences (SAD) or the sum of squared gray value differences (SSD),
provides better robustness to illumination changes that can appear in outdoor environments.
The output of the stereo matching is called disparity, which is the pixel parallax of one
feature for the left and right rectified image. This disparity is used in the final step together
with the baseline of the calibrated stereo setup, the focal length and the image origins to
calculate the distance of a feature to the camera. For the data pre-processing steps, we used
the HALCON operators map_image for rectification and binocular_distance for distance
map calculation, see [46] for more details. Distance calculation fails for pixels that are not
present in both images due to occlusion and where the surface provides insufficient texture
for matching. As our top-down mounted stereo camera pair captures the same scene from
different locations, the left border region in the left image is missing in the right image
and vice versa. Based on the geometry of the stereo setup, the rectified left image and
the distance map of the left image were cropped to exclude non-overlapping parts of the
scene, resulting in image resolutions of 1600× 1144 pixels. This image pair (color image
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and distance map) is finally used for the RGB-D image dataset. Figure 2 illustrates the
whole dataset development workflow.

Figure 2. Overview of workflow including data collection (top, left), ground-truth annotation (top,
right), data pre-processing (middle) and a final data point within the WE3DS RGB-D image dataset.
The red rectangle in the left rectified image indicates the region of interest for the RGB-D image dataset.

3.6. Ground-Truth Annotation

Annotation was performed using the computer vision annotation tool CVAT [47]. A
class label for each seeded plant species was provided and the annotators drew labeled
polygons around each plant instance of the unprocessed left RGB image. An additional
label was used for uncertain cases and unknown plant species. The latter represent very
small weeds that were overlooked during the manual weed control. Unknown weeds, as
well as plant species with very little annotation data were summarized into a void class
that is ignored during subsequent steps. Finally, we rectified the ground-truth annotation
segmentation masks and cropped them to the same size as the RGB-D image pair. The
final dataset export consisted of 2568 densely annotated semantic label maps containing
17 plant species classes with a sufficient amount of ground-truth annotation and the soil
class that represents the background (non-annotated part of the image).

3.7. Dataset Statistics
3.7.1. Metadata

All images were captured with a fixed F-number and pre-set exposure time. For quality
adjustments on the field, mean intensity of the grayscale equivalent image was computed
and displayed on the graphical user interface (GUI). Nevertheless, during the acquisition,
changes in the weather conditions occurred (clouds covering the sun, shadow from measure-
ments trolley) that result in overexposed or underexposed images. Thus, the RGB images
are very heterogeneous in terms of natural light conditions. We performed image acquisition
on 25 measurement dates with four cloudy, twelve sunny and nine days of mixed weather
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conditions. Mixed weather conditions indicate, that fast changes in illumination conditions
happened. We also noted the subjective wind intensity into one of the categories light (ten
dates), medium (ten dates) and strong (five dates) in order to identify possible sources of
error in the stereo reconstruction. Strong wind could decrease the image quality due to
blurring of fastly moving plant leaves, as well as complicate the stereo reconstruction when
small time delays between the right and left image capture are given.

3.7.2. Distance Maps

Stereo reconstruction is based on the task of finding corresponding features in both
images. Due to occlusion and textureless surfaces, there are pixels and regions where
distance calculation is not successful. The proportion of those missing distance pixels
depends on the scene (small individual plants vs. big occluding plants), image quality
and texture of surfaces (different plants have different leaf textures). In Figure 3, (left), the
distribution of the proportion of missing pixels is given in percent for the final 2568 RGB-D
images and colored by the number of days after seeding. On average there are 0.72%
distance pixels missing per image, with a maximum value of 14% for one image. It can
be seen that the missing distance pixels are increasing in later stages of measurement and
bigger plants. The distance maps encode the distance from the RGB-D sensor to the object
in 10−1 mm. Figure 3 (right) shows the distance value distribution of the WE3DS dataset
in mm. The color-coding is based on the date of measurement. As the working height of
the camera was adjusted according to the plant growth stage, a slight drift of the mean
distance can be observed. The dataset has a mean distance of 751.0 mm with a standard
deviation of 64.6 mm which was used for distance channel normalization.

