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Abstract: Chemical analysis of hazardous surface contaminations, such as hazardous substances,
explosives or illicit drugs, is an essential task in security, environmental and safety applications.
This task is mostly based on the collection of particles with swabs, followed by thermal desorption
into a vapor analyzer, usually a detector based on ion mobility spectrometry (IMS). While this
methodology is well established for several civil applications, such as border control, it is still not
efficient enough for various conditions, as in sampling rough and porous surfaces. Additionally, the
process of thermal desorption is energetically inefficient, requires bulky hardware and introduces
device contamination memory effects. Low-temperature plasma (LTP) has been demonstrated as an
ionization and desorption source for sample preparation-free analysis, mostly at the inlet of a mass
spectrometer analyzer, and in rare cases in conjunction with an ion mobility spectrometer. Herein,
we demonstrate, for the first time, the operation of a simple, low cost, home-built LTP apparatus
for desorbing non-volatile analytes from various porous surfaces into the inlet of a handheld IMS
vapor analyzer. We show ion mobility spectra that originate from operating the LTP jet on porous
surfaces such as asphalt and shoes, contaminated with model amine-containing organic compounds.
The spectra are in good correlation with spectra measured for thermally desorbed species. We verify
through LC-MS analysis of the collected vapors that the sampled species are not fragmented, and can
thus be identified by commercial IMS detectors.

Keywords: ion mobility spectrometry; on-site analysis; sampling

1. Introduction

On-site chemical analysis is an essential task for first responders, such as law enforce-
ment personnel, who need to examine surfaces suspected of being contaminated with
adsorbed hazardous materials, such as explosives, illicit materials, chemical warfare agents
or other accidentally released hazards. Such materials can be solid particles, or droplets,
adsorbed deeply within a porous surface such as asphalt, sidewalks, building walls, vehi-
cles, plants, or dissolved inside polymeric layers of different objects. Mapping an area after
a chemical incident involving the release of liquid droplets or particulate matter requires
high throughput sampling of various surfaces, many of which are corrugated.

Due to the complexity of sampling such surfaces, such mapping is performed mainly
by sampling the vapors to a field portable detector, such as an ion mobility spectrometer
(IMS), mass spectrometry (MS), and flame photometric detector (FPD) [1–4]. Numerous
works demonstrated the use of such techniques combining desorption methods for the
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detection and mapping of explosives and drugs [5,6], toxic industrial compounds [7],
volatile organic compounds (VOC) [8] and chemical warfare agents [9]. Sampling is based
on collecting a minute amount of vapors released from the analyte or wiping an area of
a few square centimeters with a swab, followed by thermal desorption of the collected
sample. This practice has several drawbacks: mapping surface contamination is slow and
not continuous, thus resulting in low spatial resolution. Additionally, the collection of large
amounts of substances (both analytes and benign materials) will lead to contamination of
the detection device and to memory effects; thermal desorption is energetically inefficient,
thus reducing the operation times of the device. One of the most significant drawbacks of
using these techniques is that collecting samples from corrugated surfaces using swabs may
be impractical in many cases [10,11]; the alternative approach of sampling the vapor, as
demonstrated by Kendler et al., requires a highly sensitive and complicated sensing setup
and applies only to volatile and semi-volatile compounds. Additionally, large efforts are
carried out for developing spatial sampling and analysis in order to improve autonomous
and unmanned sensor deployment and accurately determine source distribution [12–15].

Hence, developing a sampling method that will allow the operator to perform fast and
efficient sample introduction into a vapor analyzer without using solvents, disposables, or
any sample preparation, may be valuable for many tasks.

