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Abstract: To provide continuous and reliable real−time precise positioning services in challenging
environments and poor internet conditions, the real−time precise corrections of the BeiDou global
navigation satellite system (BDS−3) PPP−B2b signal are utilized to correct the satellite orbit errors
and clock offsets. In addition to this, using the complementary characteristics of the inertial naviga‑
tion system (INS) and the global navigation satellite system (GNSS), a PPP−B2b/INS tight integration
model is established. With observation data collected in an urban environment, the results show that
PPP−B2b/INS tight integration can ensure a decimeter−level positioning accuracy; the positioning
accuracies of the E, N, and U components are 0.292, 0.115, and 0.155 m, respectively, which can pro‑
vide a continuous and secure position during short interruptions in the GNSS. However, there is
still a gap of about 1 dm compared with the three−dimensional (3D) positioning accuracy obtained
from Deutsche GeoForschungsZentrum (GFZ) real−time products, and a gap of about 2 dm com‑
pared with the GFZ post−precise products. Using a tactical inertial measurement unit (IMU), the
velocimetry accuracies of the tightly integrated PPP−B2b/INS in the E, N, and U components are all
about 0.3 cm/s, and the attitude accuracy of yaw is about 0.1 deg, while the pitch and roll show a su‑
perior performance of less than 0.01 deg. The accuracies of the velocity and attitude mainly depend
on the performance of the IMU in the tight integration mode, and there is no significant difference
between using real−time products and post products. The performance of the microelectromechan‑
ical system (MEMS) IMU and tactical IMU is also compared, and the positioning, velocimetry, and
attitude determinations with the MEMS IMU are significantly worsened.

Keywords: BDS−3; PPP−B2b; urban scenarios; real−time PPP/INS; MEMS IMU

1. Introduction
With the rapid development of automatic driving, the Internet of Things, robots, and

other fields, greater requirements for the timeliness and reliability of precise positioning
have been put forward [1]. As a vital infrastructure, the global navigation satellite system
(GNSS) is extensively used in both civil and military domains. Presently, precise point po‑
sitioning (PPP) and real−time kinematic (RTK) positioning are widely used in the GNSS
field. RTK can provide a real−time (RT) centimeter−level position, but it requires the
prior deployment of reference stations, lacks flexibility, and brings a large communication
burden [2]. Using a single receiver, PPP can meet global kinematic decimeter−level and
static centimeter−level positioning. However, traditional PPP is usually post−solution
due to the long latency of precise products [3,4]. With the rapid development of RT prod‑
ucts, RT−PPP has turned into a reality. However, the positioning accuracy of RT−PPP
depends on the accuracy of external satellite orbit and clock offset products.

Currently, the acquisition of RT−PPP corrections can be divided into two methods:
one is from internet communication and the other is based on satellite communication [5].
The former is mainly implemented by the real−time service (RTS), which has been offi‑
cially provided by the International GNSS Service (IGS) since 2013, and users can freely
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download the RT state−space representation (SSR) corrections via the internet and the
broadcast ephemeris is corrected thereafter [6]. Evaluation results show that the accuracy
of the RT orbit and clock offsets from the IGS RTS are better than 5 cm and 0.15 ns, re‑
spectively [7]. Although the IGS RTS product can be freely obtained through the internet,
its dependence on network communication limits its service coverage, especially for ar‑
eas without network communication coverage such as the ocean and desert. In addition,
users cannot obtain RTS products in the case of network congestion and a poor network
signal, resulting in an interruption of RT−PPP. In the secondmethod, satellite communica‑
tion can overcome the aforementioned disadvantages, and typical representatives are the
commercially available RT−PPP systems offered by some companies [8,9]. RT−PPP based
on satellite communication is relatively more mature, but it requires special receivers and
is slightly more expensive. However, with the incorporation of RT orbit and clock correc‑
tions by the BeiDou global navigation satellite system (BDS−3), Galileo, and other satellite
systems, RT−PPP can be feasibly and effectively obtained nowadays [10].

Among these satellite navigation systems, the BDS−3 can provide RT−PPP services
for China and the surrounding regions by broadcasting PPP−B2b signals via three geosta‑
tionary earth orbit (GEO) satellites, which currently only support the global positioning
system (GPS) and BDS−3; these services will incorporate Galileo and GLONASS satellite
systems in the near future [11]. Currently, the clock offset precision of the PPP−B2b service
is approximately 0.2 ns, which is slightly lower than the accuracy of the Centre National
d’Etudes Spatiales (CNES) products [5]. Many scholars have shown that the PPP−B2b
service can achieve centimeter− and decimeter−level positioning in static and kinematic
scenarios, respectively, in China and surrounding areas [12–15]. However, static stations
with high−performance receivers in open scenes were utilized, dynamic positioning was
also performed in a simulated approach, and the positioning performance in real dynamic
scenes is unknown.