Figure 3. Distribution of failed pixels (in percent) per image colored by days after seeding on
logarithmic x-axis (left). Distribution of valid distance values (in mm) of the 2568 WE3DS distance
maps colored by measurement date (right).

3.7.3. Crop and Weeds Distribution

Our dataset captured plants in early growth stages. The average plant cover is 2.09%
(crops 1.37%, weeds 0.72%). In total, 4038 crop and 7506 weed instances were annotated.
On average, an image contains 4.5 individual plants (1.6 crop and 2.9 weed instances) or
38,234 plant pixels (25,131 crop and 13,103 weed pixels). Figure 4 shows the pixel and
instance distribution per class on a log scale.
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Figure 4. Distribution of labeled pixels (left) and instances (right) per class for the WE3DS dataset. Both
data are shown on a log scale. Instances are the total number of polygons created in the annotation pro-
cess. No background instances were created during annotation, we assume one instance of background
(not annotated area) per image.

4. Benchmark
4.1. Task and Metrics

Our benchmark tackles the plant species semantic segmentation task for the WE3DS
dataset. In semantic segmentation, the goal is to classify each pixel into a given set of classes,
i.e., soil, seven crop species, or ten weed species. The color-coded semantic segmentation
map that is the output of such a task, shows the composition and location of different
species in an image. We use the Intersection over Union (IoU)

IoUc =
TPc

TPc + FPc + FNc
(1)

to evaluate per class segmentation quality where TPc is the number of true positives,
FPc is the number of false positives, and FNc is the number of false negatives for a class
c ∈ {1, . . . n}. The mean Intersection over Union (mIoU)

mIoU =
1
n

n

∑
c=1

IoUc (2)

was used to evaluate the total model performance.

4.2. State of the Art

Based on publicly available RGB-D image datasets for indoor environments (SUNRGB-
D, NYUv2) and inner city street scenes (CityScapes, KITTI Vision Benchmark Suite), there
has been enormous progress in RGB-D semantic segmentation models. First attempts
to capture the correlation between color and depth modalities use early concatenation
resulting in a 4-channel signal that is used as input [42]. Gupta at al. [48] proposed a new
geocentric embedding for depth information encoding the horizontal disparity, height
above ground, and angle between surface normal and gravity direction (HHA). Their
resulting 3-channel HHA map could be used in model networks that were designed for
RGB images [49]. Recently developed models focus on encoder-decoder type models
with separate encoder branches for both the RGB image and the distance map and special
fusion blocks to combine the color and distance information on different levels of training.
Examples of different model architectures for multi-modal feature fusion are RDFNet [45],
RedNet [44], ACNet [43], ESANet [26], or the model proposed by Chen et al. [41].

4.3. Experiments

The focus of the experiments was to provide a proof of concept for multi-class plant
species semantic segmentation using the WE3DS dataset. To achieve this objective, we
identified specific criteria for the selection of a model architecture. First, the model should
be tested in outdoor environments and achieve state-of-the-art performance compared to
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the most recently published results in outdoor scenes. Second, we gave preference to models
optimized for real-time applicability. Based on these criteria, we selected the ESANet [26]
model for our experiments. ESANet was developed for efficient use on mobile platforms and
uses ResNet [50] pre-trained on the ImageNet [51] dataset as a backbone architecture for the
encoder. The model could achieve state-of-the-art performance for available indoor [27,28]
and outdoor [30] datasets and still be able to achieve inference frame rates that can be used
for mobile devices. Seichter et al. provided ESANet as a pytorch model and code for model
training, evaluation and inference testing for the datasets, see [26].

The WE3DS dataset contains 2568 images and distance maps at a resolution of
1600× 1140 pixels, which was split into 60% for training and 40% for testing. We added
dataset-related code to use ESANet on the WE3DS dataset and performed baseline tests on
three different input image resolutions (640× 480, 1024× 512, 1280× 960 pixels). Model
training was performed on a GPU (NVIDIA Quadro RTX 8000, 48 GB RAM) for 1500 epochs.
The input model resolution of 1280× 960 pixels, referred to as the full-scale input image,
was the highest input resolution we could achieve. Restrictions were given by the network
architecture and the RAM of our GPU. The medium-scale (1024× 512 pixels) and the
low-scale (640× 480 pixels) input resolution models could be trained on a smaller GPU
(NVIDIA GeForce RTX 2080, 11 GB RAM). We also provide the memory consumption
of the model for training and inference, as well as the inference frame rate in FPS of the
trained model. For the latter, inference was performed on 100 test images and the average
computation time was calculated. This includes data pre-processing as well as model
prediction. Results can be seen in Table 1. The class pixel distribution, see Figure 4, was
used for class-specific weights. For comparison, we also included training solely on RGB
and D modality.