During the last two decades, a novel analytical approach has been developed that
deals with both the ionization and desorption of analytes in the open air for their analysis
using, in most cases, mass spectrometry (MS) [16–21]. This field of research is termed
ambient ionization, or ambient MS, and includes several different methods for ambient
ionization, such as desorption electrospray ionization (DESI) [22] and direct analysis in
real-time (DART) [23]. These techniques enable the application of high-performance analyt-
ical detection methods for complex situations in which analytes with low vapor pressure
are sampled from realistic surfaces with no sample preparation, such as explosives and
narcotics [24]. A promising technique for non-contact sample desorption and ionization is
based on low-temperature plasma (LTP). Plasma is a general term describing a gas mixture
of a charge-carrying particles such as ions and electrons. Non-thermal plasma such as LTP
can be realized in a dielectric barrier discharge (DBD) configuration, where there exists at
least one dielectric barrier and the spacing between the two electrodes is on the order of
0.1–10 mm [25]. Operation of a high voltage inside a carrier gas flow leads to the formation
of a jet of ionized molecules, radicals, high-energy photons, and electrons with a kinetic
energy of a few electron volts (eV) [26–28]. These reactive species lead to the dissociation
and excitation of analytes in the surroundings. DBD offers several unique features: high
dissociation ability at low temperatures, low energy consumption, simple and tunable
configuration, operation in ambient pressure, and high durability. All these features have
made this technique attractive for analytical devices. In addition, the low power consump-
tion of only a few watts, with respect to the high electron density, is a promising feature
for miniature, lab-on-a-chip type devices [29]. Specifically, certain configurations enable
directing the jet outside the low-temperature plasma apparatus, thus allowing for various
non-contact surface sampling schemes [30]. Once the LTP jet hits a surface, the energetic
particles release adsorbed species in a process similar to chemical sputtering. Helium-
based plasma introduces particles of approximately 20 eV, sufficient for ionizing many
organic compounds through Penning ionization as well as atmospheric gases and water
vapors, making it a potential ionization source for ion spectrometry [31]. The LTP jet in the
ambient can interact non-destructively with various samples or objects, gaseous, liquid,
solid, or aerosol, through desorption and soft ionization mechanisms. Realizing a sampling
probe based on LTP is possible with straightforward means, and prototypes suitable for
on-site operation have been demonstrated [32–34]. In addition, it has been studied for its
ionization mechanisms and efficiency and was found to be a highly effective ion source
compared to the more conventional electrospray ionization (ESI) and atmospheric pressure
chemical ionization (APCI) sources, with potential advantages in the polarity range of
molecules that can be ionized in this reaction [35,36]. Most studies demonstrated using
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LTP for sampling various objects and surfaces using MS as the analytical method [37–46].
However, ion mobility spectrometry (IMS) is a much more widely used method for the
applications discussed in this work, namely on-site analysis of hazardous materials [47]. In
IMS, ionized molecules travel along a drift tube under an electric field gradient and are
separated according to their mobility in atmospheric pressure [48]. Several commercial-
off-the-shelf (COTS) IMS instruments have been designed for on-site operation and offer
a simple, handy, fast, and robust tool for real-time chemical analysis. While analysis is
performed in the gas phase, several of these devices are equipped with built-in or add-on
thermal desorption modules to allow also the analysis of liquids and powders collected
with a sampling swab [49,50].

Extending the use of vapor analyzers for solid and liquid samples is achieved at the
expanse of size and cost of the devices, limiting the field deployment. Thermal desorption
devices also suffer from relatively high energy consumption and memory effects due to
the introduction of bulk material into the device [51]. LTP has been demonstrated as an
ionization and desorption source for IMS only on several occasions for laboratory IMS
and its derivative differential ion mobility spectrometry (DMS) [52,53]. In these works, the
ionization efficiency of various analytes has been investigated and compared to commonly
used sources such as corona discharge and APCI sources of the radioactive type, i.e., 63Ni.

This study presents the use of a home-built LTP apparatus coupled to a commercial
handheld IMS device working in vapor analysis mode. The LTP probe is used for a non-
contact, non-thermal sampling unit for COTS IMS vapor analyzers. We successfully sample
several non-volatile organic compounds from realistic surfaces such as asphalt and fabrics
in a fast, continuous, non-contact, solvent-free mode of operation. The capability of the
non-destructive sampling from highly corrugated surfaces using LTP is compared to the
destructive thermal desorption.

2. Materials and Methods
2.1. Chemicals

Dodecylamine (>99%) and nicotinamide (98%) were obtained from Sigma-Aldrich
(Ness-Ziona, Israel) and selected as amine-containing compounds, simulating non-volatile
pharmaceutical substances.