For RT−PPP in real dynamic scenes, ref. [16] achieved a vehicle−mounted position‑
ing accuracy of about 0.2 m in open scenes using RTS products. Ref. [17] carried out an
ocean RT−PPP experiment using the PPP−B2b service, and a three−dimensional (3D) po‑
sitioning accuracy of 18.2 cm was achieved. A dynamic vehicle−mounted experiment
was carried out in ref. [18] and the positioning errors exceeded 1 m due to environmen‑
tal occlusion. However, in challenging environments, GNSS signals are highly susceptible
to blocking and the multi−path effect is obvious. Furthermore, in complicated scenar‑
ios, such as boulevards, urban canyons, overpasses, etc., GNSS signals are easily inter‑
rupted; hence, continuous and reliable precise positioning cannot be achieved only by us‑
ing GNSS, and other sensors must be integrated to assure that a continuous and reliable
position is provided [19,20]. The inertial navigation system (INS) has the advantages of
independence and a precise short−term resolution, indicating great complementary fea‑
tures with the GNSS [21–24]. The RT positioning performance of a tight integration using
single−frequency BDS, GPS, and INS was analyzed with RTS products, and a sub−meter
level positioning accuracy was achieved in a sheltered campus environment [25]. Ref. [26]
implemented a GPS and GLONASS single−frequency PPP/INS loose integration using
CNES RT corrections and added motion constraints to the PPP/INS system; its positioning
accuracy still exceeded 1 m in a complex urban environment. Ref. [27] performed an RT
PPP/INS tight combination in the urban environment using SSR corrections from different
analysis centers, and its 3Dpositioning errorwas still around 1m. Ref. [28] investigated the
performance of a loosely integrated BDS−3 PPP−B2b/INS, and the positioning accuracy
was about 0.36 m in an open environment and about 0.85 m in a sheltered environment.
However, the accuracy of loosely integrated PPP−B2b/INS was not compared with other
precise products, the performance of the velocimetry and attitude determination were not
considered, and only the loose integration mode was realized. Compared with loose in‑
tegration, the PPP/INS tight integration takes full advantage of the accurate short−term
navigation resolution of the INS and hence features robust quality control and verifica‑
tion, contributing to resisting GNSS gross error, cycle slip detection, and reconvergence



Sensors 2023, 23, 2652 3 of 17

after GNSS outages [29–31]. Therefore, the existing research into BDS−3 PPP−B2b/INS
is rather insufficient, especially in terms of the PPP−B2b/INS tight integration. In this
paper, we proposed a tightly integrated BDS−3 PPP−B2b/INS model, its performance of
on−board experiments in the urban environment was analyzed, and the results using the
RT and post products from Deutsche GeoForschungsZentrum (GFZ) were compared. In
addition, the performance of themicroelectromechanical system (MEMS) inertial measure‑
ment unit (IMU), which is preferred in mass applications due to its low price, light weight,
compact volume, and low−energy consumption, was further evaluated.

The rest of the paper is structured as follows: In Section 2, the methodology of the
tightly integrated PPP−B2b/INS is briefly introduced. In Section 3, the origins and pro‑
cessingmethods of the on−board experiment are presented, the performance of the tightly
integrated PPP−B2b/INS is evaluated, and the results of the low−costMEMS IMU are also
detailed. The conclusions and perspectives are discussed in Section 4.

2. Methodology
In this section, we first introduce the calculation of PPP−B2b precise products, then

we present the real−time ionosphere−free PPP model using the PPP−B2b service, and
finally, the tightly integrated PPP−B2b/INS is presented.

