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Abstract: Touchless technology has garnered significant interest in recent years because of its effec-
tiveness in combating infectious diseases such as the novel coronavirus (COVID-19). The goal of this
study was to develop an inexpensive and high-precision touchless technology. A base substrate was
coated with a luminescent material that emitted static-electricity-induced luminescence (SEL), and it
was applied at high voltage. An inexpensive web camera was used to verify the relationship between
the non-contact distance to a needle and the applied-voltage-triggered luminescence. The SEL was
emitted at 20–200 mm from the luminescent device upon voltage application, and the web camera
detected the SEL position with an accuracy of less than 1 mm. We used this developed touchless
technology to demonstrate a highly accurate real-time detection of the position of a human finger
based on SEL.
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1. Introduction

The coronavirus (COVID-19) pandemic began in 2020 and has now spread worldwide.
Although vaccines have been developed to curb the spread of the disease, outbreaks of
infectious variants continue to diminish the utility of available vaccines and drugs [1].
An infection presumably takes several years to subside. Therefore, worldwide efforts are
being made to maintain economic activities by easing movement restrictions while pre-
venting further infections, rather than absolutely avoiding the spread of infection through
lockdowns. However, easing movement restrictions does not eliminate the possibility of
infection, even though such measures may enable the general population to return to a
new ‘normal’ life. Therefore, providing individuals with a sense of security to facilitate
their activities is important.

Contactless technology, which enables device operation without human contact, is
gaining attention for reducing the possibility of infections and facilitating people to continue
their daily activities [2,3]. This technology ensures hygiene and prevents the spread of
infection in places with an unspecified number of people, such as shopping malls, public
facilities, and hospitals. In recent years, infrared sensors that enable touchless control
in passenger elevators [4], Internet of Things devices that enable voice controlled on/off
operation of switches [5], touchless pointing devices based on three-dimensional motion
sensors [6], and motion-sensor-controlled holographic displays [7] have been developed
and widely implemented in various real-life situations, particularly during the COVID-19
pandemic. Further, the development of input interfaces for movement- or voice-controlled
electrical devices is gaining traction.

In this study, we developed a new touchless technology using a thin luminescent
device formed by combining electrostatic and luminescent materials. The device was
developed for application in towns, companies, factories, construction sites, etc., with an
unspecified number of people. We focused on the construction of a simple and practical
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device that detects complex finger movements and can be easily installed in existing lo-
cations. To ensure that the device exhibits homology with complex movements as well
as instils confidence among the users, the device needs to function effectively at larger
finger-to-device distances and detect the finger’s spatial position with a high accuracy.
Table 1 lists the principles utilised in existing touchless input interfaces and their char-
acteristics. Capacitive touch panels [8] are compatible with complex movements (high
accuracy in detecting positions) and can be easily installed, and thus, touchless panels
based on this principle have been widely developed [9]. However, the capacitive princi-
ple is not suitable for non-proximity applications, and to bridge this gap, infrared-based
technologies [10,11] have been developed, including ultrasound [12], image recognition,
and artificial-intelligence-based cameras [13]. Infrared sensors such as an oncoming camera
must be installed in an existing system, e.g., a wall. In the case of ultrasound devices,
which detect sound waves reflected from a finger, the phase difference has to be measured
over a larger area, as the detection position moves further away from the finger. Hence,
a large camera is required to increase the detection accuracy of the X and Y coordinates.
There are two types of devices based on the principle of camera depth: the first type (an
opposed type) is installed on the opposite side of the finger, i.e., deeper than the wall, and
the other type is installed at the top (or bottom) using two cameras at certain angles. The
former device type requires the construction of walls, whereas the latter detects planar
positions with poor accuracy, which can be improved by increasing the angle. However,
this method of realising non-proximal detection results in significant inaccuracies in the
detected position. To increase the position-detection accuracy, a highly sophisticated image
recognition method along with a large-sized sensing device are required. An advanced
image recognition can be realised by preparing a large number of images for learning and
using a high-performance computer to process these images, although developing the req-
uisite system as well as its installation for such an implementation are significant challenges.
In addition, the corresponding sensor should be able to operate at a non-proximal distance
from the finger and detect the input position with high accuracy. The device developed in
this study is based on the principle of static-electricity-induced luminescence (SEL) [14]
discovered by Kikunaga et al. The ultimate aim of this study was to develop a new touch-
less technology using a thin luminescent device that can overcome the aforementioned
challenges associated with non-proximity, accuracy, and installation.