2.2. LTP Apparatus

The LTP apparatus was built in-house based on configurations previously described
in the literature. To date, LTP has been realized in two main configurations. In the coaxial
or cross-field configuration, the LTP probe is built from a glass tube and a stainless-steel
rod at its center that serves as ground. A copper foil wrapped outside the quartz tube
serves as a high-voltage electrode [30]. Alternatively, the electric field can be co-aligned to
the electrodes in a family of configurations that are termed linear field [54–56]. While this
configuration may be even simpler to construct, it also showed more plasma activity and
stability at the downstream region from the outlet of the probe [57]. A photo and scheme
of our homebuilt LTP probe are shown in Figure 1. The apparatus was assembled using an
empty quartz tube (i.d.—1.4 mm, o.d.—3 mm). Copper foil (3M shielding copper foil tape)
was wrapped outside the tube at two locations. The wider electrode, closer to the outlet,
serves as the high-voltage electrode, and the other serves as the ground. Gas (Helium
99.999%) is streamed through the tube controlled by a mass flow controller (AliMC 2slpm,
Alicat Scientific, Tucson, AZ, USA). The LTP probe was connected to a PVM12—12 Volt
plasma generator (Information Unlimited, Amherst, NH, USA), providing high voltages in
the range of 1–15 kV at frequencies in the range of 20–50 kHz under a current limit of 3A.
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Figure 1. Plasma power source and home-built apparatus (left) and schematic description (right).

2.3. IMS Analysis

Experiments were performed using a COTS handheld IMS detector, LCD 3.3 (Smiths
Detection, Edgewood, MD, USA). The LCD 3.3 duty cycle is 5 s, which is considered, for this
application, a continuous and real-time operation. Plasmagrams (ion current vs. drift time)
are recorded throughout the measurement using TrimScan software (Smiths detection).
The use of certain commercial equipment in this work does not imply recommendation or
endorsement by IIBR, nor does it imply that the products identified are necessarily the best
available for the purpose.

2.4. Thermal Desorption Reference Measurements

In reference experiments, a home-built thermal desorption (TD) module was used
to desorb the analytes from the surfaces. The TD module was made of a glass cylinder
wrapped with NiCr resistive heating wire (2 ohm/cm resistance, power supply-Zero 36
Lambda). The module was used to heat the sample to 250–270 ◦C for 20–40 s. A piece was
taken off the sample and placed inside the TD module; this type of operation is destructive
and slow hence appropriate for reference experiments and not intended for operational use.

2.5. Thermal Imaging of the LTP Jet

A thermal imager capable of measuring between −20–1200 ◦C, with a 240 × 320 pixels
sensor and a thermal sensitivity of 0.05 ◦C (Ti400, Fluke, Everett, DC, USA), was used to
image the LTP jet temperature.

2.6. Characterization of the Desorbed Vapors

In addition to the IMS measurement, the desorbed species’ chemical nature and the
desorption rate were studied in a complement methodology. A sample was prepared by
depositing a solution containing a model compound in methanol on glass and was left
to dry for a few minutes. The sample was then placed in a glass vessel connected to an
impinger filled with water as the collecting solvent, connected to a vacuum at a flow rate
of 1 L/min. Vapors emanating from the sample upon operation of the LTP or the TD
were trapped inside the collecting solvent that was later analyzed by LC-MS (Ultimate
3000—LC, LCQ Fleet—MS, Thermo Fisher Scientific, Waltham, MA, USA). Before the
analysis, the LC-MS was calibrated using standard solutions of the model compounds
at six different concentrations. LC solutions consisted of an aqueous solution with 0.1%
formic acid (solution A) and a methanolic solution with 0.1% formic acid (solution B). The
analyte concentration in the collecting solvent was determined also by measuring the light
absorption in the ultraviolet and visible (UV-Vis) parts of the electromagnetic spectrum in
the range 260–264 nm (Dionex, Ultimate 3000 diode array, Thermo Fisher). LC analysis was
carried out under the following conditions: 150 × 2 mm column, Gemini C18 3 µm (P/N
OOF-4439-BO, Phenomenex, Torrance, CA, USA).
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3. Results and Discussion
3.1. LTP Operation and Characterization