2.1. Precise Products Calculation with PPP−B2b Service
The broadcasted PPP−B2b correction information is based on the BeiDou Time (BDT)

and BeiDou coordinate system (BDCS) [32], and the update interval for satellite orbit cor‑
rections and clock offset corrections are 48 s and 6 s, respectively. The broadcasted or‑
bit corrections, δXB2b, are components of radial, along−track, and cross−track directions
under the satellite fixed coordinate system, while the satellite position calculated by the
broadcast ephemeris is under the earth−centered, earth−fixed (ECEF) frame. Therefore,
the corrections can be converted to the ECEF frame as follows:

δXs =
[
eradial ealong ecross

]
· δXB2b (1)

with 
eradial =

r
|r|

ecross =
r× .

r
|r× .

r|
ealong = ecross × eradial

(2)

where δXs =
[
δx δy δz

]T is the orbit correction vector derived from PPP−B2b for satel‑
lite s in the ECEF frame and r and

.
r represent the satellite position and velocity vectors in

the ECEF frame, respectively.
Then, the precise satellite orbit, Xs

prec, can be obtained as follows:

Xs
prec = Xs

brdc − δXs (3)

where Xs
brdc is the satellite position calculated using broadcast ephemeris.

In contrast, the satellite clock offsets correction, C0, from PPP−B2b can be directly
used to correct the broadcast clock offsets, δts

brdc, to obtain RT precise clock offsets, δts
prec:

δts
prec = δts

brdc −
C0

c
(4)

where c denotes the speed of light in a vacuum.
Currently, the PPP−B2b service only supports different code biases (DCB) products

of the BDS−3 with an update interval of 48 s. Multiple BDS−3 signals, including B1I,
B1C, B2a, B2b, and B3I, are broadcasted, among which the clock offsets reference of the
BDS−3 B1C broadcast ephemeris is the B3I signal, and hence multiple types of DCB cor‑
rections are provided.
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2.2. Real−Time Ionosphere−Free PPP Model
The GNSS code, Ps

r,i, and carrier phase, Ls
r,i, measurement equations between station

r and satellite s at frequency i can be described in the following form [33]:

Ps
r,i = ρs

r + tr − ts + Ts
r + γi · Is

r,1 + dr,i − ds
i + εs

r,i

Ls
r,i = ρs

r + tr − ts + Ts
r − γi · Is

r,1 + λi

(
Ns

r,i + br,i − bs
i

)
+ ξs

r,i
(5)

where ρs
r denotes the geometry distance between the satellite and receiver; ts and tr repre‑

sent the satellite and receiver clock offsets, respectively; Ts
r is the tropospheric delay; Is

r,1
is the ionospheric propagation delay at the first frequency; λi represents the wavelength;
γi = f 2

1 / f 2
i denotes the frequency−dependent amplification factor of the ionosphere; Ns

r,i
is the integer ambiguity; ds

i and dr,i are the code hardware delays for the satellite and re‑
ceiver, respectively; bs

i and br,i represent the satellite and receiver phase hardware delays,
respectively; and εs

r,i and ξs
r,i denote the observation noise of the code and carrier phase,

respectively. The other effects, such as the phase wind−up, tidal load deformation, rela‑
tivistic effect, etc., have been corrected according to the empirical model [34].

The effect of first−order ionospheric delay is eliminated using the ionosphere−free
(IF) combination model in this paper. For the GPS, the precise clock offsets recovered from
Equation (4) can be used directly. However, the clock offsets reference of the BDS−3 broad‑
cast ephemeris is the B3I signal. The satellite clock offsets of the BDS−3 and GPS be ex‑
pressed as [17]:

t̂s,C = ts + ds,C
B3I

t̂s,G = ts + ds,G
IF

(6)

with 
ds,G

IF = α · ds
i + β · ds

j

α = f 2
i /

(
f 2
i − f 2

j

)
β = − f 2

j /
(

f 2
i − f 2

j

) (7)

where the superscript C and G represent the BDS−3 and GPS, respectively; t̂s,C and t̂s,G

denote the BDS−3 and GPS IF satellite clock offsets, respectively; ds,C
B3I represents the code

hardware delays of the B3I signal at the satellite side; and α and β are the IF combination
factors.

For BDS−3, B1I and B3I signals are used in this paper. The recovered clock offsets
from Equation (4) contain the B3I signal satellite code delays. Hence, DCB products are
needed for BDS−3 satellites. The corresponding observation equations are:

