
Citation: Luo, G.; He, B.; Xiong, Y.;

Wang, L.; Wang, H.; Zhu Z.; Shi, X.

An Optimized Convolutional Neural

Network for the 3D Point-Cloud

Compression. Sensors 2023, 23, 2250.

https://doi.org/10.3390/s23042250

Academic Editors: Baochang Zhang

and Ying Huang

Received: 16 January 2023

Revised: 9 February 2023

Accepted: 14 February 2023

Published: 16 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

An Optimized Convolutional Neural Network for the 3D
Point-Cloud Compression
Guoliang Luo 1, Bingqin He 1, Yanbo Xiong 1, Luqi Wang 1, Hui Wang 1, Zhiliang Zhu 1,* and Xiangren Shi 2

1 Virtual Reality and Interactive Techniques Institute, East China Jiaotong University, Nanchang 330013, China
2 School of Informatics, Xiamen University, Xiamen 361005, China
* Correspondence: rj_zzl@ecjtu.edu.cn

Abstract: Due to the tremendous volume taken by the 3D point-cloud models, knowing how to
achieve the balance between a high compression ratio, a low distortion rate, and computing cost in
point-cloud compression is a significant issue in the field of virtual reality (VR). Convolutional neural
networks have been used in numerous point-cloud compression research approaches during the past
few years in an effort to progress the research state. In this work, we have evaluated the effects of
different network parameters, including neural network depth, stride, and activation function on
point-cloud compression, resulting in an optimized convolutional neural network for compression.
We first have analyzed earlier research on point-cloud compression based on convolutional neural
networks before designing our own convolutional neural network. Then, we have modified our model
parameters using the experimental data to further enhance the effect of point-cloud compression.
Based on the experimental results, we have found that the neural network with the 4 layers and
2 strides parameter configuration using the Sigmoid activation function outperforms the default
configuration by 208% in terms of the compression-distortion rate. The experimental results show
that our findings are effective and universal and make a great contribution to the research of point-
cloud compression using convolutional neural networks.

Keywords: point-cloud compression; convolutional neural network; activation function

1. Introduction

A 3D point-cloud model is a collection of 3D data points in 3D space that represent a
3D shape or object. 3D point-cloud compression technology is also known as 6-dimensional
data compression technology since point-cloud data are composed of geometric coordinates
(X, Y, and Z) as well as RGB or other three color descriptors. Point-cloud data comes from a
computer-aided design model, radar scanning, and depth camera acquisition. For example,
Popis, ter et al. studied the point-cloud acquisition process with the help of a contact/non-
contact 3D scanner and storage of point cloud data [1]. At present, there rarely exists such
large bandwidth to support the direct transmission of point clouds on the network layer
without compression. Therefore, it is necessary to compress point clouds. In the spatial
domain, the point-cloud model typically contains a few hundreds and thousands to tens
of millions of points. Without compression, the transmission rate of 30 frames per second
for a point-cloud model with one million points per frame consumes a total bandwidth of
3.6 GB per second, placing strain on the available storage space and network transmission
bandwidth. Consequently, attaining a low bit rate and low distortion point-cloud compres-
sion with limited storage space capacity and network transmission bandwidth remains a
critical practical role in achieving efficient visualization on VR applications.

For the 3D point-cloud compression, the traditional octree-based point-cloud compres-
sion method in which the deeper depth will lead to exponential growth of data volume
and the shallow depth will lose a lot of information. With the rapid development of
convolutional neural networks, researchers proposed the method of using convolutional

Sensors 2023, 23, 2250. https://doi.org/10.3390/s23042250 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23042250
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://doi.org/10.3390/s23042250
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23042250?type=check_update&version=2

Sensors 2023, 23, 2250 2 of 16

neural network to compress point clouds. For example, some researchers replaced the
2D-convolution in image compression with the 3D-convolution adapted to point clouds
and converted the original point cloud into a voxel grid. This method led to a better
compression result but had problems of low compression rate and high distortion rate.
Therefore, we have conducted a number of experiments such as choosing the appropri-
ate network parameters and activation functions to optimize the effect of compressing
point clouds.

Convolutional neural networks require a large amount of computation and storage
requirements. Thereby, knowing how to reduce computational costs and storage space is the
focus of research on convolutional neural networks. Zhao et al. improved the performance
and efficiency of 1-bit CNNs by combining Bayesian learning in CNN species 1-bit CNNs [2].
The computational redundancy of the complete model can be reduced within the allowed
accuracy by pruning the neural network. Li et al. proposed the EagleEye pruning algorithm,
which improved the efficiency and accuracy of pruning by the adaptive batch normalization
of the network [3]. Zhang developed a new deep learning model: MCNs to reduce the
storage cost of convolutional filters [4]. Similarly, Yeom et al. segmented a large number of
experimental data using a SegNet-based CNN, greatly reducing the human time required
to analyze the data when training the model [5]. Qayyum et al. evaluated each pre-trained
convolutional neural network model for image classification processing, which provided a
basis for reducing human subjectivity and time-consuming redundancy [6]. Due to improve
the performance of related deep learning models, Wang et al. classified point-cloud data
by focusing on the relationship between points and its neighbors, which achieved the
purpose of capturing high-resolution or fine-grained features [7]. Liu et al. proposed a
point-voxel CNN for 3D deep learning by pooling the advantages of voxels and points,
which effectively improved the execution efficiency and effectiveness of convolution [8].
Xu et al. developed a deep learning model for point-cloud processing. By using the
POEM method to build a 1-bit fully connected layer (Bi-FC) in point-cloud networks,
the storage and computing costs of point-cloud data are effectively reduced [9]. Our work
also benefits from these studies on increasing the performance of neural networks with the
help of several activation functions. Specifically, Alkhouly et al. conducted comprehensive
research on and the classification of common activation functions, which provided an
in-depth analysis of the effects of several common activation functions on deep network
architectures [10]. Liu et al. proposed an extended GLIT method for asymmetric activation
functions, which expanded the range of activation functions and provided the possibility
for further research on neural networks [11]. Kumar et al. explored a NewSigmoid function
in neural networks, which is also as powerful as tansig and logsig [12]. Siegel et al. advanced
the existing results on the approximation rates obtained for two layer neural networks
with an increasing number of neurons [13]. These results were extended to polynomially
decaying activation functions and to general bounded ones.

