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Abstract: The use of bivalve mollusks as bioindicators in automated monitoring systems can provide
real-time detection of emergency situations associated with the pollution of aquatic environments.
The behavioral reactions of Unio pictorum (Linnaeus, 1758) were employed in the development of a
comprehensive automated monitoring system for aquatic environments by the authors. The study
used experimental data obtained by an automated system from the Chernaya River in the Sevastopol
region of the Crimean Peninsula. Four traditional unsupervised machine learning techniques were
implemented to detect emergency signals in the activity of bivalves: elliptic envelope, isolation
forest (iForest), one-class support vector machine (SVM), and local outlier factor (LOF). The results
showed that the use of the elliptic envelope, iForest, and LOF methods with proper hyperparameter
tuning can detect anomalies in mollusk activity data without false alarms, with an F1 score of 1.
A comparison of anomaly detection times revealed that the iForest method is the most efficient.
These findings demonstrate the potential of using bivalve mollusks as bioindicators in automated
monitoring systems for the early detection of pollution in aquatic environments.
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1. Introduction

An objective assessment of the state of aquatic ecosystems is impossible without the
use of biological methods of environmental monitoring. Timely detection of the possibility
of emergency situations by biomarkers [1], in the vast majority of cases, allows for the
implementation of measures to prevent damage to the environment and reduce the con-
sequences of their impacts [2]. This is especially important for the water supply systems
of cities and large settlements. It is equally important to carry out such control in the
areas of exhaust manifolds of cities and industrial enterprises. The existing control sys-
tems, based mainly on physical and chemical methods, are laborious, expensive, provide
fragmentary information, cover the traditional narrow range of pollutants, and do not
provide continuous monitoring and timely detection of a sudden release of pollution. In
2008, an automated biomonitoring system was developed by the authors, which is an
analog of the Musselmonitor® system, designed for operation in natural conditions of
reservoirs [3]. The work of the system is based on fixing and analyzing the behavioral
reactions of mollusks and generating an alarm signal when an anomaly is detected. Devices
operating on this principle are called biological early warning systems [4–9]. In bivalve
mollusks, the magnitude of the opening of the valves and the features of the rhythm of
their movements characterize the filtration activity and, consequently, the level of their
vital activity in normal and toxic environments [10].

Anomalies in the behavioral reactions of mollusks can be identified by different
methods, one of them being machine learning algorithms [11]. Machine learning methods
allow tuning (training) algorithms using some training data set to solve various problems.
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Machine learning algorithms have been increasingly used for classification and clustering
in the assessment of environmental parameters by biological systems in recent years [12].
Examples of using machine learning algorithms for behavior detection in shellfish activity
and anomaly detection are given in Section 2.

The range of possibilities for using machine learning for anomaly detection in the
activity of mollusk valves has not been studied enough. Hence, the objective of this paper
is to investigate the feasibility of using four traditional unsupervised machine learning
algorithms for anomaly detection in the behavioral reactions of mollusks in automated
biomonitoring systems of aquatic environments. The anomaly detection technique was
carried out for its subsequent inclusion in the software of existing and real-time automated
biomonitoring systems of aquatic environments.

2. Related Work

Various machine learning algorithms are applied to the study of bivalve mollusks in
solving certain problems; for example, to detect mussels contaminated with heavy metals
according to spectroscopy data [13]. Algal blooms have a negative impact on aquaculture
and drinking water supply and are an environmental problem. The study [14] showed
the effectiveness of using machine learning algorithms to identify algal bloom drivers,
which are the source of toxin that accumulates in shellfish tissues. For this purpose, the
authors used the random forest method to classify shellfish above and below a threshold
of toxicity [14]. Machine learning techniques have been used to generate a cyanobacterial
bloom alarm by detecting anomalies in phycocyanin fluorescence data without the need
for an appropriate cell count or biovolume [15]. The review article [16] shows a variety
of machine learning techniques being applied to develop effective tools to help shellfish
farmers manage and anticipate harmful algal blooms and shellfish pollution events, which
often result in significant negative economic impacts. Six machine learning algorithms
were applied to build a predictive model for the closure/opening of the production areas of
cultivated mussels in Galicia (Spain) when a critical concentration of marine bio-toxin [17]
is detected due to active algal blooms. The kNN method showed the best result, and the
developed models, according to the authors [17], can be used to assess the reliability of
decisions made by experts. Using remote sensing data, Hill et al. [18] showed the feasibility
of using machine learning models to detect and predict harmful algal bloom events in
the Gulf of Mexico. Several machine learning algorithms (multiple autoregressive and
artificial neural network (ANN) models) have been successfully applied to predict shellfish
contamination with diarrheal shellfish poisoning (DSP) toxins in shellfish production areas
in Portugal (Cruz 2022 [19]). Wang et al. [20] conducted a classification of eleven types
of algae that produce paralytic shellfish poison. Grasso et al. [21] showed the ability of
predicting biotoxin contamination in shellfish by predicting PSP toxin concentrations in
blue mussels using a deep learning algorithm (e.g., a single hidden layer FFNN model).

An unsupervised method (random forest) was used to find patterns in relative concen-
tration data of polycyclic aromatic hydrocarbons in mussels of the dreissenid family [22]. The
SVM algorithm was used for classification to estimate the boundary of the ecological niche
of zebra mussels (Dreissena polymorpha) in North America [23]. The random forest algorithm
was used to test if the genetic differentiation of Mytilus mussel populations may be related
to any of the key environmental variables known to shape species distributions [24]. Valetta
et al. [25] showed the possibility of using machine learning algorithms in animal behavior
studies, and later Bertolini et al. [26] successfully applied unsupervised machine learning
algorithms (k-means clustering) to identify consistent behavioral patterns in the activity
of bivalve mollusks Mytilus galloprovincialis and Mytilus edulis. Two machine-learning
algorithms (support vector machines and classification trees) were used to assess the group
classification accuracy of two phenotypes of Lampsilis teres (Keogh [27]).