P̃s,C
r,IF = ρs,C

r + t̂r,IF − t̂s,C + Ts,C
r + εs,C

r,IF
Ls,C

r,IF = ρs,C
r + t̂r,IF − t̂s,C + Ts,C

r + λC
IF N̂s,C

r,IF + ξs,C
r,IF

Ps,G
r,IF = ρs,G

r + t̂r,IF − t̂s,G + Ts,G
r + ISBG−C + εs,G

r,IF
Ls,G

r,IF = ρs,G
r + t̂r,IF − t̂s,G + Ts,G

r + λG
IF N̂s,G

r,IF + ISBG−C + ξs,G
r,IF

(8)

with 

P̃s,C
r,IF = α ·

(
Ps,C

r,B1I + DCBs,C
B1I−B3I

)
+ β · Ps,C

r,B3I

Ns,sys
r,IF =

(
α · λ

sys
i Ns,sys

r,i + β · λ
sys
j Ns,sys

r,j

)
/λ

sys
IF

N̂s,C
r,IF = Ns,C

r,IF +
(

bC
r,IF − bs,C

IF − dC
r,IF + ds,C

B3I

)
/λC

IF

N̂s,G
r,IF = Ns,G

r,IF +
(

bG
r,IF − bs,G

IF − dG
r,IF + ds,G

IF

)
/λG

IF

(9)

where the script sys represents the satellite system and DCBs,C
B1I−B3I represents the DCB

between the B1I and B3I signal. Since the receiver clock offsets between different satellite
systems are not consistent, an additional inter−system bias, ISBG−C, needs to be intro‑
duced, and the satellite systems used in this paper include the BDS−3 and GPS.
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When the precise satellite orbits and clock offsets recovered by PPP−B2b are adopted,
the errors of the satellite orbits and clocks are no longer considered and the linearized IF
observation equation can be expressed as:

ps,sys
r,IF = ns,sys

r · δx+ t̂r,IF + ms,sys
r,w · Zr,w + ISBG−C + ε

s,sys
r,IF

ls,sys
r,IF = ns,sys

r · δx+ t̂r,IF + ms,sys
r,w · Zr,w + λ

sys
IF N̂s,sys

r,IF + ISBG−C + ξ
s,sys
r,IF

(10)

where ps,sys
r,IF and ls,sys

r,IF represent observed−minus−computed (OMC) observations of the
code and phase, respectively; ns,sys

r indicates the unit vector from the station to the satellite;
δx is the vector of three−dimensional position corrections; Zr,w is the zenith wet delay;
and ms,sys

r,w is the mapping function. The dry component of tropospheric delays can be
corrected accurately using empirical models [35], whereas thewet component is calculated
in the procedure.

2.3. Tightly Integrated Model of PPP−B2b/INS
The error equation of the strapdown INS is the basis for the discussion of the INS error

propagation law, initial alignment, and integration navigation. In this paper, the INS error
equations expressed in the ECEF frame are directly provided [30]: δ

.
re

δ
.
ve

.
φ

e

 =

 δve

−2Ωe
ieδve +

[
(Ce

bf
b
ib)×

]
φe + Ce

bδfbib
−Ωe

ieφ
e − Ce

bδωb
ib

 (11)

where the scripts i, b, and e represent earth−centered inertial, body, and ECEF frames,
respectively; δre, δve, and φe are the position, velocity, and misalignment error expressed
in the ECEF frame with the differential values of δ

.
re, δ

.
ve, and

.
φ

e, respectively; fbib denotes
the specific force obtained from the accelerometer; Ωe

ie denotes the skew−symmetric form
of the earth rotation rates ωe

ie; C
e
b represents the rotation matrix from frame b to frame e;

ωb
ib is the angular rate obtained from the gyroscope; and δωb

ib and δfbib are the synthetic
errors of the gyroscope and accelerometer, respectively. In this paper, only the biases are
considered, which are further modeled as a random walk process.

The INS state model is expressed in the following form:
δ

.
re

δ
.
ve

.
φ

e

δ
.
ba

δ
.
bg


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INSGNSS

GNSS
GNSS

r IF r IF

ISB

r w Zr w
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s
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The state equation of the tightly integrated PPP−B2b/INS can be described as: 

0

0

INS INS INSINS

GNSS GNSS GNSSGNSS

      
= +      

        

X X wF

F X wX
 (14) 

The observation equations of the tightly integrated PPP−B2b/INS are built on the ba-

sis of IF PPP Equation (10), while the INS−predicted observations obtained from the 

INS−mechanized results are utilized as computed values. In addition, the spatial lever 

arm error must be considered in advance when integrating IMU and GNSS observations 

due to the inconsistency between the IMU center and the antenna phase center. 