In this work, we have investigated the various effects of the neural network’s pa-
rameters, including stride, depth, and activation function on the impact of point-cloud
compression. Based on the experimental results, we have designed an optimized scheme to
maximize the compression performance. We first design the experimental scheme based
on the convolutional neural network and then conduct experiments and modify our model
parameters based on the experimental data to further optimize the point-cloud compres-
sion effect. Finally, we present a convolutional neural network that shows improved
performance on the compression of 3D point cloud data.

This work contains the following major contributions:

• First, we have evaluated the compression effect by altering the parameters of depth,
stride, and activation function of the neural networks. The experimental results show
that the Sigmoid function outperforms the other activation functions.

• Second, we have proposed an optimized point-cloud compression scheme to enhance
the effectiveness of the point-cloud compression.

Sensors 2023, 23, 2250 3 of 16

The structure of the paper is organized as follows. We first review the state of point-
cloud compression based on the convolutional neural network in Section 2. Then, we
describe our working methods in detail in Section 3, followed by the results and the
discussions in Section 4. Finally, we conclude the work in Section 5.

2. Related Work

The goal of point-cloud compression is to achieve a balance between high compression
ratio, low distortion rate, and computing cost. The MPEG-3DG working group divided
point-cloud compression standards into video-based point-cloud compression (V-PCC)
and geometry-based point-cloud compression (G-PCC) according to processing methods.
V-PCC aims to provide low-complexity decoding capability for applications requiring
real-time decoding, such as virtual/augmented reality and immersive communication [14].
G-PCC is believed to provide efficient lossless and lossy compression for the deployment
of autonomous driving, 3D maps, and other applications using point clouds generated
by radar [15].

Aiming at the traditional point-cloud compression method based on octree, Diogo et al.
proposed geometric octree coding of a point cloud based on an intra frame context [16,17].
The octree structure provides better context for entropy coding and improves the av-
erage rate. An algorithm for motion estimation and compensation was presented by
Thanou et al. [18]. It is utilized to eliminate the temporal redundancy from the predictive
coding of 3D positions and the color properties of point-cloud sequences. On the basis of
this, Quach et al. suggested a novel motion-compensated approach to encoding dynamic
voxelized point clouds at low bit rates where both the geometry and the color are encoded
with distortion, allowing for reduced bit-rates [19]. Mekur et al. implemented point-cloud
coding and decoding by dividing the octree voxel space into multiple macroblocks that are
progressively subdivided to achieve intra-frame coding, mainly applied for 3D immersive
video for general purpose and real-time time variation to improve point cloud acquisition
rate to a large extent [20]. However, the octree-based compression technique tends to create
“blocky” outputs at low to medium bit rate rendering stages and causes an exponential
drop in the number of point clouds when the depth of the tree is decreased.

In recent years, due to the development and breakthrough of deep learning in the field
of image research, Wu et al. represented a geometric 3D shape as a probability distribution
of binary variables on a 3D voxel grid, using a convolutional deep neural network [21].
Valenzise et al. found that compression approaches based on deep auto-encoders can
achieve coding performance higher than JPEG 2000 [22]. Huang et al. proposed a 3D point-
cloud geometric compression method based on deep learning, which was an auto-encoder
that also supported the parallel compression of multiple models via the GPU, consider-
ably increasing processing efficiency [23]. When compared to PCL compression [24] and
Draco compression [25], this method retains the original shape with little loss. To learn
how to represent disordered point clouds, Panos et al. constructed an auto-encoder using
convolutional layers and fully linked layers [26]. They compared the generative capacities
of several distinct autoencoder-based GANs that were trained as generative networks [27].
The approach of compressing a point cloud using convolution was improved by Ball et al.,
who also suggested utilizing additive uniform noise in place of quantization during train-
ing and doing actual quantization during evaluation [28]. Inspired by this, Maurice et al.
proposed a convolution transformation learning method for lossy point cloud geometric
compression [29]. They also directly learned filters from data, taking into account quan-
tization and rate-distortion (RD) in training. In contrast to the octree-based method, this
method’s model has strong universality and does not exhibit an exponential decline in the
number of points when the bit rate is decreased.