Machine learning algorithms (both traditional machine learning and deep learning
approaches) are widely used for anomaly detection and prediction of water quality (drink-
ing, aquaculture, natural water bodies) in real time [28–31] based on data from sensors



Sensors 2023, 23, 2687 3 of 15

of physical and chemical indicators (temperature, pH, etc.). Based on three water quality
parameters (such as ammonia nitrogen, turbidity, and electroconductibility) and using the
developed IGA-BPNN model in the case study on the Ashi River of Songhua River Basin,
China, the authors of [29] showed that the model can effectively reflect the isolated sharp
peaks of the water quality parameters and guarantee the efficiency of early warning. In [31],
six machine learning methods (SVM, RNN, DNN, and others) are tested to find the best
model for anomaly detection on water quality systems based on water quality sensors in
Germany. The authors conclude that all methods are vulnerable. Shi et al. [32] proposed
a combined approach of a wavelet artificial neural network (wavelet-ANN) model and
high-frequency measurements from sensors to anomaly detection for surface water quality
management on the monitoring program applied to the Potomac River Basin in Virginia,
USA. Later, Liu et al. [33] used the isolation forest algorithm for surface water quality
anomaly detection for the early warning of the large-scale release of potentially harmful
substances resulting from spills into the river or intentional releases. Machine learning
algorithms (deep neural network DNN) are also being applied to predict the abundance of
Dreissenid mussels in coastal waters using underwater images [34]. Machine learning and
classification algorithms made it possible to process and extract informative expression
signatures from high-dimensional mass-spectrometry data using the example of a case
study of oil pollution in the mussel (Mytilus edulis) [35].

Most of the works described above detected anomalies using machine learning meth-
ods based on data from physical and chemical sensors for monitoring the quality of the
aquatic environment. The difference in this work lies in the use of experimental raw
mollusk reaction data (valve opening value in millimeters) for anomaly detection and
alarm isolation.

3. Materials and Methods

Data for the anomaly detection of the water conditions of the Chernaya River (Sev-
astopol region, Crimean Peninsula) (Figure 1) were obtained using the system for auto-
mated monitoring of the aquatic environment developed by the authors based on the
behavioral reactions of bivalve mollusks [3,36]. Freshwater mollusks Unio pictorum (Lin-
naeus, 1758) were used as bioindicators. Freshwater mollusks are attached with one valve
to the site of the underwater part of the device with a polymeric adhesive composition,
and the second valve of the mollusk acts on a flexible plate with a permanent magnet
attached to it, capable of moving freely. The Hall sensor is located under the attachment
area of the mussels. Changing the distance between the valves during their movement
and, accordingly, the distance between the Hall sensor and the magnet, changes the output
voltage of the sensor. This voltage after amplification is digitized and transmitted via a
GSM channel to a dedicated server. Thus, the data are the values of the mollusks valve
opening value in millimeters with a period of 10 s (an example of raw data is presented in
Supplementary Material Table S1).
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The developed system made it possible to install up to 16 mollusks, but during
operation, 2 of them failed (numbers 1 and 16). Therefore, the data on the activity of the
valves of 14 mollusks were used to train the models.

When using machine learning methods, it is recommended to evaluate several algo-
rithms and compare their performance to select the best model that solves the problem [37,38].
Four unsupervised machine learning algorithms for anomaly detection were applied to the
observed data on the behavioral responses of mollusks: local outlier factor (LOF), one-class
support vector machine (SVM), elliptic envelope and isolation forest (iForest).

The period from 26 February to 24 April 2017 was selected for anomaly detection in
the data series of bivalve mollusk activity, during which a violation of the monotony in
the daily cycle of mollusk behavior was found during the period of intense rains in the
catchment area of the Chernaya River. The exact time of occurrence of the anomaly is
unknown. However, the method of expert evaluation revealed the days on which anomalies
occurred. At this moment, there was a sharp increase in the frequency of unsystematic
short-term clamping (up to 2 per minute) and a decrease in the amplitude of the opening
of mollusk valves for 2–3 days (Figure 2). In Figure 2, different colors (abbreviations M2,
M3 . . . M15 correspond to the number of the mollusk) show the daily activity cycle of the
bivalve mollusks used in the system. At the same time, in 20–25% of mollusks, complete
closure of the valves is noted for from several hours to a day. During this period, a decrease
in water temperature by 2–4 degrees and an increase in water turbidity were recorded,
according to the data of the laboratory for water quality monitoring. It is quite likely
that toxicants from adjacent agricultural fields, where fertilizers and pest control agents
were used, entered the riverbed along with soil washouts, which explains such an intense
reaction of mollusks.
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We split our data set into subsets with a 5-day time interval training set, and in each
iteration, a 1-day subset was used for the test. The choice of a 5-day training interval
was a compromise, as increasing the interval would have increased the time between two
potentially distinguishable possible anomalies, and decreasing the interval would have
resulted in a decrease in training data. After the discovery of the anomaly, we did not
consider the next 4 days. Overall, we had 38 subsets. Each 5-day training subset was
a 43,200-point time series for each of the 14 mussels. Each 1-day test subset was a time
series of 8640 points for each of the 14 mussels. The amount of training and test data
depended on the averaging value, for example, with 30-min averaging, the amount of test
data was 48, and without averaging—8640. The data averaging time was used as one of the
hyperparameters of the models. Each model used its own algorithm to detect anomalies in
the data, so the optimal averaging value could only be obtained experimentally. We used
the following averaging values: no averaging, 1 min, 5 min, 15 min, and 30 min.
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The general scheme of the action sequences of the models is presented in Figure 3.
After splitting the data into training and test samples, the procedures for scaling and
averaging the data were carried out. Then, a hyperparameter tuning process was carried
out for each machine learning algorithm in order to maximize the F1 score and minimize
type II errors.
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Anomalies in the mode of behavioral reactions of mollusks are distinguished due
to natural processes, for example, heavy rains, and due to technical malfunctions of the
automated system. The work is aimed at anomaly detection of both types.