Table 1. Principles and features of touchless input interfaces.

Retrofit to Wall Space
Constraint

Non-Proximity
Sensor Positional Accuracy Figure

Camera
(facing) Bad Good Good Good
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2. Methods
2.1. Luminescent Devices and Detection

Thin luminescent devices (film thickness ~50 µm) were screen-printed with epoxy
resin and SrAl2O4:Eu2+ (luminescent material) [14,15] on aluminium foil or paper as base
substrates. The epoxy resin serves as a protective coating. To detect the luminescence,
we developed an image processing software that processed every five frames of the input
image obtained from a web camera operating at a speed of 30 fps. The processing software
was developed using C++ and an image-processing library called OpenCV (Intel. ver. 4.5.2).
SEL arises from Eu2+ and has a broad emission spectrum, mainly around 510 nm [14–16].
However, because an RGB (where R, G, and B denote red, green, and blue, respectively)
image is typically used as the input [17,18], evaluating minute changes in the hue is difficult.
Consequently, in our case, the input image was converted from the RGB colour space to
the HSV (represented by hue, saturation, and value, respectively) colour space based on
Equation (1) [19] to enable an effective colour-change detection. We determined the HSV
range from which only the luminescence of the luminescent device was extracted, and
the real-time-detected luminescent image was converted to the HSV colour space. We
optimised the HSV range using SEL luminescence images before each experiment, allowing
us to reliably detect luminescence.

V ← max(R, G, B)

S←
{

V−min(R, G, B)
V i f V 6= 0
0 otherwise

H ←


60(G− B)/(V −min(R, G, B)) i f V = R

120 + 60(B− R)/((V −min(R, G, B)) i f V = G
240 + 60(B− R)/((V −min(R, G, B)) i f V = B

0 i f R = G = B

if H < 0 , then H ← H + 360 . On output 0 ≤ V ≤ 1, 0 ≤ S ≤ 1, 0 ≤ H ≤ 360.

(1)

2.2. Setup for Evaluating the Luminescent Devices

We constructed a system to apply a high voltage and measured the voltage and current
using a needle (1 mm in diameter) instead of a finger to evaluate the prepared thin lumines-
cent device (Figure 1). Here, the base substrate of the device used was aluminium foil. In
this study, we used a high-voltage power supply (Green Techno Co., Ltd., GT100, Kawasaki,
Japan) capable of applying voltages in the range from 0 to 40 kV, an automated stage (Sigma
Koki Co., Ltd., OSMS26-200, Saitama, Japan) whose position can be controlled to be in the
range 0–200 mm, an ammeter (ADC Co., Ltd., 5350, Saitama, Japan) for measuring minute
currents, and a web camera (TC-PC8Z, I-O DATA Corporation, Kanazawa, Japan), which
was used to capture the luminescence. The needle was placed on the X-Y-Z stage and
connected to an ammeter (Figure 1). Using this system, we increased the distance between
the thin luminescent device and the needle from 20 to 200 mm in increments of 20 mm and
applied a voltage until the thin luminescent device emitted luminescence; the voltage and
current were measured simultaneously.

SEL is emitted by the part of the thin luminescence device located at the shortest
distance from a finger [14]. We assumed that the position at which a finger points to the thin
luminescent device and the position of the SEL are approximately the same, and detected
the position and measured its accuracy by analysing the images of the luminescence
captured by a web camera. For these measurements, a circular thin luminescent device
with a diameter of 60 mm was used. The distance between the needle and the luminescent
device was fixed at 80 mm. When a voltage of 5 kV was applied to the luminescent device,
the needle moved 40 times along the X-axis (horizontal to the ground) or Y-axis (vertical
to the ground) by 1 mm and covered a total of 40 mm. The moving luminescence was
captured using a web camera, and the position of the luminescence was measured by
image processing.
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Figure 1. Experimental system for evaluating the prepared luminescence devices.