.
XINS

=


0 I 0 0 0
0 −2ωe

ie× f e× Ce
b 0

0 0 −ωe
ie× 0 −Ce

b
0 0 0 0 0
0 0 0 0 0


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where ab  and 
gb  are the biases of the accelerometer and gyro, respectively, and ξ  

represents the process noise of the corresponding parameters. 
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The state equation of the tightly integrated PPP−B2b/INS can be described as: 

0

0

INS INS INSINS

GNSS GNSS GNSSGNSS

      
= +      

        

X X wF

F X wX
 (14) 

The observation equations of the tightly integrated PPP−B2b/INS are built on the ba-

sis of IF PPP Equation (10), while the INS−predicted observations obtained from the 

INS−mechanized results are utilized as computed values. In addition, the spatial lever 

arm error must be considered in advance when integrating IMU and GNSS observations 

due to the inconsistency between the IMU center and the antenna phase center. 
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where ab  and 
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The observation equations of the tightly integrated PPP−B2b/INS are built on the ba-

sis of IF PPP Equation (10), while the INS−predicted observations obtained from the 

INS−mechanized results are utilized as computed values. In addition, the spatial lever 

arm error must be considered in advance when integrating IMU and GNSS observations 
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where ab  and 
gb  are the biases of the accelerometer and gyro, respectively, and ξ  

represents the process noise of the corresponding parameters. 
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The observation equations of the tightly integrated PPP−B2b/INS are built on the ba-

sis of IF PPP Equation (10), while the INS−predicted observations obtained from the 

INS−mechanized results are utilized as computed values. In addition, the spatial lever 

arm error must be considered in advance when integrating IMU and GNSS observations 

due to the inconsistency between the IMU center and the antenna phase center. 
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where ab  and 
gb  are the biases of the accelerometer and gyro, respectively, and ξ  
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The state equation of the tightly integrated PPP−B2b/INS can be described as: 
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The observation equations of the tightly integrated PPP−B2b/INS are built on the ba-

sis of IF PPP Equation (10), while the INS−predicted observations obtained from the 

INS−mechanized results are utilized as computed values. In addition, the spatial lever 

arm error must be considered in advance when integrating IMU and GNSS observations 

due to the inconsistency between the IMU center and the antenna phase center. 
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where ab  and 
gb  are the biases of the accelerometer and gyro, respectively, and ξ  

represents the process noise of the corresponding parameters. 
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The observation equations of the tightly integrated PPP−B2b/INS are built on the ba-

sis of IF PPP Equation (10), while the INS−predicted observations obtained from the 

INS−mechanized results are utilized as computed values. In addition, the spatial lever 

arm error must be considered in advance when integrating IMU and GNSS observations 

due to the inconsistency between the IMU center and the antenna phase center. 
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The observation equations of the tightly integrated PPP−B2b/INS are built on the ba-

sis of IF PPP Equation (10), while the INS−predicted observations obtained from the 

INS−mechanized results are utilized as computed values. In addition, the spatial lever 
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The state equation of the tightly integrated PPP−B2b/INS can be described as:[ .
XINS.
XGNSS

]
=

[
FINS

0
0

FGNSS

][
XINS
XGNSS

]
+

[
wINS
wGNSS

]
(14)

The observation equations of the tightly integrated PPP−B2b/INS are built on the
basis of IF PPP Equation (10), while the INS−predicted observations obtained from the
INS−mechanized results are utilized as computed values. In addition, the spatial lever
arm error must be considered in advance when integrating IMU and GNSS observations
due to the inconsistency between the IMU center and the antenna phase center.

The flowchart of tightly integrated PPP−B2b/INS is shown in Figure 1, which contains
three parts: GNSS, INS, and integration. Using the observation data, BDS−3 PPP−B2b cor‑
rections, and the broadcasted ephemeris, the GNSS unit primarily contains data
pre−processing, such as gross error and cycle slip detection, GNSS state prediction, and
PPP equation construction. An initial alignment of the system is conducted with the po‑
sition provided by the GNSS in the INS unit; the observation data obtained from the ac‑
celerometer and gyroscope are then used for mechanization to calculate the present INS
navigation informationwhich can contribute to the pre−processing of the GNSS. Then, the
state parameters from the INS and GNSS are integrated and updated using the GNSS ob‑
servations to gain the tightly integrated PPP−B2b/INS solution. The IMUbiaseswill be fed
back to the subsequent IMUdata to restrict the INS error accumulation. The PPP−B2b/INS
tight integration model will output a pure INS result from INS mechanization when the
GNSS signals are lost.
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3. Experiment Validations and Result Discussions
In this section, the experimental data andprocessing strategy are first presented. Then,

the performance of the tightly integrated PPP−B2b/INS and PPP−B2b/INS using the
MEMS IMU is evaluated.
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3.1. Experiment Data and Processing Strategy
To assess the performance of the tightly integrated PPP−B2b/INS, we conducted a

vehicle experiment in an urban environment in Zhengzhou, China. The experimental plat‑
form is presented in Figure 2. The experiment was carried out on 18 October 2022, with a
total duration of about 1.5 h. A stationary period at the beginning of the experiment was
used for the initial alignment of the integrated navigation system. During the experiment,
the vehicle performed many maneuvers, such as remaining stationary, accelerating and
decelerating, and turning. Its velocity and attitude changes are shown in Figure 3, where
the initial stationary period is not included.
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Figure 3. Vehicle motion status of the experiment.