The efficiency of machine learning algorithms was evaluated by the F1 score [39], an
integral indicator that is the harmonic mean of the recall and precision of detection:

F1score =
2× Precision× Recall

Precision + Recall

This indicator allows one to fully evaluate the effectiveness of the algorithm. The
optimal algorithm should have the largest possible value of the F1 metric. F1 ranges from 0
to 1. An F1 score of 1 indicates perfect precision and recall (best performance), and a score
of 0 indicates that either precision or recall is 0 (worst performance).

The true positive rate (TP) shows the number of days with anomalies detected by the
algorithm on the days when these anomalies actually occurred. Our data contain 3 days of
anomalies identified by experts during data analysis. The exact time (hour, minute, and
second) of occurrence of the anomaly is unknown. Therefore, TP can take values from 0
to 3. In addition, for each algorithm, a type II error was calculated—a false negative (FN)
rate, because in this case, the algorithm does not detect an anomaly if it exists, which is
critical for a biological early warning system. Type I error—FP (false positive) rate shows
how many times our algorithm has flagged data points that are not actually true anomalies.
It could take values from 0 to the amount of test data if the algorithm marked all data as
anomalies on a test day when there was no anomaly.

The hyperparameter contamination percentage (contamination rate), i.e., the pro-
portion of outliers in the sample is used in one form or another in all considered meth-
ods [40,41]. Data analysis was carried out in Python programming language (V3.9.12) using
the scikit-learn machine learning package (V 1.0.2) [42].

4. Results
4.1. Elliptic Envelope

The elliptic envelope algorithm creates an imaginary elliptical region around the
dataset. Data falling within this region is considered normal data, and anything outside
the range is returned as outliers (anomalous). The algorithm works best if the data have
Gaussian distribution. The elliptic envelope method uses the covariance estimate with
Mahalanobis distance [40,43]. This model is implemented in the elliptic envelope function
of the scikit-learn covariance module [42]. The function parameters we used for the
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simulation (excluding contamination rate): store_precision = true, assume_centered = false,
support_fraction = none (the proportion of points to be included in the support of the raw
MCD estimate).

In addition, the influence of feature standardization on model performance was
studied [44]. Centering and scaling were performed independently for each feature by
calculating the corresponding statistics from the samples in the training set. The obtained
values of the mean value and standard deviation were then used on the test data. Stan-
dardized the features using the StandardScaler class from the preprocessing module of the
scikit-learn library.

The F1 score equal to one was obtained when averaging the mollusk activity data for
15 min with a contamination rate of less than 0.0005 and for 5 min with a contamination rate
in the range from 0.0005 to 0.001 (Figure 4). At the same time, the results of estimating the
F1 score with standardized data and without standardization (not shown) for the elliptic
envelope model are the same. Without averaging and a contamination rate less than 0.0001,
as well as one-minute averaging and a contamination rate equal to 0.0005, the model
showed a false negative result equal to two, i.e., the model does not detect an anomaly in
two out of three cases (Figure 4). There are also parameters under which the model shows
a single false negative result, for example, with five-minute averaging and a contamination
rate less than or equal to 0.0001.
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4.2. Isolation Forest (iForest)

One effective way to anomaly detection in multivariate datasets is to use the random
forest algorithm. The isolation forest “isolates” observations by randomly choosing a fea-
ture and then randomly choosing a separation value between the maximum and minimum
values of the selected feature [45]. The implementation of the isolation forest algorithm
is based on an ensemble of extremely randomized tree regressors [42]. Data points are
isolated by splitting the data multiple times until each data point is isolated. The path
length of trees in the forest, which depends on the height of the tree and the average height
of the forest, is taken as an anomaly score [46]. According to the results of Liu et al. [46], the
maximum depth of each tree is set to dlog2(n)e, where n is the number of samples used to
build the tree. To tune the iForest algorithm, a search was carried out using the following
hyperparameters: the average value, the number of samples (n), and the number of trees
(T), as well as with and without data normalization. The remaining parameters of the
algorithm were as follows: max_features = 1.0 (the number of features to draw from X to
train each base estimator), bootstrap = false (sampling without replacement is performed),
warm_start = false.

Figure 5 shows the results of the iForest algorithm for n = 256 and data normalization.
Data normalization was carried out using the scikit-learn MinMaxScaler library, which
transforms each function individually so that it is in a given range on the training set, for
example, between zero and one. The authors of the algorithm Liu et al. [46] showed that
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n = 256 and T = 100 are optimal for a wide range of tasks. However, for our dataset, the
best result at n = 256 (F1 score = 1) was obtained with the number of trees T = 5, averaging
over 30 min, and a contamination rate of less than 0.001 (Figure 5c). With a fixed number
T = 5 and averaging the data over 15 min, the best result was obtained with n = 150 and
a contamination rate less than 0.001 (Figure 5d). With T = 50, averaging the data over
15 min, the best result is obtained with n = 70 and a contamination rate of less than 0.001
(Figure 5e).
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4.3. One-Class SVM

The SVM algorithm was introduced by Schölkopf et al. [47] and implemented in the
“Support Vector Machines” module in the svm.OneClassSVM. To determine the boundary,
the choice of a kernel and a scalar parameter is required. The RBF core is usually chosen,
although there is no exact formula or algorithm for setting its throughput parameter. This is
the default value in the scikit-learn library. The nu parameter, also known as the one-class
SVM margin, corresponds to the probability of finding a new but regular observation
outside the model boundary.

SVM is typically used for supervised learning, but one-class SVM can be used for
anomaly detection in unsupervised learning. The goal of the SVM algorithm is to find the
maximum margin hyperplane in an N-dimensional space (N is the number of features) that
clearly classifies the data points [47,48]. In the case of using SVM for anomaly detection,
the task is to find a function that is positive for areas with high point density and negative
for areas with low point density. When setting up the one-class SVM model, we iterated
over the values of the hyperparameter nu, which is the upper bound on the proportion
of learning errors and the lower bound on the proportion of support vectors, changed
the kernel type (rbf, sigmoid, or poly) and the coefficient of the kernel function γ, which
affects the “smoothness” of the model. The rest of the model parameters were as follows:
degree = 3 (degree of the polynomial kernel function), coef0 = 0.0 (independent term for
poly and sigmoid kernels), tol = 0.001 (tolerance for stopping criterion), shrinking = True,



Sensors 2023, 23, 2687 8 of 15

cache_size = 200 (the size of the kernel cache) and max_iter = −1 (hard limit on iterations
within solver).