2.3. Setup for Touchless Verification

To validate the applicability of the thin luminescent device as a touchless input device,
we demonstrated real-time detection of the position of a moving luminescence following
the movement of a finger. The principle of SEL assumes that light emission is induced
by the interaction between a light-emitting material and an external charge, so light emis-
sion can occur even if the base material in this device is not metal. Here, the following
experiment was conducted using paper as the base material. A luminescence device
(200 mm × 200 mm) coated with epoxy resin and SrAl2O4:Eu2+ [14,15] on paper and a web
camera were used (Figure 2) for this case. A Van de Graaff generator (Artec Corporation,
8951, Osaka, Japan) was used to apply a voltage (20 kV ± 1 kV) to the luminescent device,
and the luminescence emitted by the device upon close proximity to a finger was captured
using the web camera. The position coordinates corresponding to the centre of the lumines-
cence area were calculated from the captured images and drawn as red circles in a window
for the paint tool to visualise the movement of luminescence traced on a finger in real time.
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3. Results
3.1. Relationship between Non-Contact Distance to Needle and Luminescence with Applied Voltage

The relationship between the electrical characteristics (voltage and current) observed
during the luminescence was examined by varying the non-contact distance between the
thin luminescent device (on which the voltage was applied) and the needle. Figure 3a,b
show the luminescent device and the light emitted by it, respectively. Figure 3c presents the
measured voltage and current when the non-contact distance from the needle was varied
from 20 to 200 mm. Evidently, a longer non-contact distance between the needle and the
light emitter results in a higher voltage during the light emission. For the thin luminescent
device fabricated in this study, the correlation coefficient between the non-contact distance
and the voltage is 0.98, and that between the non-contact distance and the current is 0.45.
These results reveal a stronger correlation [20] between the voltage and current produced
during the SEL emission. In addition, the current is approximately 250 nA or less, which is
within the error range of this system.
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the voltage or current and the non-contact distance during the light emission by the prepared thin
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The observed SEL phenomenon presumably originates from the movement of electric
charges in air in the dark discharge region, which also includes corona discharges. The
space between the two electrodes of a negative corona discharge can be divided into three
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regions, viz., the ionisation, plasma, and drift regions. The electrons near the needle
electrode collide with neutral air molecules under a strong electric field at the beginning
of the discharge. As a result, the neutral molecules are ionised into positive ions and
electrons; the positive ions move towards the negative electrode under the applied electric
field, whereas the electrons continue to ionise other neutral molecules. The electrons enter
the plasma region after exiting the ionisation region. However, the electric field strength
in the plasma region cannot provide sufficient energy to the electrons. Consequently,
the electrons combine with neutral air molecules to form negative ions in the plasma
region, enter the drift region, and travel towards the positive electrode [21]. In other
words, in the region of dark discharge, including corona discharge, negative ions are
emitted from the needle electrode, and these negative ions possibly enter the luminescent
device because of the potential difference between the needle electrode and the ground
(Figure 4). SrAl2O4:Eu2+ is a green phosphor, and it has been reported that there is an
interdependent relationship between force, light, and electricity [22]. In addition, it has
been confirmed that SrAl2O4:Eu2+ could emit intense green light when excited by lower
direct current (DC) or alternating current (AC) voltages [23]. Therefore, SEL may be part of
electroluminescence. The general charge injection mechanism for electroluminescence in
an EL device follows several sequential steps [24]. When an applied voltage exceeds the
threshold voltage, electrons are excited into the conduction band of the phosphor. They are
then accelerated by the electric field, at which point they possess enough kinetic energy to
excite a luminescent centre through impact, and a high-energy, “hot” electron is produced.
The hot electrons then energetically relax by recombining with holes in the donor layer,
through which a photon is emitted [25,26]. Such luminescence has been actively studied not
only for electroluminescence but also for mechanoluminescence, and multiple mechanisms
have been proposed [15,27–31]. Presently, the details of charge interactions during SEL are
not known; however, it is hypothesized that the charges or ions act as external stimuli and
induce luminescence through charge transfer.