The trajectory of the vehicle is shown in Figure 4, wherein some challenging experi‑
mental scenes are also shown. The position error of PPP is shown in Figure 5. The GNSS
signals are mainly blocked by tall residential buildings, trees, and viaducts during the ex‑
periment, leading to large multi−path errors or satellite signal loss, causing errors of sev‑
eral meters or positioning interruptions in PPP and PPP/INS loosely coupled integration.
Only the performance of the tightly integrated PPP/INS is discussed below.
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The SinoGNSS K803 card was used to receive the RT corrections of the BDS−3
PPP−B2b during the experiment, and BNC software version 2.12 was used to receive
the RT SSR corrections broadcasted by GFZ through ntrip.gnsslab.cn operated by Wuhan
University, China. The vehicle used in the experiment was armed with an additional
GNSS antenna (CHCNAV AT312), a receiver card unicorecomm UB4B0, a tactical IMU
SNC300A−DGI, and a MEMS IMU ADIS−16470. Raw observations of the GNSS were
recorded at 1 Hz, while those of the MEMS IMU and tactical IMUwere recorded at 100 Hz
and 200Hz, respectively. The above two IMUprecision specifications are shown in Table 1.

Table 1. Precision specifications of the above IMUs utilized in the experiment.

IMU Sampling Rates Gyro Bias (deg/h) Accelerometer Bias
(mGal) Angular RandomWalk (deg/

√
h)

SNC300A−DGI 200 Hz 0.3 50 0.05
ADIS−16470 100 Hz 8 1300 0.34
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In the experiment, a reference station was set up nearby in an open environment, and
a smooth solution of the tightly coupled multi−GNSS RTK/INS conducted by the com‑
mercial software Inertial Explorer (IE) 8.9 was utilized for reference. The time alignment
of integration navigation was maintained with GPST, and the offset between the GNSS
antenna and the IMU center was measured early to implement the spatial alignment. The
processing strategies are shown in Table 2.

Table 2. Processing strategy of PPP−B2b/INS.

Parameter Processing Strategy

Satellite systems BDS−3; GPS
Frequency BDS−3 (C): B1I + B3I; GPS (G): L1 + L2

Sampling rate 1 Hz

Satellite elevation cut−off angle 7◦

Receiver clock offsets Modeled as white noise

Tropospheric delay Using the Saastamoinen model where the residual component
is modeled as a random walk process [35]

Satellite and receiver antenna phase center offset igs14.atx

Weight for observations Elevation−dependent weight [36]
Inter−system bias Modeled as a random walk process

Biases of accelerometer and gyro Modeled as a random walk process

Quality control strategy Detection, identification, and adaptation (DIA) [37]

3.2. Performance of Tightly Integrated PPP−B2b/INS
In this section, the performance of the tightly integrated BDS−3 PPP−B2b/INS in the

urban environment is investigated using the tactical IMU. To analyze the accuracy of the
positioning, velocimetry, and attitude determination, it is compared with the PPP/INS
tight integration using the GFZ broadcast RT corrections (referred to as GFZ−SSR) and
the GFZ post precise product (referred to as GBM). The number of available satellites of
the BDS−3 and GPS using the three precise products during the experiments is shown in
Figure 6. It should be mentioned that the number of satellites available in this paper rep‑
resents the number of visible satellites which have precise orbits and clock offsets. It can
be seen from Figure 6 that GBM has the maximum number of available satellites. Table 3
further provides the statistics on the average available satellites using the three precise
products. The average number of available satellites is 12.34 when PPP−B2b corrections
were used, the corresponding results for GFZ−SSR and GBM were 13.64 and 14.29, re‑
spectively. Currently, the number of satellites supported by the PPP−B2b service is still
relatively low due to the limitation of the number and distribution of ground monitor‑
ing stations, which may affect its positioning performance. In addition, the post−precise
products support more satellites and a higher product accuracy due to a better processing
strategy and more observation stations around the world.