The application of the one-class SVM algorithm for anomaly detection showed un-
satisfactory results. The values of the F1 score when averaging the normalized and non-
normalized data with the RBF kernel did not exceed 0.2 (Figure 6a,b). The best results of
applying the one-class SVM algorithm were obtained using the sigmoid kernel function
and the polynomial kernel function. F1 score values reach 0.55 with γ equal to 0.05, the
poly kernel type with nu 0.001 and 0.005, and with the kernel type sigmoid and γ = 0.001
with nu 0.005 (Figure 6c).
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scale at different values of γ, obtained by the one-class SVM algorithm.

4.4. Local Outlier Factor (LOF)

The LOF algorithm was first described by Breunig et al. [49]. The anomaly score of
each sample is called the local outlier factor. It measures the local density deviation of a
given sample relative to its neighbors. It is local in the sense that the anomaly score depends
on how isolated the object is in relation to the environment. More precisely, locality is
given by k nearest neighbors, the distance from which is used to estimate the local density.
By comparing the local density of a sample with the local densities of its neighbors, it is
possible to identify samples that have a significantly lower density than their neighbors
(they are considered outliers). The algorithm hyperparameters that we used (excluding
k nearest neighbors) were algorithm = ball_tree (algorithm used to compute the nearest
neighbors), leaf_size = 30, metric = Minkowski (metric to use for distance computation),
p = 2 (parameter for the Minkowski metric, the standard Euclidean distance).

F1 score values equal to one were achieved by averaging the data for 1 and 5 min. At
the same time, the best results for assessing the F1 score were obtained without standard-
ization or normalization of data (Figure 7).
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Figure 7. F1 score for a different number of nearest neighbors k and averaging data for 5 (a), 15 (b),
and 30 min (c), obtained by the LOF algorithm.

The F1 score values equal to one were obtained with the number of neighbors 100 and
averaging the data for 1 min. When the number of neighbors is 120 and the contamination
rate is less than or equal to 0.0001, an error FN = 1 occurs, i.e., the model does not detect an
anomaly, despite its presence (Figure 8).
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5. Discussion

Traditionally, changes in behavioral parameters (e.g., mean amplitude and frequency
of clamping) among pollutant-exposed and unexposed groups of bivalves have been stud-
ied using statistical tools such as analysis of variance [7,50,51]. The field of machine learning
provides methodologies ideally suited to the task of extracting knowledge from complex
and multivariate animal behavior datasets with non-linear dependencies and unknown
interactions between multiple variables [25]. In addition to the obvious ways to improve
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data analysis or control of experimental conditions, machine learning will provide new
insights into the functioning of biological systems and the process of how and why these
functions evolved [52]. Our results show that natural and technical anomalies in bivalve
activity datasets can be detected using machine learning algorithms. The use of algorithms
such as elliptic envelope, iForest, and LOF with a certain set of hyperparameters (averaging,
scaling, etc.) allows one to select an anomaly without false alarms, i.e., to obtain an F1
score equal to one. F1 score is the harmonic mean of precision and recall and gives a better
measure of the incorrectly classified cases than the Accuracy Metric. We have imbalanced
class distribution exists and thus F1-score is a better metric to evaluate our models on.
For example, for the IForest algorithm (n_estimators = 50, max_samples = 256, and out-
liers_fraction = 0.0005) the score F1 will be 0.6, but accuracy will tend to 1. Unsatisfactory
results (F1-score < 0.2) were obtained using the SVM algorithm. Confusion matrices for
each model at different hyperparameter settings are shown in Figures S1–S4. In addition,
unlike most studies, where the results are based on laboratory data [53], our results were
obtained from data from the places of potential installation of such systems directly in the
environment.

The main hyperparameter of our models, the contamination parameter, controls the
threshold for the decision function when a scored data point should be considered an outlier.
It has no impact on the model itself. The model assigns all data points an outlier score, the
n ∗ contamination rate points with the highest scores are then labeled as anomalies. As a
result, if the contamination rate is set too high (e.g., >0.001 for iForest), it would force the
model to misclassify points as anomalies. If it is set too low (e.g., <0.0001 for and elliptic
envelope with some averages), the model might miss some anomalies and only take into
account the most severe ones.

Since an F1 score equal to one was obtained for three algorithms with different hyper-
parameters, we compared the methods in response time and anomaly detection (Table 1).
For three anomalies, the best speed of response to the anomaly was shown by the IForest
machine learning algorithm when averaging data over 15 min, T = 50 and n equal to 70.
The averaging time in our work is considered a hyperparameter. For all models, the same
averaging time set was studied: no averaging, 1 min, 5 min, 15 min, and 30 min. Since
models use completely different anomaly detection principles, it is not possible to say in
advance which averaging to use. The results of the best algorithms are presented in Table 1
in the manuscript. It can be seen from the table that for each algorithm the optimal is its
own (certain) averaging time (for example, LOF—5 min, IForest—15 min). This confirms
the correctness of our chosen strategy. The results once again confirm the need for careful
selection of model hyperparameters.

Table 1. Comparison of algorithms by anomaly detection time.