3.2. Evaluation of Luminescence Position-Detection Accuracy

Figure 5 depicts the relationship between the movement of the luminescence upon
the movement of the automated stage and that of the needle in the X- or Y-axes. In
Figure 5, the luminescence appears to move within the device at regular intervals on both
the X- and Y-axes. The distances moved by the needle and the central coordinates of the
luminescence along the X- and Y-axes are shown in Figure 6. Here, the centre coordinates of
the luminescence were calculated by taking the average XY-axes coordinates of the upper
left and lower right vertices of a rectangle that encloses the recognised luminescence outline.
A simple regression analysis reveals a strong correlation (correlation coefficient: 0.99)
between the distance travelled by the needle and the central coordinates of the luminescence
on both the X- and Y-axes. As shown in Table 2, when the distance between the needle and
the luminescent device is 80 mm, the maximum deviations from the regression line are 0.36
and 0.61 mm with respect to the X- and Y-axes, respectively. When the needle was moved
40 mm, the luminescence moved 12.11 mm along the X-axis and 18.09 mm along the Y-axis.

Table 2. (A) Maximum deviation from the regression line and (B) distance moved by the luminescence.

X Coordinate (mm) Y Coordinate (mm)

(A) 0.36 0.61
(B) 12.11 18.09
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These results show that at a distance of 80 mm between the luminescent device and
the needle, the position of the needle pointing to the luminescent device can be detected
with an accuracy of less than 1 mm. However, the distance moved by the luminescence is
smaller than that by the needle, and the distances moved on the X- and Y-axes are different.
These differences are related to the size of the luminescent device and are possibly caused
by the non-uniform electric field of the device. In detail, the observed difference between
the distances moved along the X- and Y-axes is possibly caused by two reasons: First, the
central point of the moving needle does not coincide with that of the luminescent device.
Second, the effect of the non-uniform electric field may be different for the X- and Y-axes. In
this experiment, we used a needle to enhance positional accuracy. As shown in Figure 3b,
the diameter of the luminescent spot was about 10 mm. Varying the diameter or shape
of the needle could reduce the size of the luminescent spot, and there is a possibility of
reducing the error.

3.3. Demonstration of Touchless Technology Using the Fabricated Luminescent Devices

We employed the system shown in Figure 2 and used a web camera to capture the
SEL emitted when a finger was in close proximity to the luminescent device; in this case,
the finger traced an ‘A’ in the air. Figure 7 shows the detected luminescence, which is
depicted by a series of red dots at the points of detection; the developed paint tool was
used to indicate these red dots. The position of the luminescence was detected by software
and a web camera installed behind the finger, and it was confirmed that information
on the position of the person pointing at the device could be obtained in real time from
the detected position of the luminescence emitted by the device. However, as shown
in Figure 7 (photo 6), some areas do not show any luminescence, possibly because an
insufficient amount of luminescent paint was applied to the sample. Although we can
visualise the ‘A’ traced by the moving finger using the developed software, the thickness of
the line is not constant, and the red dots do not form a clean straight line, possibly because a
red circle of the same size is drawn at the central coordinate of the luminescence irrespective
of the thickness of the luminescence. This result suggests that a clean straight line may be
obtained by changing the size of the red circle depending on the luminescence thickness.
Nevertheless, we succeeded in utilising SEL in the non-contact mode by capturing the
movement of a finger in the form of luminescence using a web camera and treating it as an
input signal.
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4. Conclusions

In this study, a voltage-based luminescent device and support rod or finger were
used to verify the distance, position-detection accuracy, and real-time performance of a
light-emitting element with a simple structure. The light-emitting structure was fabricated
by simply coating a light-emitting material on a substrate such as metal or paper, and
subsequently, a voltage such as static electricity was applied to the fabricated device. Using
this luminescent device, we confirmed that SEL occurred at a non-contact distance of at
least 80 mm from the support rod. The detection of SEL enabled the detection of the
position of the finger with a high spatial resolution of less than 1 mm using a low-cost web
camera. This technology facilitates a non-proximal detection of a target object using finger
movements (in the Z-axis) and provides highly accurate position information (XY-axes)
as the input. Furthermore, we succeeded in establishing touchless technology based on
a new principle by detecting SEL following the movement of a finger in real time. In
the developed system, a range of specified hue, saturation, and value (HSV) is obtained
from an image captured by a camera. Therefore, objects of complex geometric shapes can
be recognized with high reproducibility. This luminescent device is easy to install, as it
can be simply attached to a metal plate connected to a high-voltage power supply. The
advantages and verification results of the developed device are expected to pave the way
for the development of low-cost, easy-to-implement, and contactless devices.
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