Studying LTP as a source for the desorption of analytes from surfaces to the inlet
of an IMS vapor analyzer was carried out through a series of sampling and detection
experiments. The LTP apparatus was operated by applying several kV at the lower part
of the frequency range of the power supply (~20 kHz). The He flow was stabilized at
1 L/min. Under these conditions, a narrow visible plasma jet was formed, protruding
3–4 cm from the outlet of the apparatus, Figure 2. Using a thermal imager, the temperature
of this jet outside the apparatus seemed to be around room temperature, i.e., 23 ◦C, as
seen in Figure 2C. The jet itself is not visible in the thermal image against the background.
The surface temperature at the jet’s hit point was measured using a thin thermocouple.
Figure 2A shows the relation between the current flowing through the power supply to the
LTP probe and the temperature measured by the thermocouple. It can be seen that at the
lowest current, the temperature of the surface at the hit point of the plasma jet is around
40 ◦C, and it goes up to 60 ◦C at 0.4 A. Higher temperatures can be obtained by increasing
the current, but such conditions are beyond the scope of this work. It can be concluded from
this part that a stable, few centimeters long LTP jet can be formed at a power consumption
of just a few watts and that the interaction at the surface involves minor heating, far from
the temperatures reached by thermal desorbers.
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3.2. Characterization of Vaporized Products

Next, the content of the vapor emanating from the surface upon the operation of
the LTP was analyzed using an LC-MS, as described earlier. Both model compounds
(nicotinamide, NA, and dodecylamine, DA) contain two amine groups and give rise to an
intense signal in the IMS. These two molecules are solid at room temperature, characterized
by mild boiling points of 334 ◦C and 259 ◦C, respectively, typical of several drugs or other
pharmaceutical substances. This experiment was designed to study the vaporized species’
identity and evaluate the adsorbed analytes’ desorption rate. The characterization of the
chemical emitted during the operation of the LTP device was performed by comparing
the IMS results using TD and validated by trapping the analytes in a liquid which was
then analyzed using an LC-MS device. These two techniques complement each other as
the TD-IMS is operated in real-time. The LC-MS, which is considerably slower, provides
definite chemical identification and is a much more sensitive and selective device [58].

The experimental setup is shown in Figure 3A, and the LC-MS analysis of the nicoti-
namide (NA) sample is shown in Figure 3B. It can be seen that the main product in the
collected vapor phase has an m/z of 122.94, which corresponds to a protonated NA (the
molecular weight of NA is 122 g/mol). For the surface contaminated with dodecylamine
(DA), the mass spectrum of the main fraction contained a dominant peak at m/z 186.13,
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which corresponds to a protonated DA molecule (the molecular weight of DA is 185 g/mol),
as shown in Figure 3C. These observations support the assumption that desorption by LTP
does not lead to the fragmentation of these substances and allows the transfer of intact
analytes from surfaces to the gas phase.

Sensors 2023, 23, x FOR PEER REVIEW 6 of 11 
 

 

The experimental setup is shown in Figure 3A, and the LC-MS analysis of the nico-
tinamide (NA) sample is shown in Figure 3B. It can be seen that the main product in the 
collected vapor phase has an m/z of 122.94, which corresponds to a protonated NA (the 
molecular weight of NA is 122 g/mol). For the surface contaminated with dodecylamine 
(DA), the mass spectrum of the main fraction contained a dominant peak at m/z 186.13, 
which corresponds to a protonated DA molecule (the molecular weight of DA is 185 
g/mol), as shown in Figure 3C. These observations support the assumption that desorp-
tion by LTP does not lead to the fragmentation of these substances and allows the transfer 
of intact analytes from surfaces to the gas phase. 

 
Figure 3. (A) Experimental setup for collecting vapor phase above a contaminated glass surface 
sampled with LTP probe. After sampling, the collecting-solvent is analyzed using an LC-MS. (B) 
LC-MS analysis of nicotinamide and of (C) dodecylamine. 

During four minutes of operation, 6 µg of NA and 4.5 µg of DA were collected. Ac-
cording to this result, the evaporation rate of a sample deposited on a glass substrate sub-
jected to the LTP jet was 1 µg/min. Such desorption rate is sufficient for rapid identifica-
tion of deposits by an IMS vapor analyzer with an intrinsic sensitivity on the order of a 
few tens of nanograms. 