Algorithm Hyperparameters
Anomaly Detection Time

Anomaly 1 Anomaly 2 Anomaly 3

Elliptic
envelope

Aver. 15 min, cr = 0.0005 17:45 13:30 18:30
Aver. 15 min, cr = 0.00005 17:45 17:30 18:30

Aver. 5 min, cr = 0.001 18:00 17:05 18:35

iForest
Aver. 30 min, T = 5, n = 256 19:00 04:00 18:30
Aver. 15 min, T = 5, n = 150 18:15 03:45 18:45
Aver. 15 min, T = 50, n = 70 17:15 03:45 18:15

LOF

Aver. 5 min, cr = 0.0001, k = 40 19:45 05:15 18:35
Aver. 5 min, cr = 0.0001, k = 50 19:45 09:50 18:35
Aver. 5 min, cr = 0.001, k = 50 19:25 04:20 18:35

Aver. 1 min, cr = 0.0001, k = 100 19:51 05:12 18:34
Aver—averaging time, cr—contamination rate.

For example, Figure 9 shows a comparison of the best detection time for the second
anomaly by three algorithms. Vertical red bars are timestamps where the algorithms have
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identified anomalies. The LOF algorithm with hyperparameters data averaging 5 min,
cr = 0.001, and k = 50 is 45 min behind the best result obtained by the iForest method when
adjusting the model with hyperparameters data averaging 15 min, T = 50 and n = 70. The
best response time of the model and detection of the second anomaly using the elliptic
envelope algorithm is almost 10 h behind the detection time by the iForest algorithm
(Figure 9).

In support of the successful application of machine learning algorithms, for example,
LOF has been used for anomaly detection in a real-time fish farm water quality monitoring
model [30]. Using data from a long-term ecological experiment with Dreissena mussels in
freshwater ponds [54], the authors of [12] evaluated supervised and unsupervised machine
learning algorithms to detect anomalies in the data. The results showed that supervised
models perform better than unsupervised models, and unsupervised models show more
variable levels of performance, confirming the importance of choosing the model structure
and hyperparameters of unsupervised models [12].
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6. Conclusions

By using unsupervised machine learning algorithms, the possibility of anomaly detec-
tion in bivalve data was evaluated in the work. We tested four machine learning algorithms
for anomaly detection procedure: elliptic envelope, isolation forest (iForest), one-class sup-
port vector machine (SVM), and local outlier factor (LOF). Adjusting the hyperparameters
of the models of four algorithms, estimates of their performances were obtained and the
response time of methods to anomaly detection was estimated. The iForest algorithm
showed the best result in anomaly detection and speed of its detection (with certain hy-
perparameter settings). The elliptic envelope and one-class SVM algorithms also showed
good performance, but their anomaly detection rate turned out to be lower than that of
algorithm iForest.

Thus, the machine learning algorithms proposed and studied in the work can be used
for anomaly detection in the experimental data of mollusk activity for inclusion in the
software of biological early warning systems to receive an alarm in real time. The ability
of the system to respond to emergency situations and prevent the large-scale spread of
negative impacts is important for sustainable management, assessment, and forecasting of
the state of water bodies. In our work, we have considered four standard unsupervised
machine learning algorithms for anomaly detection. Since our task is to further integrate
the anomaly detection technique based on mollusk activity data into an existing and real-
time device for monitoring the state of the aquatic environment, it is necessary to avoid
increasing the computational complexity of the algorithms, increasing the load on the
equipment and increasing the response time. Using the methods indicated in the work, we
solved all the tasks. However, other unsupervised machine learning algorithms, such as
DBSCAN, autoencoders, and principal component analysis, among others [55,56], are also
commonly used for this task by researchers. Our future research will focus on exploring the
potential of these algorithms in resolving the problem of anomaly detection in experimental
data on mollusk activity and identifying behavior patterns in the activity of bivalves using
clustering methods of unsupervised machine learning algorithms. This will improve the
process for anomaly detection in mollusk activity data, enabling its integration into the
software of the automated complex for monitoring aquatic environments.
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//www.mdpi.com/article/10.3390/s23052687/s1, Table S1: Example of raw data (valves opening
value in mm), Figures S1–S4: Confusion matrices for algorithm models.

Author Contributions: Conceptualization, A.N.G. and A.A.K.; methodology, A.N.G.; formal anal-
ysis, A.N.G.; investigation, A.N.G.; resources, V.V.T.; data curation, V.V.T.; writing—original draft
preparation, A.N.G. and E.V.V.; writing—review and editing, A.N.G. and E.V.V.; visualization, A.N.G.
and E.V.V.; supervision, A.A.K.; project administration, A.A.K.; funding acquisition, A.A.K. All
authors have read and agreed to the published version of the manuscript.

Funding: The research is supported by the Ministry of Science and Higher Education of the Russian
Federation, FEFM-2021-0014 № 121111600136-3 and the state assignment of the Institute of Natural
and Technical Systems (project reg. no. 121122300070-9).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data available upon request.

Acknowledgments: The authors are grateful to the editor and anonymous reviewers for the remarks
and comments which led to improve the paper.

Conflicts of Interest: The authors declare no conflict of interest.

https://www.mdpi.com/article/10.3390/s23052687/s1
https://www.mdpi.com/article/10.3390/s23052687/s1


Sensors 2023, 23, 2687 13 of 15

References
1. Bae, M.-J.; Park, Y.-S. Biological early warning system based on the responses of aquatic organisms to disturbances: A review. Sci.

Total Environ. 2013, 466, 635–649. [CrossRef]
2. Bolognesi, C.; Rabboni, R.; Roggieri, P. Genotoxicity biomarkers in M. Galloprovincialis as indicators of marine pollutants. Comp.

Biochem. Physiol. 1996, 113, 319–323. [CrossRef]
3. Trusevich, V.V.; Gaiskii, P.V.; Kuz’min, K.A. Automated biomonitoring of the aquatic environment using the responses of bivalves.

Morsk. Gidrofiz. Zh. 2010, 3, 75–83.
4. Sluyts, H.; VanHoof, F.; Cornet, A.; Paulussen, J. A dynamic new alarm system for use in biological early warning systems.