In addition, deep learning-based convolutional neural networks showed promising
performance in medical detection, GPS, and risk assessment [30–32]. Recent research on
binary neural networks (BNNs) has also been successively published. Liu et al. introduced
a reshaped point-wise convolution (RPC) to replace the conventional one to build binary

Sensors 2023, 23, 2250 4 of 16

neural networks (BNNs) [33]. On the other hand, Xu et al. first attempted to optimize BNNs
from a bilinear perspective, which improved the learning process of BNNs by correlating
intrinsic bilinear variables during backward propagation [34]. Similarly, Jin et al. introduced
a deep-walk strategy into graph convolutional networks (GCNs) to efficiently explore
the global graph information, which enabled the more efficient extraction of potential
representations of graph structure data [35]. Moreover, Zeng et al. proposed a face neural
volume rendering (FNeVR) network and lightweight pose editor to enhance the facial
details for image rendering [36].

Combined with the above research, our optimized convolutional neural network
framework greatly improves the quality of point-cloud compression, and the work is highly
scalable, which is an important reference for related work in this area.

3. Methods

Figure 1 shows flow chart of CNN-based 3D point cloud compression scheme. The
remainder of the section is organized as follows. We first specify the model-training process
in Section 3.1. Then, we describe the experimental process of obtaining the outputs of our
network in Section 3.2. Finally, We explain the loss-calculation process in Section 3.3.

Figure 1. Flow chart of CNN-based 3D point-cloud compression scheme. First, we input the
point-cloud model and then use the trained model to obtain the compressed binary file. Then, we
decompress the compressed file to compare the decompressed point-cloud model with the one before
decompression. Finally, we evaluate the performance by recording the RMS and other parameters
between them. The steps of training model are as follows (dash line): First, edit the neural network
mesh and adjust convolutional neural network depth, stride, and activation function. Second, adjust
the compression accuracy and the number of training rounds. Third, observe model training index
total loss and total quantities. If the training requirements are not fulfilled, the model will be retrained
until it meets the requirements.

Sensors 2023, 23, 2250 5 of 16

3.1. Model Training
3.1.1. Neural Network Structure

The first step in this work is to design the initial structure of the convolutional neural
network. In our method, x represents the input original point cloud, x̂ represents the output
decompressed point cloud, and fa represents the analysis transformation. Furthermore,
y = fa(x), Q is the quantification function, y = Q(y), fs is the synthesis transformation,
x̂ = fs(ŷ). We use N to represent the filter, and s3 and p3 to represent padding and stride.
For example, 93 and 23 represent 9× 9× 9 padding, and the filter stride is 2× 2× 2.

We use 2 layers, 3 layers, 4 layers with 2 strides and 2 layers, and 3 layers with 3 strides
for the test. The architecture of the used neural network is shown in Figures 2 and 3.
The minimal compression requirements cannot be achieved by 4 layers with 3 strides,
and thus it is not taken into account in this case.

Figure 2. The architecture of the used neural network with different layers of 2 strides. Layers are
specified using the following format: the number of feature maps, filter size, strides, activation, and
bias. Relu in the figure is the reference activation function. Left to right shows 2 layers, 3 layers, and
4 layers with 2 strides, respectively.

Figure 3. The architecture of the used neural network with different layers of 3 strides. Relu
in the figure is the reference activation function. Left to right shows 2 layers and 3 layers with
3 strides, respectively.

Sensors 2023, 23, 2250 6 of 16

3.1.2. Activation Functions

The choices of activation functions have a significant impact on the convolutional
neural network. An activation function is a function transformation between the input
and output of the neural network layer, which allows one to add nonlinear factors and
enhance the expression ability of the model. However, in practical applications, it remains
challenging to determine which activation function is the best or the most effective. In this
study, we evaluate nine activation functions.

(1) Sigmoid.
The Sigmoid function is also known as the logistic function, which is used for the
output of hidden layer neurons and the binary classification. The value range is (0, 1),
which can map a real number to the interval of (0, 1). The effect is more preferable
when the feature difference is complex or not large.

f (x) =
1

1 + e−x (1)

(2) Tanh.
The Tanh activation function is also named as the hyperbolic tangent activation func-
tion. Similar to the Sigmoid function, the Tanh function also uses the truth values,
and the Tanh function converts it to the range of −1 to 1. Therefore, the output of
the Tanh function is zero-centered, which solves the problem of slow convergence of
Sigmoid function and improves the convergence speed compared with Sigmoid.

Tanh(x) = ex−e−x

ex+e−x′

Tanh(x) = 2Sigmoid(2x)− 1
(2)

(3) Relu.
The Relu function converts the output of some neurons to be 0, which causes the
sparsity of the network. Thus, the Relu function has the advantages of reducing the
parameter’s interdependence and alleviating the occurrence of over-fitting problems.

Relu(x) = max(0, x) (3)

(4) Leaky Relu.
Compared to the Relu function, the output of this function is no longer 0 under
the condition that x is negative. Here, a is usually taken as 0.01. Thus, it solves
the problem of gradient disappearance in the Relu activation function, which also
shows the advantages of efficient computation and faster convergence rates than the
Sigmoid/Tanh function.

Leaky Relu(x) =
{

x(x ≥ 0)
ax(x < 0)

(4)

(5) Elu
The exponential linear unit (Elu) activation function is proved to have high noise
robustness and can convert the average activation value of neurons that approach
zero. Due to the necessity to calculate the index, the calculation cost is high.