Table 3. Average number of available satellites.

Scheme Available Satellites

B2b 12.34
GFZ−SSR 13.64
GBM 14.29
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First, Figure 7 shows the positioning error using different precise products. It can
be seen that all three precise products used have the largest positioning error in the E
component, which may be related to the GNSS observation conditions of the experiment.
Three GNSS short interruptions happened in the experiment. These three solutions all
can provide continuous, reliable, and precise positioning during the GNSS short interrup‑
tion. There is still an obvious difference in the positioning accuracy between the two RT
products and the post−precise products. Decimeter−level positioning precision can be
achieved using these three products. Table 4 further presents the statistical root mean
square (RMS) error of the three precise products. The positioning accuracies in the E, N,
and U components using PPP−B2b corrections are 0.292, 0.115, and 0.155 m, respectively,
while they are 0.183, 0.098, and 0.122m, respectively, usingGFZ−SSR and 0.115, 0.055, and
0.056 m, respectively, using GFZ post−precise products. Compared with GFZ RT prod‑
ucts, the 3D positioning accuracy of the BDS−3 PPP−B2b still has a gap of about 1 dm and
2 dm compared with GFZ post−precise products.
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Table 4. RMS statistics of positioning error for the three precise products using tactical IMU (unit: m).

Scheme E N U H 3D

B2b 0.292 0.115 0.155 0.314 0.350
GFZ−SSR 0.183 0.098 0.122 0.208 0.241
GBM 0.115 0.055 0.056 0.127 0.139

Regarding velocimetry, the velocity error using different products is shown in
Figure 8. It can be seen from Figure 8 that the accuracy of the velocimetry is very sta‑
ble, and there is no significant difference in the velocimetry error using different precise
products. Table 5 depicts the RMS statistics in the E, N, and U components using differ‑
ent products. The accuracy of the velocimetry using the three precise products in the E,
N, and U components is about 0.3 cm/s. The accuracy of the velocimetry with GFZ−SSR
is slightly better compared to the GFZ post−precise products, probably due to its higher
satellite orbit and clock offset sampling rate.
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Figure 8. Velocity error of the three precise products using tactical IMU.

Table 5. RMS statistics of velocity error for the three precise products using tactical IMU (unit: cm/s).

Scheme E N U

B2b 0.28 0.33 0.34
GFZ−SSR 0.25 0.29 0.30
GBM 0.27 0.30 0.31

Finally, Figure 9 shows the attitude error of the pitch, roll, and yaw using different
precise products. It can be seen that there is no significant difference in attitude errors using
different precise products. In addition, the accuracy of the yaw is significantly worse than
that of the pitch and roll. The accuracy of the yaw at the beginning of the experiment is
significantly lower than that at other periods due to theweak observability and the absence
of obvious movement of the vehicle [38]. Table 6 further shows the attitude error RMS
statistics using the three precise products. The accuracy of the pitch and roll with three
precise products is all better than 0.01 deg, and the yaw accuracy is about 0.1 deg. As
with the accuracy of the velocimetry, the attitude accuracy using the three precise products
also has no significant differences. Hence, the accuracy of the velocimetry and attitude
determinationmainly depends on the precision of the IMU in the PPP/INS tight integration,
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and PPP−B2b/INS can also obtain an equally accurate velocity and attitude as the scheme
using post−precise products.
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Table 6. RMS statistics of attitude error for the three precise products using tactical IMU (unit: deg).

Scheme Pitch Roll Yaw

B2b 0.003 0.006 0.108
GFZ−SSR 0.003 0.005 0.107
GBM 0.003 0.006 0.107

3.3. Tightly Integrated PPP−B2b/INS with Low−Cost MEMS IMU
The capabilities of the BDS−3 PPP−B2b/INSwith a tactical IMUwere evaluated in the

previous section. To perform a further analysis of the MEMS IMU for wide applications,
this section compared the performance of the tactical IMU and the MEMS IMU using the
BDS−3 PPP−B2b service and GFZ post products.

First, Figure 10 shows the positioning error of different IMUs using the PPP−B2b RT
corrections and GFZ post−precise products. It can be seen that the positioning perfor‑
mance of the tactical IMU and MEMS IMU was significantly different, especially during
GNSS signal interruption. During short GNSS interruptions, the positioning error using
the MEMS IMU accumulated rapidly, while the tactical IMU still maintained a better po‑
sitioning accuracy. The RMS statistics of the positioning error with different IMUs using
the two precise products are also shown in Figure 11. The positioning accuracies in the E,
N, and U components of the PPP−B2b/MEMS INS tight integration are 0.350, 0.134, and
0.173 m, respectively, while they were improved by 16.6%, 14.2%, and 10.4%, respectively,
using the tactical IMU, and 14.2%, 39.6%, and 34.9%, respectively, using the tactical IMU
and post−precise products.