Environ. Toxicol. Chem. 1996, 15, 1317–1323. [CrossRef]
5. Diehl, P.; Gerke, T.; Jeuken, A.; Lowis, J.; Steen, R.; van Steenwijk, J.; Stoks, P.; Willemsen, H.-G. Early Warning Strategies

and Practices along the River Rhine. In The Rhine; Knepper, T.P., Ed.; The Handbook of Environmental Chemistry; Springer:
Berlin/Heidelberg, Germany, 2005; Volume 5L, pp. 1–25. [CrossRef]

6. Borcherding, J. Ten years of practical experience with the Dreissena-Monitor, a biological early warning system for continuous
water quality monitoring. Hydrobiologia 2006, 556, 417–426. [CrossRef]

7. Liao, C.M.; Jau, S.F.; Lin, C.M.; Jou, L.J.; Liu, C.W.; Liao, V.H.C.; Chang, F.J. Valve movement response of the freshwater clam
Corbicula fluminea following exposure to waterborne arsenic. Ecotoxicology 2009, 18, 567–576. [CrossRef] [PubMed]

8. Sow, M.; Durrieu, G.; Briollais, L.; Ciret, P.; Massabuau, J.C. Water quality assessment by means of HFNI valvometry and
high-frequency data modeling. Environ. Monit. Assess. 2011, 182, 155–170. [CrossRef] [PubMed]

9. Di Giacinto, F.; Berti, M.; Carbone, L.; Caprioli, R.; Colaiuda, V.; Lombardi, A.; Tomassetti, B.; Tuccella, P.; De Iuliis, G.;
Pietroleonardo, A.; et al. Biological EarlyWarning Systems: The Experience in the Gran Sasso-Sirente Aquifer. Water 2021, 13,
1529. [CrossRef]

10. Trusevich, V.V.; Kuz’min, K.A.; Mishurov, V.Z.; Zhuravsky, V.Y.; Vyshkvarkova, E.V. Features of Behavioral Responses of the
Mediterranean Mussel in Its Natural Habitat of the Black Sea. Inland Water Biol. 2021, 14, 10–19. [CrossRef]

11. Omar, S.; Ngadi, A.; Jebur, H.H. Machine learning techniques for anomaly detection: An overview. Int. J. Comput. Appl. 2013, 79,
33–41. [CrossRef]

12. Russo, S.; Besmer, M.D.; Blumensaat, F.; Bouffard, D.; Disch, A.; Hammes, F.; Hess, A.; Lürig, M.; Matthews, B.; Minaudo, C.; et al.
The value of human data annotation for machine learning based anomaly detection in environmental systems. Water Res. 2021,
206, e117695. [CrossRef] [PubMed]

13. Liu, Y.; Xu, L.; Zeng, S.; Qiao, F.; Jiang, W.; Xu, Z. Rapid detection of mussels contaminated by heavy metals using nearinfrared
reflectance spectroscopy and a constrained difference extreme learning machine. Spectrochim. Acta Part A Mol. Biomol. Spectrosc.
2022, 269, e120776. [CrossRef]

14. Harley, J.R.; Lanphier, K.; Kennedy, E.; Whitehead, C.; Bidlack, A. Random forest classification to determine environmental
drivers and forecast paralytic shellfish toxins in Southeast Alaska with high temporal resolution. Harmful Algae 2020, 99, e101918.
[CrossRef] [PubMed]

15. Almuhtaram, H.; Zamyadi, A.; Hofmann, R. Machine learning for anomaly detection in cyanobacterial fluorescence signals.
Water Res. 2021, 197, 117073. [CrossRef]

16. Cruz, R.C.; Reis Costa, P.; Vinga, S.; Krippahl, L.; Lopes, M.B. A Review of Recent Machine Learning Advances for Forecasting
Harmful Algal Blooms and Shellfish Contamination. J. Mar. Sci. Eng. 2021, 9, 283. [CrossRef]

17. Molares-Ulloa, A.; Fernandez-Blanco, E.; Pazos, A.; Rivero, D. Machine learning in management of precautionary closures caused
by lipophilic biotoxins. Comput. Electron. Agric. 2022, 197, e106956. [CrossRef]

18. Hill, P.R.; Kumar, A.; Temimi, M.; Bull, D.R. Habnet: Machine learning, remote sensing-based detection of harmful algal blooms.
IEEE J. Select. Top. Appl. Earth Observ. Remote Sens. 2020, 13, 13. [CrossRef]

19. Cruz, R.C.; Costa, P.R.; Krippahl, L.; Lopes, M.B. Forecasting biotoxin contamination in mussels across production areas of the
Portuguese coast with Artificial Neural Networks. Knowl. Based Syst. 2022, 257, 109895. [CrossRef]

20. Wang, S.; Li, X.; Li, Y.; Gou, S.; Bi, W.; Jiang, T. Identification of paralytic shellfish poison producing algae based on three-
dimensional fluorescence spectra and quaternion principal component analysis. Spectrochim. Acta Part A Mol. Biomol. Spectrosc.
2021, 261, 120040. [CrossRef]

21. Grasso, I.; Archer, S.D.; Burnell, C.; Tupper, B.; Rauschenber, C.; Kanwit, K.; Record, N.R. The hunt for red tides: Deep learning
algorithm forecasts shellfish toxicity at site scales in coastal Maine. Ecosphere 2019, 10, e02960. [CrossRef]

22. Kimbrough, K.; Jacob, A.; Regan, S.; Davenport, E.; Edwards, M.; Leight, A.K.; Freitag, A.; Rider, M.; Johnson, W.E. Characteriza-
tion of polycyclic aromatic hydrocarbons in the Great Lakes Basin using dreissenid mussels. Environ. Monit. Assess. 2021, 193,
e833. [CrossRef] [PubMed]

23. Drake, J.M.; Bossenbroek, J.M. Profiling ecosystem vulnerability to invasion by zebra mussels with support vector machines.
Theor. Ecol. 2009, 2, 189–198. [CrossRef]

24. Kijewski, T.; Zbawicka, M.; Strand, J.; Kautsky, H.; Kotta, J.; Rätsep, M.; Wenne, R. Random forest assessment of correlation
between environmental factors and genetic differentiation of populations: Case of marine mussels Mytilus. Oceanologia 2019, 61,
131–142. [CrossRef]