Elu(x) =

{
x, if x > 0
α(ex − 1), otherwise

(5)

Sensors 2023, 23, 2250 7 of 16

(6) Gelu
The Gaussian error linear units (Gelu) function introduces the idea of stochastic
regularity in activation, a probabilistic description of neuronal input that intuitively
complies with our natural understanding.

Gelu(x) =
x

1 + e−1.702x (6)

(7) Selu
The scaled empirical linear units (Selu) function introduces the attribute of self-
normalization, which avoids the problem of sudden disappearance or the explosive
growth of the gradient. Therefore, this function enables the learning process to be
more stable than other functions mentioned above.

Selu(x) = λ

{
x if x > 0
αex − α if x ≤ 0

(7)

(8) R-Relu
The Random Relu (R-Relu) function is also a variant of Leaky Relu, where the slope of
negative value is random in training.

yji =

{
xji if xji ≥ 0

ajixji if xji < 0
where
aji ∼ U(l, u), l < u and l, u ∈ [0, 1)

(8)

(9) HardSwitch
The HardSwitch activation function is used to approximate the Switch activation
function. This function introduces subsection calculation, which greatly reduces the
amount of calculation under the condition. This allows one to retain the feature,
and thus the Switch function can enable the neural network layer to have more
expressive ability.

HardSwish(x) = x ·

1, x ≥ 3
x
6 + 1

2 , −3 < x < 3
0, x ≤ −3

(9)

3.1.3. Training

In this work, the model date we use is from the Princeton 3D Object Dataset Mod-
elNet40, which provides a comprehensive clean collection of 3D CAD models for ob-
jects [21,37]. ModelNet40 is collection of 3D CAD models for object classification and
segmentation, including 40 categories, 9843 (80%)point-cloud data in the training set, and
2468 (20%) point-cloud data in the testing set. The experimental environment is configured
with Python = 3.6 and Tensorflow = 0.12. The configuration of the convolution neural
network is filters N = 32, batch size = 64, and Adam’s learning rate lr = 10−4.

In our work, we use two measurement indicators in the training process, total_loss
and total_quantiles_loss. If total_loss < 2 and total_quantiles_loss < 50, we can determine
that we have obtained an effective model. Before the training starts, we need to set the
training rounds. According to the experience gained in the experiments, the general setting
is 350–400 rounds. It worth to mention that more training rounds is not always better
because too many training rounds cannot increase the time cost and may even reduce the
quality of the model of compressed 3D point cloud. If the experimental results do not meet
the requirements, we need to restart the training process until we obtain the experimental
model that meets the requirements.

Sensors 2023, 23, 2250 8 of 16

3.2. Network Outputs

First, we input the point-cloud model and then use the trained model to obtain the
compressed binary file. We compute the size of the compressed file b as follows:

BPP = b ∗ 8/n, (10)

where BPP represents bits per pixel, n represents the number of points in the point cloud file,
and a lower BPP means a higher compression rate. Then, we decompress the compressed
file to obtain a reconstructed 3D point-cloud model and compare it with original model.
Furthermore, we use the point cloud library (PCL) to measure the reconstruction error
between the original input point cloud and the reconstructed data.

3.3. Loss Function

Our decoding procedure is viewed as a binary classification problem in which the
existence or absence of the voxel grid’s point z is determined. We resolve the decompressed
point cloud x̂ = v̂S into its individual voxel z, which is related to the value of pz. Most
voxels are not occupied as a result of the point cloud’s sparse distribution, so the majority
of its vS(z) values are zero. To balance the empty voxels and occupied voxels, we use

FL
(

pt
z
)
= −αz

(
1− pt

z
)γ log

(
pt

z
)

(11)

if vS(z) = 1, pt
z is equal to pz or 1− pz. The compressed point cloud’s focal loss is indicated as:

FL(x̃) = ∑
z∈S

FL
(

pt
z
)

(12)

Our final loss can be expressed as L = λD + R, with D denoting the distortion derived
from focal loss and R denoting the quantity of bits per input occupied voxel.

4. Result and Discussion

We use the evaluation criteria released by the moving picture experts group (MPEG) [38]
and choose the symmetric rms distance between the point clouds (RMS) to evaluate the
compression performance of point cloud. The point cloud is made up of a collection of points
denoted by (x,y,z) and a number of attributes, with color components (y,u,v) playing a crucial
role. We can define the point v, which has a specific position in a 3D space (x,y,z) and an
optional colour attribute c, where the components of the attribute c are r, g, b or y, u, v and
optional alternative parameters may represent normal or texture maps.

point v = (((x, y, z), [c], [a0 . . . aA]) : x, y, z ∈ R, [c ∈ (r, g, b) | r, g, b ∈ N], [ai ∈ [0, 1]]) (13)

At present, the point cloud consists of only a collection of K loosely ordered points:

Original Point Cloud Vor = {(vi) : i = 0K− 1} (14)

The first cloud serve as the standard for judging the quality of the second inferior
cloud Vdeg that consists of N points.

Degraded Point Cloud Vdeg = {(vi) : i = 0N − 1} (15)

RMS can be calculated as follows:

drms

(
Vor, Vdeg

)
=

√
1
K ∑

vo∈Vor
[vo− vd−nearest-neighbour]2 (16)

Sensors 2023, 23, 2250 9 of 16

dsymmetric--rms

(
Vor, Vdeg

)
= max

(
drms

(
Vor, Vdeg

)
, drms

(
Vdeg, Vor

))
(17)

The smaller the RMS value will result in less error between the original point cloud
and the decompressed point cloud, so the point cloud will be more effectively compressed.