Table 1. Performance of multi-class plant species semantic segmentation based on distance (D), color
(RGB) and combination of color and distance (RGB-D) for three input image resolutions using ESANet.
Model performance parameter is the mean Intersection over Union (mIoU) given in percent. Other
model parameters, i.e., inference frame rate in frames per second (FPS), training time in hours, memory
consumption during training and inference in GB, were evaluated on an NVIDIA GeForce Quadro
RTX 8000. † Models were trained on NVIDIA GeForce RTX 2080.

Modality Input [pixels] mIoU [%] Inference Frame
Rate [FPS] Training Time [h] Inference Memory

[MB]
Training Memory

[GB]

D 640 × 480 14.4 38.5 42.2 † 33.3 6.8
RGB 640 × 480 44.0 43.5 44.0 † 35.8 6.8

RGB-D 640 × 480 48.6 26.5 63.7 † 51.8 10.8
D 1024× 512 20.6 27.0 37.7 † 34.2 11.5

RGB 1024× 512 52.4 22.2 39.2 † 38.4 11.5
RGB-D 1024× 512 59.1 19.2 85.8 55.3 18.5

D 1280× 960 48.5 11.3 154.1 37.0 27.1
RGB 1280× 960 70.1 11.0 156.1 46.8 27.1

RGB-D 1280× 960 70.7 8.6 240.3 66.6 43.4

Information on the dataset and modified code of the ESANet can be found on our
website https://doi.org/10.5281/zenodo.7457983 (accessed on 18 December 2022).

4.4. Results

The model parameters and mIoU for the different input image scales and modalities
can be found in Table 1. Our best-performing model was the RGB-D ESANet model trained
on the full-scale input resolution (1280× 960 pixels). The model reached the highest mIoU
of 70.7% after 1357 epochs and the IoUc range from 40.7% (small-flower geranium) to 90.9%
(broad bean) for the 17 plant species (see Figure 5 left). The soil class is also given with an
IoU of 99.5%. The confusion matrix (see Figure 5 right) shows the ground-truth for each
class on the x-axis and the prediction of each class on the y-axis. The diagonal shows the

https://doi.org/10.5281/zenodo.7457983
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precision, also known as the positive predictive value, which is the number of correctly
segmented pixels (TPc) in relation to totally segmented class labels of the same class (TPc +
FPc) in percent. It can be seen, that the majority of incorrectly segmented pixels fall into the
soil class, which means that the models tend to over-segment the plant parts of the image.
This is also reflected in the segmentation output of the models (see Figures 6 and 7). This
does not mean, that no plant instance was incorrectly classified, but that the proportion
of misclassified plant pixels is small. Tables S3–S11 show that confusion between plant
species occurs more often for models with a lower mIoU.

Figure 5. Performance of RGB-D semantic segmentation model trained on full-scale (1280× 960
pixels) WE3DS dataset. Barplot (left) shows per class Intersection over Union IoUc. The confusion
matrix (right) shows the ground-truth pixels (x-axis) and predicted pixels (y-axis) per class in percent.
On the x-axis, 0 stands for class soil and positive integer values refer to the plant IDs, see Table S1.