25. Valletta, J.J.; Torney, C.; Kings, M.; Thornton, A.; Madden, J. Applications of machine learning in animal behavior studies. Anim.
Behav. 2017, 124, 203–220. [CrossRef]

http://doi.org/10.1016/j.scitotenv.2013.07.075
http://doi.org/10.1016/0742-8413(95)02103-5
http://doi.org/10.1002/etc.5620150809
http://doi.org/10.1007/698_5_015
http://doi.org/10.1007/s10750-005-1203-4
http://doi.org/10.1007/s10646-009-0314-5
http://www.ncbi.nlm.nih.gov/pubmed/19396543
http://doi.org/10.1007/s10661-010-1866-9
http://www.ncbi.nlm.nih.gov/pubmed/21229302
http://doi.org/10.3390/w13111529
http://doi.org/10.1134/S1995082921010132
http://doi.org/10.5120/13715-1478
http://doi.org/10.1016/j.watres.2021.117695
http://www.ncbi.nlm.nih.gov/pubmed/34626884
http://doi.org/10.1016/j.saa.2021.120776
http://doi.org/10.1016/j.hal.2020.101918
http://www.ncbi.nlm.nih.gov/pubmed/33218443
http://doi.org/10.1016/j.watres.2021.117073
http://doi.org/10.3390/jmse9030283
http://doi.org/10.1016/j.compag.2022.106956
http://doi.org/10.1109/JSTARS.2020.3001445
http://doi.org/10.1016/j.knosys.2022.109895
http://doi.org/10.1016/j.saa.2021.120040
http://doi.org/10.1002/ecs2.2960
http://doi.org/10.1007/s10661-021-09401-7
http://www.ncbi.nlm.nih.gov/pubmed/34799782
http://doi.org/10.1007/s12080-009-0050-8
http://doi.org/10.1016/j.oceano.2018.08.002
http://doi.org/10.1016/j.anbehav.2016.12.005


Sensors 2023, 23, 2687 14 of 15

26. Bertolini, C.; Capelle, J.; Royer, E.; Milan, M.; Witbaard, R.; Bouma, T.J.; Pastres, R. Using a clustering algorithm to identify
patterns of valve-gaping behavior in mussels reared under different environmental conditions. Ecol. Inform. 2022, 69, e101659.
[CrossRef]

27. Keogh, S.M.; Simons, A.M. Molecules and morphology reveal ‘new’ widespread North American freshwater mussel species
(Bivalvia: Unionidae). Mol. Phylogenetics Evol. 2019, 138, 182–192. [CrossRef]

28. Dogo, E.M.; Nwulu, N.I.; Twala, B.; Aigbavboa, C. A survey of machine learning methods applied to anomaly detection on
drinking-water quality data. Urban Water J. 2019, 16, 235–248. [CrossRef]

29. Jin, T.; Cai, S.; Jiang, D.; Liu, J. A data-driven model for real-time water quality prediction and early warning by an integration
method. Environ. Sci. Pollut. Res. 2019, 26, 30374–30385. [CrossRef]

30. Gao, G.; Xiao, K.; Chen, M. An intelligent IoT-based control and traceability system to forecast and maintain water quality in
freshwater fish farms. Comput. Electron. Agric. 2019, 166, 105013. [CrossRef]

31. Muharemi, F.; Logofătu, D.; Leon, F. Machine learning approaches for anomaly detection of water quality on a real-world data set.
J. Inf. Telecommun. 2019, 3, 294–307. [CrossRef]

32. Shi, B.; Wang, P.; Jiang, J.; Liu, R. Applying high-frequency surrogate measurements and a wavelet-ANN model to provide early
warnings of rapid surface water quality anomalies. Sci. Total Environ. 2018, 610–611, 1390–1399. [CrossRef] [PubMed]

33. Liu, J.; Wang, P.; Jiang, D.; Nan, J.; Zhu, W. An integrated data-driven framework for surface water quality anomaly detection and
early warning. J. Clean. Prod. 2020, 251, 119145. [CrossRef]

34. Galloway, A.; Brunet, D.; Valipour, R.; McCusker, M.; Biberhofer, J.; Sobol, M.K.; Moussa, M.; Taylor, G.W. Predicting dreissenid
mussel abundance in nearshore waters using underwater imagery and deep learning. Limnol. Oceanogr. Methods 2022, 20, 233–248.
[CrossRef]

35. Monsinjon, T.; Andersen, O.K.; Leboulenger, F.; Knigge, T. Data processing and classification analysis of proteomic changes: A
case study of oil pollution in the mussel, Mytilus edulis. Proteome Sci. 2006, 4, 1–13. [CrossRef]

36. Grekov, A.N.; Kuzmin, K.A.; Mishurov, V.Z. Automated early warning system for water environment based on behavioral
reactions of bivalves. In 2019 International Russian Automation Conference (RusAutoCon); IEEE: Piscataway, NJ, USA, 2019; pp. 1–5.
[CrossRef]

37. Abou-Moustafa, K.T.; Schuurmans, D. Generalization in unsupervised learning. In Efficient Learning Machines; Apress: Berkeley,
CA, USA, 2015; pp. 300–317. [CrossRef]

38. Raschka, S.; Mirjalili, V. Python Machine Learning, 3rd ed.; Packt Publishing: Mumbai, India, 2019; 772p.
39. Lipton, Z.C.; Elkan, C.; Narayanaswamy, B. Thresholding classifiers to maximize F1 score. arXiv 2014, arXiv:1402.1892.
40. Hoyle, B.; Rau, M.M.; Paech, K.; Bonnett, C.; Seitz, S.; Weller, J. Anomaly detection for machine learning redshifts applied to SDSS

galaxies. Mon. Not. R. Astron. Soc. 2015, 452, 4183–4194. [CrossRef]
41. Bella, J.; Fernández, Á.; Dorronsoro, J.R. Supervised Hyperparameter Estimation for Anomaly Detection. In Proceedings of the

Hybrid Artificial Intelligent Systems: 15th International Conference, HAIS 2020, Gijón, Spain, 11–13 November 2020; pp. 233–244.
[CrossRef]

42. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Müller, A.; Nothman, J.; Louppe, G.;
et al. Scikit-learn: Machine learning in python. J. Mach. Learn. Res. 2011, 12, 2825–2830.