Then, regarding the velocimetry, Figure 11 shows the velocity error of the two precise
products using different IMUs. Compared with the MEMS IMU, the velocimetry accuracy
of the tactical IMU was significantly improved. The velocimetry accuracy of the MEMS
IMU is better than 1 cm/s in all the E, N, and U components.
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Figure 11. PPP/INS tight integration velocimetry error of tactical IMU and MEMS IMU: (a) BDS−3
PPP−B2b RT corrections; (b) GFZ post−precise products.

Finally, Figure 12 presents the corresponding attitude errors. It can be seen that the
accuracy of the pitch, roll, and yaw using the MEMS IMU has decreased significantly com‑
pared to the tactical IMU. This is mainly due to the inherent poor accuracy of the MEMS
IMU and the fact that the biases estimation accuracy of the MEMS IMU is not as accurate
as that of the tactical IMU. The gyro biases estimation errors of the two IMUs are shown in
Figure 13. In addition, the yaw error presented a rapid increase in the final vehicle station‑
ary period using the MEMS IMU. The accuracy of the pitch, roll, and yaw were about 0.6,
0.3, and 1.1 deg, respectively, using the MEMS IMU. Both the results in Figures 11 and 12
indicate that the accuracy of the velocimetry and attitude determination in the PPP/INS
tight integration mainly depends on the precision of the IMU.
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4. Conclusions
PPP−B2b supports RT−PPP as a featured service of BDS−3. In contrast to RTS initi‑

ated by IGS, PPP−B2b does not require internet communication. RT−PPP based on satel‑
lite communication has more advantages, especially for areas without internet communi‑
cation coverage or those with a congested network and a poor network signal. However,
satellite signals are easily blocked within a complicated environment. To provide a contin‑
uous and secure position during GNSS signal blocking and interruption, this paper pro‑
poses a tightly integrated BDS−3 PPP−B2b/INS model and analyzes its performance in
the urban environment, and is also compared with GFZ RT corrections and post−precise
products. In addition, the performance of the tightly integrated PPP−B2b/INS with the
MEMS IMU for mass applications is also evaluated.

Currently, the PPP−B2b service only supports BDS−3 and GPS, and the number of
supported satellites is still limited. The average number of available satellites in this exper‑
iment is 12.34, which still is slightly lower compared with GFZ RT precise products. The
experiment results show that the tightly integrated PPP−B2b/INS can provide continuous
and reliable positioning during short interruptions in GNSS signals. The positioning ac‑
curacies in the E, N, and U components of the PPP−B2b/INS tight integration are 0.292,
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0.115, and 0.155 m, respectively. Hence, PPP−B2b/INS tight integration can achieve a
decimeter−level positioning accuracy in the urban environment and meet the positioning
requirements of certain scenarios. Compared with the performance using GFZ RT prod‑
ucts, the 3D positioning accuracy of the PPP−B2b/INS still has a gap of about 1 dm and
2 dm compared to when GFZ post−precise products are utilized. Additionally, the accu‑
racy of the velocimetry and attitude determination mainly depends on the precision of the
IMU in the PPP/INS tight integration, since no significant difference is found between RT
and post products. These three solutions can all achieve a good accuracy using the tactical
IMU; the velocimetry accuracy of the PPP−B2b/INS is about 0.3 cm/s in all the E, N, and U
components, and the accuracy of the pitch and roll is better than 0.01 deg, while that of the
yaw is about 0.1 deg. When the low−cost MEMS IMU is used, its performance degraded
significantly, in which the attitude accuracy decreased most significantly.

With the development of BDS−3, the PPP−B2b service will quickly support more
satellites and more satellite systems, and the precision of the PPP−B2b orbit and clock
offset corrections will be improved, resulting in a better performance of the tightly inte‑
grated PPP−B2b/INS. In addition, the INS error will accumulate rapidly when the GNSS
signals are interrupted for a long time; hence, the performance of the PPP/INS will de‑
grade quickly. Therefore, other sensors such as an odometer and camera can be further
integrated to improve the performance. Additionally, integrity monitoring of PPP/INS
should be considered in the future.
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