4.1. Evaluation of the Compression by Different Depth of The Network

Different depths determine the shape of the output graph. By deepening the network,
we can decompose the problems to be studied in different levels. At present, in the study
of depth, it is generally believed that if the problem is more complex and higher order,
it needs a deeper network. By deepening the depth of the convolution neural network,
the better the sensitivity and convergence of the model can be improved. In practice, it
is not the deeper the better because the deeper the structure, the more likely the gradient
disappearance phenomenon happens. Meanwhile, the output of each layer will lose part of
the edge information. In our experiment, the depth less than 4 in the network can obtain
better experimental results.

To ensure the effectiveness of the experiment, we first verify the framework in three
layers and two strides using activation functions of Relu, Selu, and Elu.

Figure 4 demonstrate that our approach is successful and efficient, fulfills the antici-
pated demands, and outperforms octree compression by a wide margin. Then, we expand
the experiment and change the depth of the convolutional neural network to two and four
layers to observe the impact on the point-cloud compression effect. The results are shown
in Figure 5.

Figure 4. The compression performance of the scheme configured with three layers of convolution
and two strides (left) and two layers convolution and two strides (right), using the activation
functions Relu, Selu, and Elu.

By comparing the best performing curves in each plot in Figure 5, we find that the
effect of convolutional neural network compression point cloud is better than that of
octree compression, the compression effect of three layers of compression convolution
is better than that of two layers compression convolution, and the compression effect of
four layers of compression convolution is better than that of three layers compression
convolution, while using the activation function Elu, which is also the best compression
effect. Specifically, the four layer compression convolution is better than that of the three
layer compression convolution, with an average compression rate that has been improved
by 32.29%.

Sensors 2023, 23, 2250 10 of 16

Figure 5. The compression performance of the scheme configured with four layers of convolution,
and two strides, using the activation functions Relu, Selu, and Elu (left). Comparison of convolution
effects of each layer (right).

4.2. Evaluation of the Compression by Different Number of Strides

The purpose of setting the stride is to reduce the number of input parameters and
reduce the amount of calculation. The value of the side parameter is the multiple of
reduction. In general, the smaller the stride size is, the easier it is to obtain local optimization.
Additionally, the larger the stride size is, the better it will obtain global optimization.
However, too large of a step size will lose a lot of graphic details. When preparing for
our experiment, we found that if the stride is set to 1, the program would be down due to
excessive computation. If the step size is more than 3, the compression effect is significantly
reduced. For this reason, we chose strides 2 and 3 as the experimental parameters and used
the half-filling method to increase the size of the output graphics.

In order to further explore the impact of stride on the point-cloud compression effect,
we changed the experimental stride to 3 and repeated the above experiment. The results
showed that the compression with four layers and three strides did not meet the experimen-
tal requirements, which is excluded here. Figure A1 shows the compression performance
of the scheme configured with different depths and strides. Figure 6 shows the overall
compression performance with different specifications to the networks.

Figure 6. The compression performance of the scheme configured with two layers of convolution
and three strides (left) and three layers of convolution and three strides (right), using the activation
functions Relu, Selu, and Elu.

Figure 7 demonstrates that when the depth of compression convolutions are the same,
with three layers of compression convolution, the compression effect of three strides is
significantly better than that of two strides. This shows that the compression impact of two

Sensors 2023, 23, 2250 11 of 16

layers of compression convolution is less effective under two strides condition. Under three
layers of compression convolution using the activation function Elu, the compression effect
of two strides is better than that of stride three, with an average compression rate improved
by 28.35%. This demonstrated that by changing the stride one can optimize the compression
effect of the point cloud to a certain extent, but it is unstable.

Figure 7. Comparison of stride effects of each layer (left); curve comparison for best results (right).

Furthermore, we have discovered that the compression effect produced by four layers
and two strides is the best. Meanwhile, the compression impact of three strides is discovered
to not always be worse than that of two strides. Throughout all of the experiments,
the activation function Elu exhibits the best compression result, demonstrating the stability
of the activation function’s support for point-cloud compression.

4.3. Evaluation of the Compression of Different Activation Functions

The activation functions are significantly important in neural networks. They deter-
mine whether a neuron is activated, whether the information received by the neuron is
useful, and whether it should be left or abandoned. The neural network without an activa-
tion function is a linear regression model. In the research field of graphics processing, the
nonlinear transformation of the activation function can make the neural network process
very complex. The application scenarios of different activation functions are also different.
Although their introductions have a certain reference significance for us to select activation
functions, for different studies, the activation functions that are most suitable for the model
can only be determined based on experimental comparison.

Therefore, we continue to investigate the activation function and provide the fol-
lowing six activation functions for experiments: Sigmoid, Tanh, Leaky Relu, R-Relu, Gelu
and HardSwitch. Figure A2 shows the compression effects of 3D point clouds with different
activation functions.

Figure 8 shows that when the depth is 2, the best activation function is Sigmoid, which
is not far from the other functions. Figure 9 shows that when the depth is 3, the Sigmoid
function is significantly improved compared to the other functions. Figure 10 and Table 1
shows that the Sigmoid function can still achieve better a compression effect when the
depth is 4. In Figure 11, the highest performance across all experiments is demonstrated
by the point-cloud compression utilizing the Sigmoid function of four layers and two
strides. Therefore, the Sigmoid function performs best at improving the compression effect
of point clouds.