3.3. LTP-IMS of Sample Deposited on Glass Surfaces 
Since glass is a relatively inert surface, its interaction with the sample and other be-

nign materials that the LTP may also vaporize is weak, making it a convenient starting 
point for this study. During the experiments, the LTP and the IMS were positioned a few 
centimeters from the surface (Figure 4A). The IMS spectra (plasmagrams) were recorded 
in real-time at five seconds duty cycle. In a control experiment in which the glass was 
clean, only the background reactant ion was seen, and no product ion was observed in the 
plasmagram. Similar results were obtained in a different control experiment with the con-
taminated glass substrate without applying the high voltage or when the LTP jet was di-
rected to a non-contaminated part of the glass substrate. Operation of LTP on a glass sur-
face contaminated with DA or NA molecules led to clear product ion peaks in the plas-
magrams, as seen in Figures 4B,C, respectively. Similar results were obtained using de-
structive thermal desorption, which is applicable in the case of glass surfaces. Based on 
the knowledge gained from the LC-MS control experiments, the palsmagrams, shown in 
Figure 4, are assigned to the protonated sample molecules for both LTP and TD. The good 
correlation between the LTP-acquired and the TD-acquired spectra indicates that the LTP 
is a soft method for desorption and ionization which does not lead to fragmentation of the 
target molecule, hence allowing the detection device to easily identify the desorbed prod-
ucts. 

Figure 3. (A) Experimental setup for collecting vapor phase above a contaminated glass surface
sampled with LTP probe. After sampling, the collecting-solvent is analyzed using an LC-MS.
(B) LC-MS analysis of nicotinamide and of (C) dodecylamine.

During four minutes of operation, 6 µg of NA and 4.5 µg of DA were collected. Accord-
ing to this result, the evaporation rate of a sample deposited on a glass substrate subjected
to the LTP jet was 1 µg/min. Such desorption rate is sufficient for rapid identification of
deposits by an IMS vapor analyzer with an intrinsic sensitivity on the order of a few tens
of nanograms.

3.3. LTP-IMS of Sample Deposited on Glass Surfaces

Since glass is a relatively inert surface, its interaction with the sample and other benign
materials that the LTP may also vaporize is weak, making it a convenient starting point for
this study. During the experiments, the LTP and the IMS were positioned a few centimeters
from the surface (Figure 4A). The IMS spectra (plasmagrams) were recorded in real-time
at five seconds duty cycle. In a control experiment in which the glass was clean, only the
background reactant ion was seen, and no product ion was observed in the plasmagram.
Similar results were obtained in a different control experiment with the contaminated
glass substrate without applying the high voltage or when the LTP jet was directed to
a non-contaminated part of the glass substrate. Operation of LTP on a glass surface
contaminated with DA or NA molecules led to clear product ion peaks in the plasmagrams,
as seen in Figure 4B,C, respectively. Similar results were obtained using destructive thermal
desorption, which is applicable in the case of glass surfaces. Based on the knowledge
gained from the LC-MS control experiments, the palsmagrams, shown in Figure 4, are
assigned to the protonated sample molecules for both LTP and TD. The good correlation
between the LTP-acquired and the TD-acquired spectra indicates that the LTP is a soft
method for desorption and ionization which does not lead to fragmentation of the target
molecule, hence allowing the detection device to easily identify the desorbed products.

Sensors 2023, 23, x FOR PEER REVIEW 7 of 11 
 

 

 
Figure 4. Experimental setup of sampling particulate contaminants from a glass surface into an IMS 
vapor detector using LTP (A) and ion mobility spectra (positive channel) of dodecylamine (B) and 
nicotinamide (C) sampled with LTP (red trace) compared to spectra obtained using destructive ther-
mal desorption (blue trace). 