43. Rousseeuw, P.G.; Driessen, K.V. A FAST algorithm for the minimum covariance determinant estimator. Technometrics 1999, 41,
212–223. [CrossRef]

44. Witten, I.H.; Eibe, F.; Hall, M.A.; Pal, C.J. Data Mining: Practical Machine Learning Tools and Techniques; Elsevier: Amsterdam,
The Netherlands, 2017.

45. Liu, F.T.; Ting, K.M.; Zhou, Z.-H. Isolation-based anomaly detection. ACM Trans. Knowl. Discov. Data 2012, 6, 1–39. [CrossRef]
46. Liu, F.T.; Ting, K.M.; Zhou, Z.-H. Isolation forest. In Proceedings of the 2008 Eighth IEEE International Conference on Data

Mining, Pisa, Italy, 15–19 December 2008. [CrossRef]
47. Scholkopf, B.; Williamson, R.; Smola, A.; Shawe-Taylor, J.; Platt, J. Support Vector Method for Novelty Detection. Adv. Neural Inf.

Process. Syst. 1999, 12, 582–586.
48. Schölkopf, B.; Platt, J.C.; Shawe-Taylor, J.C.; Smola, A.J.; Williamson, R.C. Estimating the support of a high-dimensional

distribution. Neural Comput. 2001, 13, 1443–1471. [CrossRef]
49. Breunig, M.M.; Kriegel, H.-P.; Ng, R.T.; Sander, J. LOF: Identifying density-based local outliers. In Proceedings of the 2000 ACM

SIGMOD International Conference on Management of Data, Dallas, TX, USA, 16–18 May 2000; ACM Press: New York, NY, USA,
2000; pp. 93–104. [CrossRef]

50. Basti, L.; Nagai, K.; Shimasaki, Y.; Oshima, Y.; Honjo, T.; Segawa, S. Effects of the toxic dinoflagellate heterocapsa circularisquama
on the valve movement behavior of the manila clam ruditapes philippinarum. Aquaculture 2009, 291, 41–47. [CrossRef]

51. Hartmann, J.T.; Beggel, S.; Auerswald, K.; Stoeckle, B.C.; Geist, J. Establishing mussel behavior as a biomarker in ecotoxicology.
Aquat. Toxicol. 2016, 170, 279–288. [CrossRef] [PubMed]

52. Cichos, F.; Gustavsson, K.; Mehlig, B.; Volpe, G. Machine learning for active matter. Nat. Mach. Intell. 2020, 2, 94–103. [CrossRef]
53. Guterres, B.V.; Guerreiro, A.; Jun, J.N.; da Botelho Silva, S.C.; Sandrini, J.Z. Mussels as Aquatic Pollution Biosensors using Neural

Networks and Control Charts. In IEEE 18th International Conference on Industrial Informatics (INDIN); IEEE: Piscataway, NJ, USA,
2020; Volume 1, pp. 839–844. [CrossRef]

http://doi.org/10.1016/j.ecoinf.2022.101659
http://doi.org/10.1016/j.ympev.2019.05.029
http://doi.org/10.1080/1573062X.2019.1637002
http://doi.org/10.1007/s11356-019-06049-2
http://doi.org/10.1016/j.compag.2019.105013
http://doi.org/10.1080/24751839.2019.1565653
http://doi.org/10.1016/j.scitotenv.2017.08.232
http://www.ncbi.nlm.nih.gov/pubmed/28854482
http://doi.org/10.1016/j.jclepro.2019.119145
http://doi.org/10.1002/lom3.10483
http://doi.org/10.1186/1477-5956-4-17
http://doi.org/10.1109/RUSAUTOCON.2019.8867621
http://doi.org/10.1007/978-3-319-23528-8_19
http://doi.org/10.1093/mnras/stv1551
http://doi.org/10.1007/978-3-030-61705-9_20
http://doi.org/10.1080/00401706.1999.10485670
http://doi.org/10.1145/2133360.2133363
http://doi.org/10.1109/ICDM.2008.17
http://doi.org/10.1162/089976601750264965
http://doi.org/10.1145/342009.335388
http://doi.org/10.1016/j.aquaculture.2009.02.029
http://doi.org/10.1016/j.aquatox.2015.06.014
http://www.ncbi.nlm.nih.gov/pubmed/26187809
http://doi.org/10.1038/s42256-020-0146-9
http://doi.org/10.1109/INDIN45582.2020.9442202


Sensors 2023, 23, 2687 15 of 15

54. Lürig, M.; Narwani, A.; Penson, H.; Wehrli, B.; Spaak, P.; Matthews, B. Non-additive effects of foundation species determine the
response of aquatic ecosystems to nutrient perturbation. Ecology 2021, 102, e03371. [CrossRef] [PubMed]

55. Figueirêdo, I.; Nani Guarieiro, L.L.; Sperandio Nascimento, E.G. Multivariate real time series data using six unsupervised machine
learning algorithms. In Anomaly Detection-Recent Advances, Issues and Challenges; IntechOpen: London, UK, 2022. [CrossRef]

56. Khan, S.; Liew, C.F.; Yairi, T.; McWilliam, R. Unsupervised anomaly detection in unmanned aerial vehicles. Appl. Soft Comput.
2019, 83, 105650. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1002/ecy.3371
http://www.ncbi.nlm.nih.gov/pubmed/33961284
http://doi.org/10.5772/intechopen.94944
http://doi.org/10.1016/j.asoc.2019.105650

	Introduction 
	Related Work 
	Materials and Methods 
	Results 
	Elliptic Envelope 
	Isolation Forest (iForest) 
	One-Class SVM 
	Local Outlier Factor (LOF) 

	Discussion 
	Conclusions 
	References