Figure 6. Inference of RGB-D semantic segmentation model trained on full-scale (1280× 960 pixels) on
four exemplary RGB-D images from the test set. Columns (from left to right) show input RGB image,
input distance map with nearest neighbor interpolation, ground-truth annotation and prediction of
the trained model. Rows (from top to bottom) show images taken in broad bean, milk thistle, soybean
and combined corn and cornflower parcel. Color codes of the segmentation masks (ground-truth
and prediction) correspond to those given in Figure 4, white pixels belong to a void class that was
ignored in training and evaluation.
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Figure 7. Comparison of semantic segmentation results for different input scales and modalities.
From left to right: ground-truth annotation, full-scale (1280× 960 pixels) RGB-D, medium-scale
(1024× 512 pixels) RGB-D, low-scale RGB-D (640× 480 pixels), full-scale RGB, medium-scale RGB,
low-scale RGB, full-scale depth, medium-scale depth, low-scale depth. Rows (from top to bottom)
show images taken in broad bean (1), milk thistle (2), soybean (3), combined corn and cornflower (4),
combined sugar beet and corn cockle (5), combined soybean and milk thistle (6), combined sugar
beet and milk thistle (7), and sunflower (8). Color codes of the segmentation masks (ground-truth
and prediction) correspond to those given in Figure 4, white pixels belong to a void class that was
ignored in training and evaluation.

The results in Table 1 also show that models trained solely on distance maps are
not performing well for the task of multi-class plant species semantic segmentation. By
adding the distance information to the RGB images, the models improved by 4.6% (low-
scale), 6.7% (medium-scale), and 0.7% (full-scale) compared to the RGB-only models.
Nevertheless, the memory consumption, training time, and inference time increase with
adding another modality.

5. Discussion

We focused the development of our dataset on the following criteria: (i) collect real
crop farming data and realistic plant composition scenes; (ii) focus the image acquisition
on early growth stages; (iii) capture images under heterogeneous weather and natural light
conditions. The field trials were designed to achieve these goals and the RGB-D sensor
was developed for high-throughput data acquisition on the field. The WE3DS dataset
consists of 2568 densely annotated RGB-D images of high resolution (1600× 1140 pixels)
and shows real crop farming scenes under natural light conditions. It is the first dataset of
this kind and serves as a starting point for the development of a large-scale RGB-D image
dataset in agriculture. The images were all captured at the site of the experimental farm
in Groß-Enzersdorf which makes the data biased in terms of location. Due to the seven
repetitions and different weather conditions during growth and image acquisition, the
collected data is heterogeneous in terms of phenological development stages and natural
light conditions. Nevertheless, more data from a wider spectrum of plants and locations
would be beneficial for providing a more generally usable dataset. The authors see the
publication of the WE3DS dataset as a first step to provide widely used RGB-D image
datasets in the field of agriculture and crop farming.

Our experiments with different input resolutions simulated the usage of more cost-
effective lower resolution RGB-D sensors, we performed the multi-class plant species
semantic segmentation model on different input scales. We chose to use 640× 480 pixels
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and 1280× 960 pixels to be able to compare our results to those regarding the SUNRGB-
D [27], NYUv2 [28] and CityScapes [30] datasets. Additionally, we used a 1280× 960
pixels input resolution model as full-scale comparison model. The results in Table 1 show
that the full-scale model performs the best in terms of mean Intersection over Union
(mIoU) for each modality. This is not surprising, as scaling the image leads to a loss of
information mainly for smaller plants (see Figure 7). The full-scale RGB-D model reaches
an mIoU of 70.7% for a total of 18 classes (soil, seven crop species, ten weed species). Plant
species with a clear signal both in color texture and depth, e.g., broad bean, milk thistle,
soybean or sunflower reach an IoUc of over 85%. The output of the models trained on
smaller scale input images do not depict fine leaves and detailed plant structures and
tend to over-segment the plant parts, which can also be seen in the confusion matrix, see
Tables S3–S11. The distance map alone does not provide enough information to perform
multi-class plant species semantic segmentation. Models trained solely on the distance map
perform 21.6%(full-scale)–31.8%(medium-scale) worse compared to RGB-based models (see
Table 1). Nevertheless, the full-scale model trained on the distance map shows good results
for plant species with strong characteristics in the distance map, e.g., broad bean, common
buckwheat, milk thistle, and corn, with mIoUc of up to 77%. On the other hand, plant
species with no remarkable characteristics in the distance map are more often confused
with other plant species and smaller plants can not be differentiated from the soil (see
Figure 7 right). Another observation is that 3D reconstruction works differently for different
plant species based on different leaf textures. As can be seen in Figure 6, the distance maps
of the milk thistle (second from top) look smooth and precise, whereas the distance map of
the corn plant (bottom) shows unsmooth regions and artifacts. One possible explanation is
that corn leaves have repetitive patterns of fine parallel leaf veins, making feature matching
difficult. Despite the errors in the distance calculation of corn leaves, the distance-based
model can recognize the corn plants well. This could be due to the fact that artifacts and
erroneous distance values are learned by the model.