Sensors 2023, 23, 2250 12 of 16

Figure 8. The compression performance of the scheme configured with two layers of convolution and
two strides, using the activation functions R-Relu, Gelu, and HardSwitch (left) and Tanh, Sigmoid, and
Leaky Relu (right).

Figure 9. The compression performance of the scheme configured with three layers of convolution and
two strides using the activation functions R-Relu, Gelu, and HardSwitch (left) and Tanh, Sigmoid, and
Leaky Relu (right).

Figure 10. The compression performance of the scheme configured with four layers of convolution and
two strides using the activation functions R-Relu, Gelu, and HardSwitch (left) and Tanh, Sigmoid, and
Leaky Relu (right).

Sensors 2023, 23, 2250 13 of 16

Figure 11. Three curves that perform best at each depth using the Sigmoid function.

Table 1. RMS of 9 activation functions with four layers of convolution and two strides. Italic indicates
the activation function, and bolded indicates the minimum RMS data.

Function
Accuracy

5 × 10−5 1 × 10−5 5 × 10−6

Relu 0.00831488 0.0139485 0.0181215
Selu 0.00893118 0.0151461 0.0208207
Elu 0.00664042 0.0118255 0.0128144
Tanh 0.00688373 0.0094999 0.0245558
Leaky Relu 0.00744641 0.0097154 0.0153705
R-Relu 0.00840702 0.0109112 0.0121359
Gelu 0.00805524 0.0096145 0.0102793
HardSwitch 0.00719350 0.0176457 0.0181156
sigmoid 0.00431234 0.0078694 0.0089128

5. Conclusions

In this work, we have used the optimized convolutional neural network to compress
the point cloud and have investigated the compression effect of the point cloud at the
same time. By varying the depth, strides, and activation functions of various convolutional
neural networks, we have evaluated the impact on the point-cloud compression effect
and further the research that has been done so far on compressing point clouds using
convolutional neural networks. We have found that the deeper the depth of the neural
network is, the better the compression effect of the point cloud is. More specifically, it
can significantly improve the compression effect of the point cloud when the depth of the
convolutional neural network is 4. Meanwhile, the compression effect of the point cloud
is also affected by the stride; the shorter the stride size achieves the better experimental
effect. Since an excessively small stride can lead to a significant increase in computational
costs, the most suitable step size for our experiments is 2. We have discovered that the
improvement of the point-cloud compression effect by changing the activation function
is stable. Furthermore, We have concluded that the Sigmoid function outperformed the
other activation functions mentioned above by comparing the ultimate compression effects.
Therefore, we obtain the optimal parameter configuration of four layers and two strides
using the Sigmoid activation function, which is 208.56% higher than the original framework
proposal’s default configuration of three layers of convolution and two strides using the
Relu function. We have applied our experimental scheme to other 3D models, which
demonstrated the validity and generality of our experimental results in Figure 12.

Sensors 2023, 23, 2250 14 of 16

Figure 12. Results from different point clouds.

Based on this study, as a part of future works, it is possible to further improve the
compression performance by changing the data set used for training, alternating other
activation functions not involved in other articles, changing the depth of the convolution
network used, etc. In addition, the time cost is also one of the factors used to evaluate
the compression approaches. In this work, we have not taken the time cost into account
because the model training takes a relatively short period of time.

Author Contributions: Conceptual design: G.L. and Z.Z.; methodology: Y.X.; experimental verifi-
cation: B.H. and L.W.; formal analysis: H.W., X.S. and Y.X.; writing—draft: B.H.; writing—review
and editing: B.H. and G.L. The supervisor is G.L. All authors have read and agreed to the published
version of the manuscript.

Funding: This work has been jointly supported by the National Natural Science Foundation of China
under Grant 61962021, 62202165; the Natural Science Foundation of Jiangxi Province under Grant
20223BBE51039, 20224BAB202016, and 20224BAB212014; and the Ministry of Science and Technology
of China under Grant G2022022001L.

Institutional Review Board Statement: This article does not involve ethical research and does not
require ethical approval.

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: The common dataset ModelNet40 used in this study can be obtained
from link https://modelnet.cs.princeton.edu/.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Figure A1. The compression performance of the scheme configured with different depths and strides.

https://modelnet.cs.princeton.edu/

Sensors 2023, 23, 2250 15 of 16

Figure A2. The compression effects of 3D point clouds with different activation functions.

References
1. Popişter, F.; Popescu, D.; Păcurar, A.; Păcurar, R. Mathematical Approach in Complex Surfaces Toolpaths. Mathematics 2021, 9, 1360.

[CrossRef]
2. Zhao, J.; Xu, S.; Zhang, B.; Gu, J.; Doermann, D.; Guo, G. Towards compact 1-bit CNNs via Bayesian learning. Int. J. Comput. Vis.

2022, 130, 201–225. [CrossRef]
3. Li, B.; Wu, B.; Su, J.; Wang, G. Eagleeye: Fast sub-net evaluation for efficient neural network pruning. In Proceedings of the

Computer Vision—ECCV 2020: 16th European Conference, Glasgow, UK, 23–28 August 2020; Proceedings, Part II 16; Springer:
Berlin/Heildeberg, Germany, 2020; pp. 639–654.