3.4. LTP-IMS on Preserving Surfaces 
A solution containing 50 µg of each model compound was drop cast on an asphalt 

surface and a suede shoe to study the potential of LTP to desorb analytes from realistic 
surfaces. As mentioned earlier, LTP sampling holds the potential to penetrate and interact 
with substances that were adsorbed inside substrates that can be considered preserving 
surfaces, from which sample pickup would not be efficient using the traditional means of 
wiping papers or swabs. In such samples, the analyte might be absorbed in the substrate’s 
pores or dissolved and diffuse to deeper parts of the substrate. In both cases, in contrast 
to flat and inert glass surfaces, the analyte is inaccessible to TD without intensive and 
destructive manipulations, which are unsuitable for real-time on-site analysis. 

Figure 5A shows the obtained plasmagrams in the positive channel for sampling with 
an LTP probe from an asphalt surface contaminated with DA, compared to sampling un-
der the same conditions from a glass surface. It can be seen that all three product ions of 
DA that appear in the contaminated glass sample also appear in the contaminated asphalt 
sample. There can be seen small shifts in the drift time of the peaks. These shifts can result 
from differences in water clustering around the ionized analyte, as LTP may reduce the 
number of available water molecules in the sampled area. Figure 5B shows the time trace 
of the dominant peak (drift time—8.54 ms) during a four minute operation of the LTP 
while scanning the surface by moving the LTP to different areas on the surface. This time 
trace shows that within a minute of the scan, the jet reached the contaminated area, and a 
signal was observed for prolonged periods of 10 s between several contaminated areas on 
the interrogated surface. This behavior differs from what is common when working with 
swab samples and thermal desorption, where a single spectrum represents the entire sur-
face sampled with a swab. This example demonstrates the potential of LTP sampling to 
serve both as a non-contact and a continuous sampling method, both features presenting 
significant advantages over the current surface sampling mode of operation. The scan op-
tion is desirable for applications such as seeking local contaminations, for example, cargo 
sampling, where such a continuous spatial scan reduces the chance of false negative 
events originating from, e.g., areas inaccessible for conventional swabs (grooves, etc.). Ad-
ditional tests for other surfaces were performed; Figures 5C and 5D show the results ob-
tained in the case of contaminated shoe surfaces. For both compounds, the product ion 
signals are acquired with good agreement with those acquired from a glass surface. 

Due to the nature of the surface, analysis based on swabs is expected to have a low 
pickup yield, and direct heating is impractical. This is also evident from the plasmagram 
showing a higher ion signal with an added dimer, suggesting the efficient pickup from 
glass using the LTP method. 

Figure 4. Experimental setup of sampling particulate contaminants from a glass surface into an
IMS vapor detector using LTP (A) and ion mobility spectra (positive channel) of dodecylamine (B)
and nicotinamide (C) sampled with LTP (red trace) compared to spectra obtained using destructive
thermal desorption (blue trace).



Sensors 2023, 23, 2253 7 of 11

3.4. LTP-IMS on Preserving Surfaces

A solution containing 50 µg of each model compound was drop cast on an asphalt
surface and a suede shoe to study the potential of LTP to desorb analytes from realistic
surfaces. As mentioned earlier, LTP sampling holds the potential to penetrate and interact
with substances that were adsorbed inside substrates that can be considered preserving
surfaces, from which sample pickup would not be efficient using the traditional means of
wiping papers or swabs. In such samples, the analyte might be absorbed in the substrate’s
pores or dissolved and diffuse to deeper parts of the substrate. In both cases, in contrast
to flat and inert glass surfaces, the analyte is inaccessible to TD without intensive and
destructive manipulations, which are unsuitable for real-time on-site analysis.