The cross-domain comparison, see Table 2, of our semantic segmentation model with
those in the literature has limited informative value, as the scenes and number of classes
vary. State-of-the-art models reach an mIoU of 51.6% [26] on the NYUv2 and 49.4% [41]
on the SUNRGB-D dataset. Both datasets contain low resolution RGB-D images and the
models are trained at an input shape of 640× 480 pixels. When downscaling the WE3DS
RGB-D images to such a resolution, we could achieve a comparable mIoU of 48.6%. For the
CityScape dataset, an mIoU of up to 75.7% could be achieved by the ESANet [26] on an input
resolution of 1024× 512, whereas our results with the same input resolution could only
reach 59.1%. In agriculture, most work has been performed for crop and weeds seperation,
leading to a semantic segmentation task with 3 classes (soil, crop, weeds). Milioto et al. [22]
could achieve an mIoU of 80.8% (99.5% for soil, 59.2% for weeds, 83.7% for crops) when
training and evaluating their model on the BoniRob dataset collected in Bonn [35]. Their
proposed model works with a 14-channel input image by pre-computed feature maps and
an input resolution of 1296× 966 pixels. Bosilj et al. [19] could achieve precision values of
99.9% for soil, 66.1% for weeds, and 94.7% for crops on the dataset used in [22] and 98.2%
for soil, 80.6% for weeds, and 76.0% for crops on a dataset depicting carrots [24] based on
a fully connected CNN model based on color (RGB) and near infrared (NIR) images at an
input resolution of 1296× 966 pixels for [22] and 2428× 1985 pixels for [24]. Our results
provide a first comparative value for multi-class plant species semantic segmentation.

In our benchmark suite, the aim is to develop more accurate and robust multi-class
semantic segmentation models for crop farming. It could be shown, that adding the
distance map increases the mIoU of the models and that the effect tends to be bigger in
small and medium-scale input resolutions. This suggests that it has a greater benefit with
cheaper sensors. Furthermore, distance information can be beneficial in smart farming
applications not only by increasing the semantic segmentation performance but also by
using it for biomass estimation or to generate real-world application points to perform
precise actions on the plants or plant parts. This can enable new forms of applications,
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such as selective removal or multiple cropping systems when combining it with expert
knowledge and field robots.

Table 2. Cross-domain comparison of semantic segmentation results. † Models show our results with
ESANet on the WE3DS dataset (2568 RGB-D images, 18 classes) and reported performances from the
literature on the NYUv2 dataset (1449 RGB-D images, 40 classes), SUNRGB-D dataset (10,335 RGB-D
images, 37 classes), CityScapes dataset (5000 RGB-D images, 19 classes), and Bonn dataset (10,036
RGB images, 3 classes). Mean Intersection over Union (mIoU) is given in percent. * Model by [22] is
an adapted version of SegNet [52] and was trained on a 14-channel input based on RGB information.

Model Modality Dataset Input [pixels] mIoU [%]

ESANet [26] RGB-D NYUv2 640 × 480 51.6
SA-Gate [41] RGB-D SUNRGB-D 640 × 480 49.4

ESANet † RGB-D WE3DS 640 × 480 48.6
ESANet [26] RGB CityScapes 1024 × 512 72.9
ESANet [26] RGB-D CityScapes 1024 × 512 75.7

ESANet † RGB WE3DS 1024 × 512 52.4
ESANet † RGB-D WE3DS 1024 × 512 59.1
ESANet † RGB WE3DS 1280× 960 70.1
ESANet † RGB-D WE3DS 1280× 960 70.7

SegNet * [22] RGB+ Bonn 1296× 966 80.8
ESANet [26] RGB CityScapes 2048 × 1024 77.6
ESANet [26] RGB-D CityScapes 2048 × 1024 78.4