4. Zhang, B.; Wang, R.; Wang, X.; Han, J.; Ji, R. Modulated convolutional networks. IEEE Trans. Neural Netw. Learn. Syst. 2021, 1–14.
[CrossRef] [PubMed]

5. Yeom, J.; Stan, T.; Hong, S.; Voorhees, P.W. Segmentation of experimental datasets via convolutional neural networks trained on
phase field simulations. Acta Mater. 2021, 214, 116990. [CrossRef]

6. Qayyum, W.; Ehtisham, R.; Bahrami, A.; Camp, C.; Mir, J.; Ahmad, A. Assessment of Convolutional Neural Network Pre-Trained
Models for Detection and Orientation of Cracks. Materials 2023, 16, 826. [CrossRef]

7. Wang, Y.; Sun, Y.; Liu, Z.; Sarma, S.E.; Bronstein, M.M.; Solomon, J.M. Dynamic graph cnn for learning on point clouds. Acm
Trans. Graph. 2019, 38, 1–12. [CrossRef]

8. Liu, Z.; Tang, H.; Lin, Y.; Han, S. Point-voxel cnn for efficient 3d deep learning. Adv. Neural Inf. Process. Syst. 2019, 32. [CrossRef]
9. Xu, S.; Li, Y.; Zhao, J.; Zhang, B.; Guo, G. Poem: 1-bit point-wise operations based on expectation-maximization for efficient

point-cloud processing. arXiv 2021, arXiv:2111.13386.
10. Alkhouly, A.A.; Mohammed, A.; Hefny, H.A. Improving the performance of deep neural networks using two proposed activation

functions. IEEE Access 2021, 9, 82249–82271. [CrossRef]
11. Liu, J.; Liu, Y.; Zhang, Q. A weight initialization method based on neural network with asymmetric activation function.

Neurocomputing 2022, 483, 171–182. [CrossRef]
12. Kumar, A.; Sodhi, S.S. Neural network with NewSigmoid activation function. J. Intell. Fuzzy Syst. 2022, 43, 545–559. [CrossRef]
13. Siegel, J.W.; Xu, J. Approximation rates for neural networks with general activation functions. Neural Netw. 2020, 128, 313–321.

[CrossRef] [PubMed]
14. Guede, C.; Andrivon, P.; Marvie, J.E.; Ricard, J.; Redmann, B.; Chevet, J.C. V-PCC: Performance evaluation of the first MPEG

Point Cloud Codec. In Proceedings of the SMPTE 2020 Annual Technical Conference and Exhibition, SMPTE, Virtual, 10–12
November 2020; pp. 1–27.

15. Dumic, E.; da Silva Cruz, L.A. point-cloud coding solutions, subjective assessment and objective measures: A case study.
Symmetry 2020, 12, 1955. [CrossRef]

16. Garcia, D.C.; de Queiroz, R.L. Intra-frame context-based octree coding for point-cloud geometry. In Proceedings of the 2018 25th
IEEE International Conference on Image Processing (ICIP), Athens, Greece, 7–10 October 2018; IEEE: Piscatawaj, NJ, USA, 2018;
pp. 1807–1811.

http://doi.org/10.3390/math9121360
http://dx.doi.org/10.1007/s11263-021-01543-y
http://dx.doi.org/10.1109/TNNLS.2021.3060830
http://www.ncbi.nlm.nih.gov/pubmed/33687849
http://dx.doi.org/10.1016/j.actamat.2021.116990
http://dx.doi.org/10.3390/ma16020826
http://dx.doi.org/10.1145/3326362
http://dx.doi.org/10.48550/arXiv.1907.03739
http://dx.doi.org/10.1109/ACCESS.2021.3085855
http://dx.doi.org/10.1016/j.neucom.2022.01.088
http://dx.doi.org/10.3233/JIFS-212333
http://dx.doi.org/10.1016/j.neunet.2020.05.019
http://www.ncbi.nlm.nih.gov/pubmed/32470796
http://dx.doi.org/10.3390/sym12121955

Sensors 2023, 23, 2250 16 of 16

17. de Queiroz, R.L.; Garcia, D.C.; Chou, P.A.; Florencio, D.A. Distance-based probability model for octree coding. IEEE Signal
Process. Lett. 2018, 25, 739–742. [CrossRef]

18. Thanou, D.; Chou, P.A.; Frossard, P. Graph-based compression of dynamic 3D point-cloud sequences. IEEE Trans. Image Process.
2016, 25, 1765–1778. [CrossRef]

19. de Queiroz, R.L.; Chou, P.A. Motion-compensated compression of point cloud video. In Proceedings of the 2017 IEEE International
Conference on Image Processing (ICIP), Beijing, China, 17–20 September 2017; IEEE: Piscatawaj, NJ, USA, 2017; pp. 1417–1421.

20. Mekuria, R.; Blom, K.; Cesar, P. Design, implementation, and evaluation of a point cloud codec for tele-immersive video. IEEE
Trans. Circuits Syst. Video Technol. 2016, 27, 828–842. [CrossRef]

21. Wu, Z.; Song, S.; Khosla, A.; Yu, F.; Zhang, L.; Tang, X.; Xiao, J. 3d shapenets: A deep representation for volumetric shapes. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–15 June 2015; pp. 1912–1920.