Figure 5A shows the obtained plasmagrams in the positive channel for sampling with
an LTP probe from an asphalt surface contaminated with DA, compared to sampling under
the same conditions from a glass surface. It can be seen that all three product ions of DA
that appear in the contaminated glass sample also appear in the contaminated asphalt
sample. There can be seen small shifts in the drift time of the peaks. These shifts can result
from differences in water clustering around the ionized analyte, as LTP may reduce the
number of available water molecules in the sampled area. Figure 5B shows the time trace
of the dominant peak (drift time—8.54 ms) during a four minute operation of the LTP
while scanning the surface by moving the LTP to different areas on the surface. This time
trace shows that within a minute of the scan, the jet reached the contaminated area, and
a signal was observed for prolonged periods of 10 s between several contaminated areas
on the interrogated surface. This behavior differs from what is common when working
with swab samples and thermal desorption, where a single spectrum represents the entire
surface sampled with a swab. This example demonstrates the potential of LTP sampling to
serve both as a non-contact and a continuous sampling method, both features presenting
significant advantages over the current surface sampling mode of operation. The scan
option is desirable for applications such as seeking local contaminations, for example, cargo
sampling, where such a continuous spatial scan reduces the chance of false negative events
originating from, e.g., areas inaccessible for conventional swabs (grooves, etc.). Additional
tests for other surfaces were performed; Figure 5C,D shows the results obtained in the case
of contaminated shoe surfaces. For both compounds, the product ion signals are acquired
with good agreement with those acquired from a glass surface.
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Due to the nature of the surface, analysis based on swabs is expected to have a low
pickup yield, and direct heating is impractical. This is also evident from the plasmagram
showing a higher ion signal with an added dimer, suggesting the efficient pickup from
glass using the LTP method.

4. Conclusions

This study demonstrates the development and operation of a low-cost, simple con-
struction LTP probe coupled to a commercial, handheld IMS vapor analyzer for the analysis
of several surfaces contaminated with two amine-containing non-volatile compounds. In
control experiments using LC-MS, it was shown that the vapors released from the surface
upon LTP operation are the unfragmented analytes. The analytes signals appeared shortly
after the operation of the LTP on the surfaces once the LTP hit a contaminated spot. IMS
signals are highly correlated to those acquired for thermally desorbed analytes using a
home-built thermal desorber apparatus. However, it is noted that the TD-based technique
is used for comparison as it is slow and destructive hence it is less favorable for the applica-
tion described here. Moreover, the pickup yield from such corrugated surfaces with a swab
is expected to be inefficient.

LTP, on the other hand, was demonstrated for non-contact sampling, operated cen-
timeters away from the interrogated surface. The LTP enables continuous scanning and
sampling of the surface. These features result in a significant advantage in overcoming
carryover and memory effects due to contamination of the analyzer with bulk materials.
Additionally, LTP is less energetically demanding, shown to operate using only a few watts,
and will allow for longer operation times. The option to scan the surface and follow the
signal is also desired when trying to find localized contaminated spots or spots that are not
accessible with a sampling swab.

According to the measured desorption rate, which was found to be around 1 µg/min.,
sampling of a few seconds may yield more than tens of nanograms of a vaporized analyte,
which is within the sensitivity range of analyzers such as IMS. The known sensitivity of
such detectors with sample introduction by thermal desorption of a swab is on the same
order of tens of nanograms. Previous reports demonstrated a limit of detection of 150 ng of
acetaminophen on an LTP-IMS laboratory setup [53], and to our knowledge the current
study is the first demonstration of surface sampling using LTP and a commercial IMS hand-
held device. The sensitivity of the demonstrated method implies that this method is suitable
for trace detection, and optimizing LTP parameters may lead to even better sensitivities,
such that the limiting factor would be the inherent detector sensitivity. We demonstrated
LTP-IMS sampling and analysis from several types of contaminated surfaces, starting
with non-preserving surfaces such as glass, then sampling from challenging, porous, and
preserving surfaces such as asphalt and a leather shoe. In these experiments, the total
amount of analyte was ~50 µg, and we demonstrated acquiring the analyets’ signals by
LTP scanning the surface for several minutes. The current study showed high potential of
this method for security and civilian applications of on-site, rapid non-contact screening
and detection of objects suspected of being contaminated with non-volatile compounds
such as explosives and illicit drugs at trace concentrations. We plan to further study and
develop this method, and investigate the desorption process and parameters, the efficiency
of sampling using other ionization gases, and the range and properties of analytes that
can be effectively detected using this method. As we envision the use of the method, an
LTP apparatus can be operated independently or attached to the detection device, as will
be dictated by optimization of the geometry of the LTP apparatus surface detector. The
parameters that will require optimization include the angle between LTP jet and the surface,
the position of the detector with respect to the LTP device and the surface, the scan rate of
the surface area and the distance from the surface. We have initiated an effort towards the
realization of an LTP jet array that will allow the coverage of a larger area and will thus
lead to improved sensitivities and operation times.
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