6. Conclusions

In this work, we introduced a novel RGB-D image dataset WE3DS, that fills the
gap for performing multi-class plant species semantic segmentation. It offers a total of
2568 densely annotated high resolution RGB-D images with 17 plant species. It is the first
such RGB-D image dataset to cover real crop farming scenes under natural light conditions.
Additionally, 3656 RGB-D images were captured and are planned to be annotated in
future work to keep the WE3DS dataset growing. Our work also includes a benchmark
suite for evaluation of multi-class plant species semantic segmentation. To compare the
characteristics of our WE3DS dataset to similar datasets in other domains, we provide the
detailed characteristics of our dataset. Finally, we have performed multi-class plant species
semantic segmentation with a state-of-the-art model that achieved up to 70.7% mIoU on
the WE3DS dataset, when training it on full-scale RGB-D images. Additionally, we were
able to confirm the observation that adding depth information is beneficial in semantic
segmentation based on our WE3DS dataset of crop farming scenes. WE3DS presents a new
opportunity for scene understanding tasks in the field of crop farming and encourages
the improvement of methods for RGB-D semantic segmentation of outdoor scenes under
natural light conditions.

Future work includes the expansion of the dataset in terms of additional annotation
and including other plant species, as well as adding other kinds of annotations both for
2D and 3D scene understanding tasks, e.g., instance segmentation, keypoints, and 3D
annotation. Adding additional RGB-D images from other devices and locations would be
beneficial as well to improve the generalization of the model. Additionally, further research
could focus on investigating the performance of different model architectures on the WE3DS
dataset and on the development of models specifically optimized for agricultural scenes.
Such investigations would enhance the current understanding of the challenges regarding
plant species semantic segmentation in agricultural environments and could help to identify
better-performing models that can be used for practical applications in this domain.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/s23052713/s1, Table S1: Plant species used in the field trials with
their plant ID, english names (US) and encoded identifier used by the European and Mediterranean
Plant Protection Organization (EPPO); Table S2: Depth accuracy of RGB-D sensor for different baseline
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setups and for working distances between 0.5 and 1 m; Table S3: Confusion matrix for ESANet trained
on RGB-D with input resolution of 1280 × 960 pixels after 1357/1500 epochs; Table S4: Confusion
matrix for ESANet trained on RGB-D with input resolution of 1024 × 512 pixels after 1307/1500
epochs; Table S5: Confusion matrix for ESANet trained on RGB-D with input resolution of 640 × 480
pixels after 1415/1500 epochs; Table S6: Confusion matrix for ESANet trained on RGB with input
resolution of 1280× 960 pixels after 1330/1500 epochs; Table S7: Confusion matrix for ESANet trained
on RGB with input resolution of 1024 × 512 pixels after 1352/1500 epochs; Table S8: Confusion
matrix for ESANet trained on RGB with input resolution of 640 × 480 pixels after 1195/1500 epochs;
Table S9: Confusion matrix for ESANet trained on D with input resolution of 1280 × 960 pixels after
1324/1500 epochs; Table S10: Confusion matrix for ESANet trained on D with input resolution of
1024 × 512 pixels after 1087/1500 epochs; Table S11: Confusion matrix for ESANet trained on D with
input resolution of 640 × 480 pixels after 1051/1500 epochs.
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Abbreviations
The following abbreviations are used in this manuscript:

AGV Automated guided vehicles
AMR Autonomous mobile robots
CVAT Computer vision annotation tool
CMOS Complementary metal-oxide-semiconductor
CNN Convolutional neural network
D Distance map
FCN Fully convolutional network
FN False negatives
FP False positives
FPS Frames per second
GNSS Global navigation satellite system
GPIO General-purpose input/output
GPU Graphics processing unit
GUI Graphical user interface
HHA Depth information as horizontal disparity, height, angle
mIoU Mean Intersection over Union
ML Machine learning
MP Megapixel
NCC Normalized cross-correlation
NIR Near infrared
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RAM Random-access memory
RGB RGB color space (red, green, blue)
RGB-D 4-channel image (color, distance)
SAD Sum of absolute gray value difference
SF Smart farming
SSD Sum of squared gray value difference
TN True negatives
TP True positives
UAV Unmanned aerial vehicles
UTC Coordinated Universal Time
xiAPI XIMEA Application Programming Interface
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