22. Valenzise, G.; Purica, A.; Hulusic, V.; Cagnazzo, M. Quality assessment of deep-learning-based image compression. In
Proceedings of the 2018 IEEE 20th International Workshop on Multimedia Signal Processing (MMSP), Vancouver, BC, Canada,
29–31 August 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 1–6.

23. Huang, T.; Liu, Y. 3d point cloud geometry compression on deep learning. In Proceedings of the 27th ACM International
Conference on Multimedia, Nice, France, 21–25 October 2019; pp. 890–898.

24. Rusu, R.B.; Cousins, S. 3d is here: Point cloud library (pcl). In Proceedings of the 2011 IEEE International Conference on Robotics
and Automation, Shanghai, China, 09–13 May 2011; IEEE: Piscatawaj, NJ, USA, 2011; pp. 1–4.

25. de Hoog, J.; Ahmed, A.N.; Anwar, A.; Latré, S.; Hellinckx, P. Quality-aware compression of point clouds with google draco.
In Proceedings of the Advances on P2P, Parallel, Grid, Cloud and Internet Computing: Proceedings of the 16th International
Conference on P2P, Parallel, Grid, Cloud and Internet Computing (3PGCIC-2021), Fukuoka, Japan, 28–30 October 2021; Springer:
Cham, Switzerland, 2022; pp. 227–236.

26. Achlioptas, P.; Diamanti, O.; Mitliagkas, I.; Guibas, L. Learning representations and generative models for 3d point clouds. In
Proceedings of the International Conference on Machine Learning, PMLR, Stockholm, Sweden, 10–15 July 2018; pp. 40–49.

27. Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative adversarial
nets Advances in neural information processing systems. arXiv 2014 arXiv:1406.2661.

28. Ballé, J.; Laparra, V.; Simoncelli, E.P. End-to-end optimized image compression. arXiv 2016 arXiv:1611.01704.
29. Quach, M.; Valenzise, G.; Dufaux, F. Learning convolutional transforms for lossy point cloud geometry compression. In

Proceedings of the 2019 IEEE International Conference on Image Processing (ICIP), Taipei, Taiwan, 22–25 September 2019; IEEE:
Piscataway, NJ, USA, 2019; pp. 4320–4324.

30. Karim, A.M.; Kaya, H.; Alcan, V.; Sen, B.; Hadimlioglu, I.A. New optimized deep learning application for COVID-19 detection in
chest X-ray images. Symmetry 2022, 14, 1003. [CrossRef]

31. Sung, Y.H.; Park, S.J.; Kim, D.Y.; Kim, S. GPS Spoofing Detection Method for Small UAVs Using 1D Convolution Neural Network.
Sensors 2022, 22, 9412. [CrossRef]

32. Arenas, R. Design of a Forest Fire Early Alert System through a Deep 3D-CNN Structure and a WRF-CNN Bias Correction.
Sensors 2022, 22, 8790. [CrossRef]

33. Liu, C.; Ding, W.; Chen, P.; Zhuang, B.; Wang, Y.; Zhao, Y.; Zhang, B.; Han, Y. RB-Net: Training highly accurate and efficient
binary neural networks with reshaped point-wise convolution and balanced activation. IEEE Trans. Circuits Syst. Video Technol.
2022, 32, 6414–6424. [CrossRef]

34. Xu, S.; Li, Y.; Wang, T.; Ma, T.; Zhang, B.; Gao, P.; Qiao, Y.; Lü, J.; Guo, G. Recurrent bilinear optimization for binary neural
networks. In Proceedings of the Computer Vision–ECCV 2022: 17th European Conference, Tel Aviv, Israel, 23–27 October 2022;
Proceedings, Part XXIV; Springer: Cham, Switzerland, 2022; pp. 19–35.

35. Jin, T.; Dai, H.; Cao, L.; Zhang, B.; Huang, F.; Gao, Y.; Ji, R. Deepwalk-aware graph convolutional networks. Sci. China Inf. Sci.
2022, 65, 152104. [CrossRef]

36. Zeng, B.; Liu, B.; Li, H.; Liu, X.; Liu, J.; Chen, D.; Peng, W.; Zhang, B. FNeVR: Neural Volume Rendering for Face Animation.
arXiv 2022 arXiv:2209.10340.

37. Sedaghat, N.; Zolfaghari, M.; Amiri, E.; Brox, T. Orientation-boosted voxel nets for 3D object recognition. arXiv 2016
arXiv:1604.03351.

38. Mekuria, R.; Li, Z.; Tulvan, C.; Chou, P. Evaluation Criteria for PCC (Point-Cloud Compression); DANS: The Hague, The Netherlands, 2016.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/LSP.2018.2823701
http://dx.doi.org/10.1109/TIP.2016.2529506
http://dx.doi.org/10.1109/TCSVT.2016.2543039
http://dx.doi.org/10.3390/sym14051003
http://dx.doi.org/10.3390/s22239412
http://dx.doi.org/10.3390/s22228790
http://dx.doi.org/10.1109/TCSVT.2022.3166803
http://dx.doi.org/10.1007/s11432-020-3318-5

	Introduction
	Related Work
	Methods
	Model Training
	Neural Network Structure
	Activation Functions
	Training

	Network Outputs
	Loss Function

	Result and Discussion
	Evaluation of the Compression by Different Depth of The Network
	Evaluation of the Compression by Different Number of Strides
	Evaluation of the Compression of Different Activation Functions

	Conclusions
	Appendix A
	References

